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Abstract—Actin-regulating proteins, such as cofilin, are 

essential in regulating the shape of dendritic spines, and 

synaptic plasticity in both neuronal functionality as well as in 

neurodegeneration related to aging. The analysis of the motility 

of cofilin in fluorescence video-microscopy allows the discovery 

of its effects on cell functions. However, the flow of cofilin has 

not been analyzed to date by automatic means.  This paper 

presents a novel automated pattern recognition system to 

analyze protein trafficking in neurons. Using spatio-temporal 

information present in multichannel fluorescence videos, the 

system generates a temporal maximum intensity projection that 

enhances the signal-to-noise ratio of important biological 

structures, segments and tracks dendritic spines, and quantifies 

the flux and density of proteins in spines.  The temporal 

dynamics of spines is used to generate spine energy images 

which are used to automatically classify the shape of dendritic 

spines as stubby, mushroom, or thin.  By tracking these spines 

over time and using their intensity profiles, the system is able to 

analyze the flux patterns of cofilin and other fluorescently 

stained proteins.  The cofilin flux patterns is found to be 

correlated with the dynamically changing dendritic spine 

shapes. The results are presented using multichannel 

fluorescence videos. 

Keywords—dendritic spines; protein flux; classification; 

multichannel imaging;  

I. INTRODUCTION 

Cofilin is an actin-severing protein that exists in 

specialized locations within cells and it  directly correlates 

with their function [1], [2].  Each cell compartment can be 

defined by its own structural and chemical composition. The 

localization of proteins can provide information about the 

protein’s activity, associated transduction pathways, and 

interactions with other proteins.  Understanding of 

subcellular changes in their localization over time is critical 

in studying their function.  In this paper, we investigate role 

of the actin-severing protein, cofilin, in regulating the 

remodeling of spines.  Dendritic spines are small protrusions 

located on the surface of neuronal dendrites. These dendritic 

spines contain the post-synaptic sites of excitatory synapses 

in the central nervous system (CNS) [3]–[7].  The various 

shapes of dendritic spines can have a strong impact on the 

development of cognitive disabilities and neurological 

diseases.  Cofilin’s role in remodeling dendritic spines is to 

sever and disassemble the actin cytoskeleton that provides the 

structure to dendritic spines.  Elevated levels of cofilin have 

previously been shown to contribute to loss of synapses and 

spines in neurodegenerative disorders, such as Alzheimer’s 

disease (AD) [8], [9].  However, the precise mechanism 

underlying cofilin-mediated loss of synapses is unclear.  

Therefore, it is important to quantify the motility of cofilin 

and examine how the localization of cofilin affects dendritic 

spine shape.   

Many previous studies involving the effects of proteins on 

synaptic remodeling have primarily used manual 

examination, segmentation, and classification. Most of these 

biological studies have used simple user-operated software 

such as imageJ to manually segment regions of interest 

(ROIs).  Other studies have used visualization systems such 

as Imaris or Neurolucida [10]. However, both of these 

systems require z-stack information and are highly dependent 

on parameter selection.  These manual methods can be a 

tedious and time consuming process, and is prone to user bias, 

especially when analyzing time-lapse videos.  Hence, it is 

advantageous to develop image processing algorithms to 

automatically segment ROIs and extract features for the 

analysis of live fluorescence videos.  

In order to automatically correlate cofilin localization 

with dendritic spine shapes, we must also automatically 

segment and analyze dendritic spines in the same image. Due 

to the small size of dendritic spines, it is difficult to acquire 

images with sufficient resolution and contrast to properly 

analyze the dynamic structures. Many experiments 

compensate for this by analyzing the maximum intensity 

projection of a z-stack.  Capturing these z-stacks would be 

disadvantageous for us as we are already capturing two 

separate fluorescence channels; a green channel which was 

stained with wild type (wt)-Cofilin-GFP to label cofilin 

proteins and a red channel stained with TdTomato to provide 

accurate spine structural information. In addition, in order to 

analyze the spatio-temporal relationship between dendritic 

spines and cofilin, a time series of sufficient temporal 

resolution must be captured. To improve our signal-to-noise 

ratio, we present a method that uses the spatio-temporal 

information of the time series of video to enhance each frame 

of the video without the need to acquire z-stack data.  

In this paper, we propose a novel automated pattern 

recognition system that analyzes protein trafficking in 

neurons using multi-channel florescence microscopy and 
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correlates back to spine shape/function. Unlike previous 

work, our proposed method uses video bioinformatics 

algorithms to obtain systematic, spatio-temporal pattern 

information on cofilin dynamics.  The system is used 

specifically to examine cofilin’s effect on the shape and 

motion of dendritic spines.  Fluorescence microscopy is used 

because the intensity level of pixels are assumed to be 

proportional to the amount of stained proteins in the image.  

Due to cofilin’s small size, which is at the subpixel level, 

individual proteins cannot be tracked.  However, our system 

is able to estimate the change of cofilin density in the 

dendritic spines by measuring their intensity levels.  We also 

use a spine energy representation similar to an existing 

motion pattern representation called gait energy image (GEI) 

to capture spine motion in a single image so as to extract 

useful features that can be used to classify segmented spine 

shapes. By correlating the extracted spine shape with the 

observed cofilin transport dynamics, we can analyze and gain 

insights into the underlying biological processes. 

II. RELATED WORK 

To the best of our knowledge, cofilin has never been 

automatically quantified.  Previously, another actin-

regulating protein paxillin, has been automatically analyzed 

in non-neuronal florescence images [11]. However, only 

paxillin dense regions that are above a threshold are tracked.  

These paxillin dense regions are also sparse and appear much 

brighter than the rest of the cell. However, this is not the case 

for cofilin located in dendrites and dendritic spines as it is 

more uniformly distributed.  Also cofilin dense regions may 

disperse and form over time, making tracking these clusters 

impossible.  Bosch et al. [12] have manually studied the effect 

of cofilin on the remodeling of dendritic spine substructures.  

This paper classified cofilin transport in dendritic into four 

different patterns: persistent increase in concentration, 

transient increase, transient decrease, and persistent decrease.  

Using this information, they found that the type of cofilin 

transport correlated with the remodeling of dendritic spine 

shapes. 

There are some existing methods that automatically 

examine the flow of proteins in cells.  Many of these methods 

estimate individual particle trajectories over time by using 

frame by frame object detection [13] and associating the 

objects across time.  An issue with these methods is that they 

do not perform well with high particle density and in the 

presence of noise.  Another approach is to partition the cell 

into regions and estimate particle flux by the intensity level 

or protein density in the regions [14], [15]. Pecot et al. [15] 

developed a method that involves partitioning the cell into 

predefined regions of set sizes and shape.  By counting the 

number of particles or measuring changes in the intensity 

levels, they were able to estimate the flux of these particles 

through the boundaries between regions.  One limitation of 

this method is that the regions must be rigid and the choice of 

region size affects the performance. Also the experiments on 

live samples used micro-fabricated patterns [16] to constrain 

the cell shape so that the partitioned regions remained the 

same throughout the experiment. 

To correlate cofilin transport with dendritic spine 

morphology, spines must be simultaneously segmented and 

classified.  Spine segmentation methods can be divided into 

two groups, classification based [17] and centerline 

extraction based [18]–[21]. The classification methods 

classify individual pixels into different groups such as spine, 

dendrite, or background [17]. The method by Rodriguez et al. 

[17] uses the pixel distance to the close surface point as a 

feature in classification, however, this can produce spurious 

spine detection and is sensitive to noise. Centerline methods 

involve detecting the backbone of the dendrites and 

segmenting spines by their relationship to the backbone.  

Traditional methods have difficulty when the dendrite width 

varies along its orientation.  In our system, the method [22] is 

used to detect a center region using gradient vector flow [23] 

instead of a thin backbone. This allows us to compensate for 

varying dendritic spine widths.  

After segmenting spines, classification of shape type is 

advantageous in analyzing biological conditions.  Basu et al. 

[24] uses a decision tree classifier to classify spines by using 

neck length, spine height, head width. An issue with these 

features is that since the resolution is so low, many of these 

features are measured in only a few pixels.  This leads to an 

increased likelihood of measurement error and sensitivity in 

classification. One of the features used by our pattern 

recognition system is an adaption of gait energy image (GEI) 

[25]. GEI is a spatio-temporal gait representation that has 

been widely used to characterize human walking patterns.  

GEI has previously been shown to be highly effective for 

recognition of different individuals.  Like GEI, we use spine 

energy images (SEI) to aid us in the classification of dendritic 

spine shapes such as mushroom, thin, and stubby.  Unlike 

previous work SEI allows for the use of spatio-temporal 

information in classification.   

The key contributions of our work are: a) that for the first 

time an automated algorithm suite is developed and used to 

quantify the movement of cofilin in dendrites and spines, and 

correlate to spine shape using multi-channel fluorescence live 

videos.  b) We also use spatio-temporal information to 

enhance the signal-to-noise ratio in our videos. c) Automated 

analysis of multiple fluorescent probes in time-lapse videos 

provides a method for tracking the local distribution of cofilin 

while simultaneously analyzing the effects on spine shape.  

Understanding the dynamics of cofilin within sub-neuronal 

compartments is critical to understanding its function in 

regulating the morphological structure and functionality of 

synapses.  

III. THE PROPOSED METHOD 

The proposed method is separated into three parts: 

Dendritic spine segmentation, protein motility extraction and 
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cofilin-spine shape analysis.  A diagram of our workflow is 

shown in Fig. 1. 

Dendritic Spine Segmentation 

The algorithm for dendritic spine segmentation begins by 
estimating the foreground or region of interest in each frame. 
The foreground in our case is any pixel illuminated by 
fluorescent proteins in a dendritic structure. The algorithm 
starts by computing the maximum intensity projection of the 
time series of video frames.  Given a video consisting of Nv 
frames, this temporal maximum intensity projection (TMIP) 
is defined as follows: 

 ( , ) max ( , , ),
t

T x y I x y t           (1) 

where I(x,y,t) is the image at time t.  Because we are taking the 
maximum intensity of a pixel along the time dimension, a 
TMIP pixel will be brighter if a structure strongly fluoresced 
at that location for any time in the video.  The pixel value will 
be low for any background structures such as dendrites or 
axons outside of our focal distance.  The TMIP is then max-
min normalized into a filter whose values will be used as 
weights for enhancing the signal-to-noise ratio in the image.  
For every frame, the TMIP is multiplied to the image as 
weights.  This normalization procedure is summarized in the 
following equation:  

 
min

max min

( , )
'( , , ) * ( , , ).

T x y T
I x y t I x y t

T T





        (2) 

This allows for structures that are brighter in the TMIP to 
be enhanced in each frame, while background structures such 
as axons or dendrites outside our depth of focus to be 
suppressed.  Because the information in the current frame is 
being used, no artifacts will be created from the bright regions 
in the TMIP. The TMIP, an original image and a temporally 
enhanced image are shown in Fig. 2.  A rough segmentation 
of the dendrites and spines can now be computed by using the 
Otsu’s method [26].  This rough segmentation is our 
foreground which can be used to extract the central region of 
the dendrite.  Once the foreground is computed, the contours 
of the dendrites and dendritic spines can be acquired by 
removing all interior pixels of the ROI leaving only the 
outline. 

After computing the foreground, we compute the central 
regions or backbone of the dendrites [22].  Previous methods 
have used a simple skeletonization procedure on the dendrite 
segmentation until only a thin backbone remained.  The 
skeleton of a sample image (Fig. 3A) is shown in Fig. 3B.  
However, this backbone does not give the best representation 
of a dendrite and does not provide information such as the 
changing width of the dendrite.  We start by acquiring a rough 
segmentation of the foreground using thresholding the TMIP 
enhanced frame by Otsu’s method. Next, a modified gradient 
vector flow is computed, in which vectors are orientated 

Fig. 1 System Overview Diagram.  Dendritic spine segmentation subsystem uses the red fluorescence channel to extract the foreground, central region, and 
spines.  Protein motility extraction subsystem uses green fluorescence channel to measure cofilin levels and transport in spines.  Protein-spine shape analysis 

subsystem uses both channels and temporal information to compare spine shape and cofilin flow. 

Fig. 2. A) Temporal maximum intensity projection (TMIP). B) Original 

frame. C) Enhanced frame. D) Extracted foreground without TMIP. E) 
Foreground with TMIP. F) Overlay of both foregrounds (red = without 

TMIP, green = with TMIP) on enhanced frame. 
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towards the center of a structure.  Starting from every edge 
pixel, the algorithm follows the path of vectors until it 
encounters a vector greater than 90 degrees from the current 
vector.  Both these pixels will now be marked as a central 
dendrite pixel.  Noise and possible spine central regions are 
filtered out by their size. The final output is shown in Fig. 3C.   

In order to segment spines, the algorithm requires the 
computation of seed points.  Using the gradient vector flow 
generated backbone, an inner distance map is computed.  This 
inner distance map measures the distance of each foreground 
pixel to the closest central region pixel.  Only pixels in the 
computed foreground contour are considered as possible seed 
points. Using the inner distance map and the ROI contours, all 
regional maxima are used as the seed points.  These regional 
maxima correlate to the furthest spine pixels from the central 
regions of the dendrite.  Each seed point is considered a 
possible spine detection.  All contour pixels that are closer to 
the seed point than the closest backbone pixel are considered 
a part of that spine as shown in Fig. 3D.  The end points of this 
contour are found and a line is draw to connect them.  This 
line represents the interface or boundary between the spine 
and its dendrite.  The contour is now filled and will be used as 
the final segmentation of the spine. 

A. Cofilin Motility Extraction 

In order to analyze the motility of cofilin, at least two 
adjacent frames are needed. Because individual cofilin 
proteins exist at the subpixel level and cannot be resolved at 
our (40x) magnification, they cannot be tracked individually. 
Since the green intensity channel tracks the fluorescence-
tagged cofilin species, the intensity is directly proportional to 
the amount of cofilin in the pixel.  While the visual changes in 
cofilin density are difficult to examine by eye, the system is 
able to estimate this information by using spatio-temporal 
information in the red structural channel.  Using the 
previously segmented dendritic spines, we can approximate 
the amount of cofilin located in these structures.  The system 
starts by preforming data association of segmented spines in 
neighboring frames to produce dendritic spine tracks.  
Association is chosen by largest percent of overlap with 
existing tracks.  The ratio of overlap is sufficient as the spines 
are attached to a fixed location on the dendrite.  Most of the 
dynamic motion of dendritic spines are due to sway and shape 
change, whereas the sway of the dendrite itself is negligible. 

New tracks may be created if there is no overlap. A spine may 
not be detected in every frame as they may shrink into the 
dendrite or sway in and out of the z-axis, thereby going out of 
view.  Because of this, a spine segmentation may be associated 
with any existing track as long as there is overlap with the last 
known location. 

Because we are interested in the flow of cofilin through 
regions of a cell, it is useful to relate this concept to fluid 
dynamics.  Of particular interest is the differential form of the 
continuity equation in fluid mechanics, which is written as: 

 ( ) ,div f s
t




   such that ,f v         (3) 

where  is the density of the fluid particles, f is the flux of the 

fluid through a boundary, v is the velocity, and s is a source 
term.  To find the change in the amount of cofilin in the spine, 
we want to solve for the div(f) which is the “flux density” and 
represents the amount of flux entering or leaving a point. In 
florescence microscopy, fluorescence intensity levels are 
proportional to the amount of tagged proteins in a region.  This 
leads to the follow proportionality formula: 
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           (4) 

where pi(t) is the density of pixel intensity levels in spine S(t) 
at time t, i(x,y,t) is the intensity of pixel (x,y) and A(t) is the 
area in pixels of spine S(t).  It can be assumed that cofilin 
neither produced nor consumed in the spine.  This allows the 
source term s to be set to zero for all calculations of flux.  Also 
as there is only one boundary between the spine and the 
dendrite, cofilin flux must be either in or out of this boundary. 
Solving for div(f), the continuity equation becomes: 

 
( )

( ) .
i t

div f
t




          (5) 

A comparison of cofilin flux and density can now be made 
by examining the intensity levels in the green cofilin channel.  
An increase in the average intensity in a spine represents an 
increase in the cofilin density of the spine and a flux of cofilin 
into the spine.  Conversely, a decrease in the average intensity 
represents a decrease in cofilin density as well as a flux of 
cofilin out of the spine. 

B. Cofilin-Spine Shape Analysis 

After acquiring the flow of cofilin and the contours of 

dendritic spines, we relate the flow of cofilin to the shape of 

the spine. The first step is to classify the shape of the dendritic 

spine. To do this, we obtain the spine energy image 

representation of a spine. The binary segmentation of each 

spine in a track is cropped.  All binary spines images are 

rotated so that the spine-dendrite boundary is aligned with the 

x-axis.  In order to compute the SEI representation, these 

aligned cropped images are resized into 10x10 images.  Given 

the registered binary images Bt(x,y) at time t for a spine track 

of N frames, the spine energy image can be computed as 

follows: 

Fig. 3. A) Foreground of dendritic spines. B) Skeletonization of A. C) 

Central region compute from A. D) Segmented spine contours and central 

region overlaid to original frame. 
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                                (6) 

An example of the aligned binary images and SEI are show 

in Fig. 4. 

 Since the SEI images are 10x10 pixels, the dimension of 

the feature vector is 100, which leads to a problem with the 

curse of dimensionality.  To account for this, principal 

component analysis (PCA) and multiple discriminant 

analysis (MDA) are used to reduce the dimensionality of the 

feature and find the most discriminating features for 

classification. PCA projects the observations to an orthogonal 

space that maximizes the variance in the data while 

minimizing the total squared error.  MDA computes a 

function that projects the features into C-1 dimensional space 

that maximally discriminate between C classes. PCA is 

performed first and the dimensionality is reduced to the 

minimum number of projected dimensions with at least 90% 

of the variance.  The project features are inputted into the 

MDA algorithm, producing a 2-dimensional feature space.  A 

final classification is made with a Bayesian classifier that 

minimizes the expected classification cost:  

1,..., 1

arg min ( | ) ( | ),
K

y K k

y P k x C y k
 

             (7) 

where y is the predicted classification, K is the number of 

classes, P(k|x) is the posterior probability of class k for 

observation x, and C(y|k) is the cost of classifying an 

observation as y when its true class is k.  

IV. EXPERIMENTAL RESULTS 

Our data set consists of live fluorescence videos which 
contain 79 spines tracks recorded over approximately 30 
minutes.  TdTomato was used to label the entire structure of 
the cell (dendritic structural information) and wild type (wt)-
Cofilin-GFP was used to label cofilin (cofilin distribution 
information). Videos varied in length from 39 to 70 frames 
and were collected at intervals varying from every 20 to 60 
seconds. The segmentation algorithm parameters were kept 
constant for each video.  Our system was able to find 79 

properly segmented spine tracks in total.  Ground truth was 
created by manually classifying each segmentation as stubby, 
thin, or mushroom.  The average (mode) class type was taken 
as the class of the spine track. 

Classification of tracks was done with 10-fold cross 
validation.  The experiments were performed 10 times by 
randomly shuffling the dataset.  Results are compared to a 
decision tree method, that uses spine height and width 
features.  Table 1 displays the classification results.  The 
proposed method outperforms the traditional decision tree 
method by close to 20%.  The decision tree method was 
sensitive to small measurement errors at this resolution, while 
our proposed method is robust due to the spatio-temporal 
information in the spine energy images.  Table 2 displays a 
confusion matrix of the 79 tracks.   

Flux was measured for each of the 79 spine tracks. The 
average (mode) flux direction for each track is computed and 
labelled as either into the spine or out of the spine.  The flux 
direction is sorted by class and the total count is shown in 
Table 3.  This suggests that if the net cofilin flux remains the 
same in the local spine, then there will be no changes in spine 
structure, as seen in the stubby spines example. However, if 
there is a net influx of cofilin, there is a prevalence of thin, 
immature spines. Whereas, if there is a net outward flux of 
cofilin, there was a prevalence of the mature mushroom spine 
shapes.  

V. CONCLUSIONS 

In this paper, we have developed a pattern recognition 
system to analyze protein trafficking in neuronal florescence 
microscopy videos.  By using spatio-temporal information, 
the system is able enhance low contrast/low resolution images 
by computing a temporal maximum intensity projection which 
is used to increase the signal-to-noise ratio in every frame.  
Also, the temporal dynamics of spines are used to generate a 
spine energy image which is useful in classifying different 
spine shapes.  Lastly, we were able to estimate cofilin flux 
patterns and correlate them with the changing spine 
morphology over time. Mushroom/stubby spine shapes are 
recognized as mature/stable spines, whereas thin spines are 
classified as immature/unstable. Our data suggests that the 
rapid cycling of cofilin in and out of the spines leads to 
structural instability of the spines. This is consistent with the 
actin-severing/remodeling function of cofilin. 

TABLE I.  CLASSIFICATION RESULTS 

TABLE II.  CONFUSSION MATRIX 

R
ea

l 
C

la
ss

 Predicted Class 

 Stubby Thin Mushroom 

Stubby 40 3 2 
Thin 5 6 0 
Mushroom 4 1 18 

TABLE III.  COFILIN FLUX BY CLASS 

STUBBY THIN MUSHROOM 
INTO OUT OF INTO OUT OF INTO OUT OF 

46.67% 53.33% 72.73% 27.27% 30.43% 69.57% 

DECISSION TREE SPINE ENERGY IMAGE 

60.76  ± 0.00% 79.75 ± 1.30% 

Fig. 4. Examples of aligned binary images and spine energy image for each 

class of dendritic spine. 
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