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ABSTRACT 

 
Mild traumatic brain injury (mTBI) is difficult to detect as 
the current tools are qualitative, which can lead to poor 
diagnosis and treatment. The low contrast appearance of 
mTBI abnormalities on magnetic resonance (MR) images 
makes quantification problematic for image processing and 
analysis techniques. To overcome these difficulties, an 
algorithm is proposed that takes advantage of subject 
information and texture information from MR images. A 
contextual model is developed to simulate the progression of 
the disease using multiple inputs, such as the time post-
injury and the location of injury. Textural features are used 
along with feature selection for a single MR modality. 
Results from a probabilistic support vector machine using 
textural features are fused with the contextual model to 
obtain a robust estimation of abnormal tissue. A novel rat 
temporal dataset demonstrates the ability of our approach 
to outperform other state of the art approaches. 
 

Index Terms— Context, Low Contrast Images, 
Magnetic Resonance Images, Traumatic Brain Injury 
 

1. INTRODUCTION 
 
Mild traumatic brain injury (mTBI) is a silent epidemic in 
the United States [1]. mTBI includes sports injuries, blast 
related injuries to military personnel, injuries in automobile 
accidents and falls in the workplace. Much of the current 
public awareness of mTBI is due to increasing popular press 
reports and long term studies of athletes who exhibit 
numerous neurological deficits [1].  

Evaluation of mTBI is generally qualitative using 
indications such as the loss of consciousness, loss of 
memory, alteration in mental status, focal neurological 
deficits, Glasgow coma scale and visual assessment of 
neuroimaging studies, if performed. When MRI or 
computed tomography (CT) is performed to assist in 
diagnosis qualitative assessments do not provide a measure 
of the amount and location of injured tissues. Quantitative 
analysis is essential for improved diagnosis and treatment. 
Current approaches for quantitative analysis of moderate 
and severe TBI have been semi-automated [2]. However, 
mTBI has subtle MR signatures that can result in failure of 
current automated approaches. Computational methods used 

in detecting abnormalities in brain tumors and multiple 
sclerosis have been considered for mTBI [3,4]. Most of the 
current computational approaches rely on image registration 
to bring all the data into a common space. Once the objects 
are in the registered space, a model of the normal brain is 
constructed. There are inter-subject variations within 
registered brains, leading to distributions to be made for a 
normal appearing brain model. Tissue level alterations in 
mTBI have low contrast and encompass small regions 
(Figure 1), so the lesion values (such as T2) may fall within 
the values of the normal tissue distributions. Previous 
methods have used texture to increase the discriminatory 
value of MR images [4]. The proposed approach adopts and 
extends this concept to improve detection of brain 
abnormalities following mTBI. 

 
Figure 1: Sample T2 weighted MR images from the rodent 
model dataset. Left, original image; Right, manual 
detection. Lesion is the white highlighted region 
 

To overcome the low contrast appearance of mTBI in 
MR images a contextual model is proposed. Context has 
been an active research area in image analysis [5]. Context 
is needed when traditional visual based methods for 
detection fail. Context is defined as, “any information that 
might be relevant to object detection, categorization and 
classification tasks, but not directly due to the physical 
appearance of the object, as perceived by the image 
acquisition system [5].” Various types of context can be 
used for object detection: local pixel, 2d scene gist, 3d 
geometric, semantic, photogrammetric, illumination, 
weather, geographic, temporal, and cultural [6]. The 
proposed contextual model utilizes semantic context to build 
a probability map for estimating the location of mTBI 
abnormalities. 

The contributions of this paper are: 1) a contextual 
disease model based on Bayesian networks to estimate the 
spatial location of mTBI abnormalities. The contextual 
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model helps to overcome the low contrast nature of the 
abnormalities. 2) The contextual model is fused with a 
visual model that uses textural features to build a 
probabilistic support vector machine (PSVM). 3) A novel 
extensive temporal dataset of rats with mTBI is used. It 
consists of rat controlled cortical impact (CCI)  mTBI with 
samples of the disease at multiple time points post-injury 
using T2 weighted MRI. The proposed method is compared 
to other state of the art methods on this dataset. 

2. TECHNICAL APPROACH 

Figure 2: System flow diagram. 

The general flow of the proposed system for detecting brain 
mTBI abnormalities is shown in Figure 2. A database of 
manually extracted mTBI volumes, and their contexts, 
provides previous experiences of correctly classified 
abnormalities. This data is used to train both the visual and 
contextual models. The visual model utilizes the volume 
information by constructing a PSVM with 3D textural 
features computed from each volume. While the contextual 
model utilizes a Bayesian network based on the known 
contextual information from all the samples. The visual 
model captures visual cues from the texture space, and the 
contextual model captures location and temporal 
information about the mTBI abnormalities. When an MR 
volume enters the system it undergoes texture feature 
extraction followed by evaluation in the Bayesian network. 
Along with the MRI volume, contextual information may 
also be passed to the system. The contextual information can 
be an exact (e.g. 1day since injury) or a ranged value (eg. 3-
5days since injury). Evaluation of the Bayesian network 
with a sample estimates abnormality at every voxel. 

2.1. Contextual Modeling 

Horsfield et al. [7] have used Contextual models based 
solely on the location information by using the average 
location of all the binary masks representing the positive 
detections in a known database. Unlike this work, in this 
paper a more detailed model of the disease is incorporated 
into our Bayesian network (Figure 3) that allows for 
multiple semantic contextual inputs. The contextual inputs 
in the proposed system are: time since injury, central 
location of injury, and anatomical constraints. Each node in 

the network is a random variable. The output is a probability 
map calculated using eq. (1) at every voxel. Having a known 
distribution for each node reduces the number of training 
samples needed to sufficiently represent the distribution. 
Parameters of each distribution are learned from known 
examples in the database. 
 

 
Figure 3: Graphical representation of the Bayesian network, 
showing the dependencies of each distribution. A – 
anatomical constraints, L – focal location of injury, H – time 
since the hit event, Q – quantity of injury with time, S –
spread of injury, V – visual, I – injury. 
 

 (1) 

2.1.1 Time 
Time is a powerful semantic input as mTBI will evolve over 
time. It is modeled as an exponential distribution see eq. (2), 
which describes the time since the mTBI event occurred. 
Normally, subjects are seen soon after the mTBI event, 
which is captured in equation (2). λ is a parameter learned 
from the data to control the rate of decay. 

 (2) 
Q is the probability of the volume of injury over time. 

This distribution is modeled using a log-normal distribution 
(3). This distribution follows the natural progression of the 
disease where there is a temporal peak in abnormalities that 
tapers over time. Two parameters need to be learned in this 
distribution μ and σ. 

 (3) 

 
2.1.2 Anatomical Constraints 
When considering the progression of mTBI there are certain 
anatomical barriers that restrict the disease. There are two 
natural boundaries that TBI is not likely to progress beyond: 
a) The midline, which is a physical separation to the left and 
right hemispheres of the brain, and b) the corpus callosum 
due to the mild nature of the injury. 
 
2.1.3 Location and Spread 
An estimated location of the focal point of the mTBI is one 
of the possible contextual inputs. To represent this input as a 
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distribution two variables are considered, the distance from 
the midline along the perimeter and the z axis location. 
These are modeled using a Gaussian distribution since it is 
known that many TBIs occur to the front of the head. 

The function that unifies these concepts is a spread 
function (4). This sigmoid is the Gompertz function and is 
used to model tumors and population growth. Each 
asymptote is approached at different rates, which can be 
controlled by parameter selection (Figure 4). The rate of 
change is not only determined by parameters (m,n), Q also 
affects the shape of the function. When Q is small, the 
function has a sharp transition between the asymptotes and a 
gradual slope when Q is large. This represents the location 
being well known when there is supposed to be less injury 
and more uncertainty when there is supposed to be more 
injury. m determines the shift in the sigmoid and n controls 
the shape of the slope.  

 (4) 

 
Figure 4: Left: Diagram explaining the weighted distance 
function. Right: Effects of the parameters in eq. (4). 

d (5) is a distance metric, weighted by Σ, from the 
central point of contact in the xyz space. Σ accounts for the 
rotation of the weighted distance function. The distance 
function is weighted such that the major axis of change is 
along the same axis as the xy (coronal) tangent at the central 
point of contact. x is a point in the 3D space. σx and σy are 
parameters that set the weight of the distance along the 
major and minor axis respectively. The injury spreads along 
the perimeter of the brain more than into the center of the 
brain. This is due to the anatomy of the brain. g is the 
weight of the distance in the z axis. The tangent  at the 
central point of contact is calculated using Fourier descriptor 
of the perimeter with the upper twenty percent of the 
spectrum set to zero to give a smooth surface. Each 
parameter in the contextual model is estimated using non-
linear least squares. The resulting volume from this equation 
is a probability map. 

 
 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

2.2. Visual Modeling 
 
Chang et al. [8] proposes a method for  PSVM, which 
allows for SVM with maximum a posteri probability (MAP) 
estimation. This assigns a probabilistic output for each 
sample, so it can be fused with the results from the 
contextual model.  

The features that are used in PSVM ultimately 
determine the discriminatory ability of the model. T2 MRI 
can visualize edema (increased water content) and increased 
extravascular blood. While both of these can be visualized 
in the MRI the values on the image are only locally 
increased at the injury site and are subtle (Figure 1). To 
increase the discriminatory ability of the MRI texture 
features are extracted. The extracted texture features 
include: local entropy, range, mean, variance, skewness, 
kurtosis, and xyz gradients. Feature selection is then carried 
out by choosing the features with the largest Bhattacharyya 
distance between the normal and abnormal distributions. 
PSVM is trained using the radial basis function kernel due 
to the low dimensionality of the space which gives a 
nonlinear boundary in the feature space. The visual model is 
multiplied with the contextual model since they are 
independent for a final probability estimate of the injury 
abnormality due to mTBI as shown in eq. (1). 
 

3. EXPERIMENTAL RESULTS 
 
3.1 Dataset 
 
Sprague Dawley rats were used as an animal model of mTBI 
using controlled cortical impact (CCI). A total of 51 mTBI 
brain volumes ranging 1-60 days after injury are used. MRI 
data were acquired using a Bruker Advance 4.7T for T2 
weighted images (T2WI; TR/TE/FA=3453 ms/20 ms/20 , 
25x1 mm slices) with a 2562 matrix and 3cm field of 
view. ROIs were manually segmented using Cheshire image 
processing software (Hayden Image/Processing Group, 
Waltham, MA) and included the right and left hemispheres 
and injured tissue volumes that were defined as abnormal 
(hyper/hypo-intense) signal intensities within the cortex 
with the remaining tissues designated as normal appearing 
brain matter. 
 
3.2 Experimental Results 
 
To give a sense of where errors are coming from and how 
the regions are correctly detected the receiver operator 
characteristic (ROC) curve is given. ROC illustrates the 
tradeoff between the true positive rate (TPR) and the false 
positive rate (FPR) The Dice coefficient eq. (12) measures 
set agreement, which is the intersection of the known object 
and the detected object divided by the size of the known and 
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detected objects. Dice gives a better idea of the intersection 
between the detected object and the actual object since it 
does not include true negatives in the calculation. In eq. (12) 
the notations are: true positive (TP), False Positive (FP), 
False Negative (FN). 

 (12) 

Testing was carried out using leave one out validation. 
Three cases of context were tested: all contexts known, focal 
position unknown, and focal position and time unknown. 
Figure 5 shows the receiver operator characteristic (ROC) 
curve for each context case demonstrating that with 
increasing context the performance increases.  

 

 
Figure 5: Top: ROC plot on varying contextual inputs. The 
threshold on the probability map is varied. Bottom: Dice 
versus threshold curves. 

 
Figure 6: Example outputs from the thresholded probability 
maps of the proposed approach. The thresholds are from the 
highest point of the Dice curves. Left: All contexts, Middle: 
No Position, Right: No Context. Green: TP, Teal: TN, Red: 
FP, Brown: FN. (note: should be viewed in color.) 

Table 1 shows the performance comparison (mean and 
standard deviation) of the proposed approach against two 
state-of-the-art approaches. Sun et al. [9] is a data driven 
approach that uses asymmetry to detect brain abnormalities. 
Anbeek et al. [3] is a model approach that puts the known 
database into a registered space and uses KNN including 
xyz as a feature to determine lesions.  

 

  TPR FPR Dice 

Symmetry [9] 0.03 .09 0.003 .007 0.02 .04 

KNN [3] 0.09 .02 0.002  0.15 .02 

SVM Alone 0.38 .16 0.102 .08 0.09 .07 

All Context Known 0.91 .17 0.06 .008 0.42 .15 
Position Unknown 0.83 .25 0.10 .011 0.34 .2 

Context Unknown 0.81 .23 0.10 .02 0.32 .12 
Table 1: Comparison with state of the art approaches. All 
values are the mean results with leave one out validation. 
The threshold is at the highest average Dice value.   
 

4. CONCLUSIONS 
 
This paper proposes a system for detecting mTBI from T2 
weighted MR images. The model is a fusion of a visual 
model that utilizes texture features to enhance low contrast 
detection and a semantic contextual model that estimates the 
location of the injury. The method utilizes contextual 
knowledge that may be known when a subject is being 
evaluated. Analysis of an mTBI dataset by our model 
outperformed other state of the art approaches. The 
proposed approach performs better than the other 
approaches even under varying contextual inputs. This 
model can be expanded to include repeated mTBI events. 
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