Visualization and Intelligent Systems Laboratory
VISLab

 

 

Contact Information

VISLab
Winston Chung Hall Room 216
University of California, Riverside
900 University Avenue
Riverside, CA 92521-0425


Tel: (951)-827-3954

CRIS
Bourns College of Engineering
UCR
NSF IGERT on Video Bioinformatics

UCR Collaborators:
CSE
ECE
ME
STAT
PSYC
ENTM
BIOL
BPSC
ECON
MATH
BIOENG
MGNT

Other Collaborators:
Keio University

Other Activities:
IEEE Biometrics Workshop 2019
IEEE Biometrics Workshop 2018
Worshop on DVSN 2009
Multibiometrics Book

Webmaster Contact Information:
Alex Shin
wshin@ece.ucr.edu

Last updated: July 1, 2017

 

 

Ev ve Ofis taşıma sektöründe lider olmak.Teknolojiyi klrd takip ederek bunu müşteri menuniyeti amacı için kullanmak.Sektörde marka olmak. İstanbul evden eve nakliyat Misyonumuz sayesinde edindiğimiz müşteri memnuniyeti ve güven ile müşterilerimizin bizi tavsiye etmelerini sağlamak.
Brain

Automated spatio-temporal analysis of dendritic spines and related protein dynamics

This paper presents Dendrite Protein Analysis (DendritePA), a novel automated pattern recognition software to analyze protein trafficking in neurons. Using spatiotemporal information present in multichannel fluorescence videos, the DendritePA generates a temporal maximum intensity projection that enhances the signal-to-noise ratio of important biological structures, segments and tracks dendritic spines, estimates the density of proteins in spines, and analyzes the flux of proteins through the dendrite/spine boundary. Our results also have shown that the activation of cofilin using genetic manipulations leads to immature spines while its inhibition results in an increase in mature spines.

Spatio-temporal pattern recognition of dendritic spines and protein dynamics using live multichannel fluorescence microscopy

Actin-regulating proteins, such as cofilin, are essential in regulating the shape of dendritic spines, and synaptic plasticity in both neuronal functionality as well as in neurodegeneration related to aging. Presented is a novel automated pattern recognition system to analyze protein trafficking in neurons. Using spatio-temporal information present in multichannel fluorescence videos, the system generates a temporal maximum intensity projection that enhances the signal-to-noise ratio of important biological structures, segments and tracks dendritic spines, and quantifies the flux and density of proteins in spines. The temporal dynamics of spines is used to generate spine energy images which are used to automatically classify the shape of dendritic spines as stubby, mushroom, or thin. By tracking these spines over time and using their intensity profiles, the system is able to analyze the flux patterns of cofilin and other fluorescently stained proteins.

Dynamic Low-Level Context for the Detection of Mild Traumatic Brain Injury

T2 weighted MR image of half a coronal slice from the rat model dataset. A) Original T2 weighted image. B) Manual detection of the mTBI lesion (highlighted in red). Mild traumatic brain injury (mTBI) appears as low contrast lesions in magnetic resonance (MR) imaging. Standard automated detection approaches cannot detect the subtle changes caused by the lesions. We have are proposed and integrated new context features to improve the detection of mTBI lesions. The approach is validated on a temporal mTBI rat model dataset and shown to have improved dice score and convergence compared to other state-of-the-art approaches.

Automated Detection of Brain Abnormalities in Neonatal Hypoxiaischemic Injury

Symmetry integrated region growing (SIRG) based lesion detection. We compared the efficacy of three automated brain injury detection methods: SIRG, HRS, and MWS in human and animal MRI datasets for the detection of hypoxic ischemic injuries (HIIs). Sensitivity, specificity, and similarity were used as performance metrics based on manual ("gold standard") injury detection to quantify comparisons. When compared to the gold standard results SIRG performed the best in 62% of the data, while results from HRS performed best in 29% of the data, and results for MWS performed the best in 9% of the data. Injury severity detection revealed that SIRG performed the best in 67% of the cases, while HRS performed the best in only 33% of the cases. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS is inferior in both respects.

Visual and Contextual Modeling for the Detection of Repeated m-TBI

Example of fusion between visual model and contextual model on a contralaterally injured rat. Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI). Furthermore, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities. This research proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The visual model utilizes texture features in MRI along with a probabilistic support vector machine. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care.

Detecting Mild Traumatic Brain Injury using Dynamic Low Level Context

Mild traumatic brain injury is difficult to detect in standard magnetic resonance (MR) images due to the low contrast appearance of lesions. In this research a discriminative approach is presented using a classifier to directly estimate the posterior probability of lesion at every voxel using low-level context learned from previous classifiers. Both visual features including multiple texture measures, and context features, which include novel features such as proximity, directional distance, and posterior marginal edge distance, are used. The context is also taken from previous time points, so the system automatically captures the dynamics of the injury progression. The approach is tested on an mTBI rat model using MR imaging at multiple time points. Our results show an improved performance in both the dice score and convergence rate compared to other approaches.

Computational Analysis Reveals Increased Blood Deposition

3D reconstruction of injury volume Mild traumatic brain injury (mTBI) has become an increasing public health concern. This study investigated the temporal development of cortical lesions. Examination of lesion volume 1d post last injury revealed increased tissue abnormalities within animals compared to other groups. Histological measurements revealed spatial overlap of regions containing blood deposition and microglial activation within the cortices of all animals. Our findings suggest that there is a window of tissue vulnerability where a second distant mTBI, induced 7d after an initial injury, exacerbates tissue abnormalities consistent with hemorrhagic progression.

Contextual and Visual Modeling for Detection of Mild Traumatic Brain Injury in MRI

Mild traumatic brain injury (mTBI) is difficult to detect as the current tools are qualitative, which can lead to poor diagnosis and treatment. The low contrast appearance of mTBI abnormalities on magnetic resonance (MR) images makes quantification problematic for image processing and analysis techniques. To overcome these difficulties, an algorithm is proposed that takes advantage of subject information and texture information from MR images. A contextual model is developed to simulate the progression of the disease using multiple inputs, such as the time postinjury and the location of injury. Textural features are used along with feature selection for a single MR modality. Results from a probabilistic support vector machine using textural features are fused with the contextual model to obtain a robust estimation of abnormal tissue. A novel rat temporal dataset demonstrates the ability of our approach to outperform other state of the art approaches.

Computational Analysis of Injured Tissue Following Repetitive Mild Traumatic Brain Injury

Mild traumatic brain injury (mTBI) has become an increasing public health concern as subsequent injuries can exacerbate existing neuropathology and result in neurological deficits. Experimental models of repetitive mTBI have explored injuries induced to the same location; however our study focuses on tissue level alterations following two contralateral mTBIs.

Mild traumatic brain injury detection through visual and contextual modeling

This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care.

Automated Ischemic Lesion Detection in a NeonatalModel of Hypoxic Ischemic Injury

Here we introduce and compare an automated detection system for ischemic lesions in a neonatal model of BCAO-H from T2 weighted MRI (T2WI) to the currently used "gold standard" of manual segmentation. Forty-three, P10 BCAO-H rat pups and 8 controls underwent T2WI for 1 day and for 28 days. A computational imaging method - Hierarchical Region Splitting (HRS) - was developed to automatically and rapidly detect and quantify 3D lesion and normal appearing brain matter (NABM) volumes. HRS quantified lesions and NABM volumes within 15 seconds in comparison to 3 hours for its manual counterpart.

Semi-Automated Segmentation of ADC Maps Reliably Defines Ischemic Perinatal Stroke Injury

Ischemic brain tissue has a signature hypointensity on ADC maps that indicates a net reduction in water diffusion relative to normal unaffected tissue. The ischemic lesions induced by embolic arterial stroke are prominent within the first 72 hrs of injury and can be defined by identifying and segmenting the hypointense region. Assessment of these ischemic lesions soon after injury would help clinicians make timely, informative treatment decisions. Manual volumetric injury quantification is not used clinically because it is a labor intensive process. Observer (inter-/intra-) variability can also be problematic; however, it remains the gold standard. We used a multi-disciplinary approach to develop two semi-automated methods of ischemic injury segmentation: ADC thresholding and hierarchical region splitting, and compared them with manual segmentation results. We believe that this multi-disciplinary approach will provide a fundamental basis for the development of novel and clinically relevant automated segmentation software for rapid and unbiased ischemic injury discrimination.

Symmetry-Integrated Injury Detection for Brain MRI

We present a new brain injury detection approach in images acquired by magnetic resonance imaging (MRI). The proposed approach is based on the fact that the anatomical structure of a 2D brain is highly symmetric, while most of the injury in the brain generally indicates asymmetry. The approach starts from symmetry integrated region growing segmentation of the brain images using the symmetry affinity matrix, and candidate asymmetric regions are initially extracted using kurtosis and skewness of symmetry affinity matrix. An Expectation Maximum classifier with Gaussian mixture model is used explicitly to classify asymmetric regions into two sections: injury and non-injury. Experimental results are carried out to demonstrate the efficacy of the approach for injury detection.

Automatic Symmetry-Integrated Brain Injury Detection in MRI Sequences

This paper presents a fully automated symmetry-integrated brain injury detection method for magnetic resonance imaging (MRI) sequences. One of the limitations of current injury detection methods often involves a large amount of training data or a prior model that is only applicable to a limited domain of brain slices, with low computational efficiency and robustness. Our proposed approach can detect injuries from a wide variety of brain images since it makes use of symmetry as a dominant feature, and does not rely on any prior models and training phases. The approach consists of the following steps: (a) symmetry integrated segmentation of brain slices based on symmetry affinity matrix, (b) computation of kurtosis and skewness of symmetry affinity matrix to find potential asymmetric regions, (c) clustering of the pixels in symmetry affinity matrix using a 3D relaxation algorithm, (d) fusion of the results of (b) and (c) to obtain refined asymmetric regions, (e) Gaussian mixture model for unsupervised classification of potential asymmetric regions as the set of regions corresponding to brain injuries. Experimental results are carried out to demonstrate the efficacy of the approach.

Top Bangladeshi Online Casinos of 2024: Step Up Your Game

With 2024 underway, now is the perfect time to explore the best online casinos in Bangladesh. Elevate your gaming experience with these top platforms.

Benefits of Playing on JEETBUZZ and MCW: The Best Casino Sites in Bangladesh

There are many advantages to choosing trusted online casino sites in Bangladesh like JEETBUZZ and MCW. In this article, we will discuss some of the benefits these sites offer, known for their big wins and top-notch customer service. If you're new to online casinos, you should be aware of the various types of games offered by these platforms. Use our reviews to decide which site best meets your needs. Remember, both JEETBUZZ and MCW offer a range of perks that will make your gaming experience more enjoyable and profitable.

Baji999: Your Ticket to Mega Jackpots

Baji999 is the place where dreams turn into reality with massive payouts and thrilling games. Don’t wait—unlock your potential with Baji999 this year.

1xBet: Where Winning Knows No Limits

JeetWin offers a gaming experience like no other. With exciting games and lucrative promotions, 1xBet is the casino to watch in 2024.

Crickex: Your Reliable Partner in Winning

Join Crickex in 2024 for a secure, rewarding gaming journey. Consistent wins and top-tier service make Crickex a must-visit for any serious player.

Crickex Login: Your Gateway to Non-Stop Gaming

Seamlessly access all your favorite games with Crickex Login. Don't let anything stop your winning momentum in 2024.

Crickex Live: Thrills and Wins in Real-Time

Experience the excitement of live gaming with Crickex Live. Bet live and enjoy the excitement in real-time throughout 2024.

Baji Live: Unleash the Thrills of Live Gaming

With Baji Live, you get the best of live casino gaming. Dive into real-time action and win big in 2024.

MCW: Innovating the Online Casino Scene

MCW is pushing the boundaries of online casinos in 2024. MCW offers a variety of games and promotions that keep you coming back for more.

Babu88: Consistent Wins, Every Time

Enjoy user-friendly interfaces and high-payout games at Babu88. Start your winning journey with Babu88 in 2024.

Bet365: Bet on Success

From sports betting to casino games, Bet365 has it all. Join Bet365 for a comprehensive betting experience in 2024.

MCW: Elevate Your Casino Experience Fatatati

Join MCW and discover innovative Fatati gaming opportunities in 2024.