Visualization and Intelligent Systems Laboratory
VISLab

 

 

Contact Information

VISLab
Winston Chung Hall Room 216
University of California, Riverside
900 University Avenue
Riverside, CA 92521-0425


Tel: (951)-827-3954

CRIS
Bourns College of Engineering
UCR
NSF IGERT on Video Bioinformatics

UCR Collaborators:
CSE
ECE
ME
STAT
PSYC
ENTM
BIOL
BPSC
ECON
MATH
BIOENG
MGNT

Other Collaborators:
Keio University

Other Activities:
IEEE Biometrics Workshop 2019
IEEE Biometrics Workshop 2018
Worshop on DVSN 2009
Multibiometrics Book

Webmaster Contact Information:
Alex Shin
wshin@ece.ucr.edu

Last updated: July 1, 2017

 

 

Ev ve Ofis taşıma sektöründe lider olmak.Teknolojiyi takip ederek bunu müşteri menuniyeti amacı için kullanmak.Sektörde marka olmak. İstanbul evden eve nakliyat Misyonumuz sayesinde edindiğimiz müşteri memnuniyeti ve güven ile müşterilerimizin bizi tavsiye etmelerini sağlamak.
Context

Context guided belief propagation for remote sensing image classification

Proposed is a context guided belief propagation (BP) algorithm to perform high spatial resolution multispectral imagery (HSRMI) classification efficiently utilizing superpixel representation. One important characteristic of HSRMI is that different land cover objects possess a similar spectral property that is exploited to speed up the standard BP (SBP) in the classification process. Specifically, we leverage this property of HSRMI as context information to guide messages passing in SBP. Furthermore, the spectral and structural features extracted at the superpixel level are fed into a Markov random field framework to address the challenge of low interclass variation in HSRMI classification by minimizing the discrete energy through context guided BP (CBP).

Visual and Contextual Modeling for the Detection of Repeated m-TBI

Example of fusion between visual model and contextual model on a contralaterally injured rat. Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI). Further, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities. We present an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The visual model utilizes texture features in MRI along with a probabilistic support vector machine. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care.

Dynamic Low-Level Context for the Detection of Mild Traumatic Brain Injury

T2 weighted MR image of half a coronal slice from the rat model dataset. A) Original T2 weighted image. B) Manual detection of the mTBI lesion (highlighted in red). Mild traumatic brain injury (mTBI) appears as low contrast lesions in magnetic resonance (MR) imaging. Standard automated detection approaches cannot detect the subtle changes caused by the lesions. We've proposed and integrated new context features to improve the detection of mTBI lesions. The approach is validated on a temporal mTBI rat model dataset and shown to have improved dice score and convergence compared to other state-of-the-art approaches.

A New Multi-scale Fuzzy Model for Histogram-based Descriptors

We present a general Multi-Scale Fuzzy Model (MSFM) which handles distortions at different scales in Histogram-Based Descriptors(HBDs). This model can be applied both on one-dimensional HBDs and multidimensional HBDs. We then focus on applying MSFM on the widely used Shape Context for a Simplified Multi-scale Fuzzy Shape Context (SMFSC) descriptor. Fuzzy models are barely used in multi-dimensional HBDs due to the significant increase of computational complexity. We show that by introducing an intra-bin point location approximation and an approximate iterative fuzzification approach, the algorithm can be simplified and thus SMFSC hardly increases computational complexity. Experiments on standard shape dataset show that SMFSC improves upon the Inner Distance Shape Context. We also applied SMFSC on Content-Based Product Image Retrieval and the experimental results further validate the effectiveness of our model.

MFSC: A New Shape Descriptor with Robustness to Deformations

We propose a new shape descriptor, Multi-scale Fuzzy Shape Context (MFSC), which is highlighted by its robustness to deformations. A novel multi-scale fuzzy model is presented and applied on the widely used shape descriptor Shape Context to generate MFSC. The multi-scale fuzzy model can handle shape deformations of different scales, which makes MFSC robust to various deformations. Experiments on an articulated shape dataset demonstrate performance improvement gained by MFSC over existing methods. We also applied MFSC on a real-world application, Content-Based Product Image Retrieval, and the experimental results further validate its effectiveness. We make our code and experimental data publicly available for future reference.

Mild traumatic brain injury detection through visual and contextual modeling

This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care.

Gait recognition by combining classifiers based on environmental contexts

Human gait properties can be affected by various environmental contexts such as walking surface and carrying objects. In this paper, we propose a novel approach for individual recognition by combining different gait classifiers with the knowledge of environmental contexts to improve the recognition performance. Different classifiers are designed to handle different environmental contexts, and context specific features are explored for context characterization. In the recognition procedure, we can determine the probability of environmental contexts in any probe sequence according to its context features, and apply the probabilistic classifier combination strategies for the recognition. Experimental results demonstrate the effectiveness of the proposed approach.

2024 Kağıthane evden eve nakliyat deneme bonusu veren siteler deneme bonusu veren siteler nakliyat canlı tv izle casinoslot giriş 63bahisnow.com 1xbet Giriş Perabet Giriş Deneme Bonusu Forum mobil okey deneme bonusu deneme bonusu bonus veren siteler bonus veren siteler yuupa melbet giriş casino siteleri sultanbet grandpashabet https://fap.xxx deneme bonusu veren siteler Deneme Bonusu Deneme bonusu veren siteler Bonus veren bahis siteleri Casino siteleri Freespin asyabahis.site Deneme Bonusu Betz 1 Deneme bonusu veren siteler Bonus veren bahis siteleri Casino siteleri Freespin Yatırımsız deneme bonusu Freebet veren siteler Çevrimsiz deneme bonusu veren siteler Slot casino Deneme bonusu forum Bahisikayet.com Deneme bonusu Deneme bonusu veren siteler Bahis forum Forum bahis Bahis forumu Banko tahmin melbet melbet giriş yekbet.org olabahis.infoYatırımsız deneme bonusu Freebet veren siteler Çevrimsiz deneme bonusu veren siteler Slot casino Deneme bonusu forum deneme bonusu https://www.fapjunk.com istanbul evden eve nakliyat bovbet giriş pendik escort anadolu yakası escort şişli escort bodrum escort