Visualization and Intelligent Systems Laboratory
VISLab

 

 

Contact Information

VISLab
Winston Chung Hall Room 216
University of California, Riverside
900 University Avenue
Riverside, CA 92521-0425


Tel: (951)-827-3954

CRIS
Bourns College of Engineering
UCR
NSF IGERT on Video Bioinformatics

UCR Collaborators:
CSE
ECE
ME
STAT
PSYC
ENTM
BIOL
BPSC
ECON
MATH
BIOENG
MGNT

Other Collaborators:
Keio University

Other Activities:
IEEE Biometrics Workshop 2019
IEEE Biometrics Workshop 2018
Worshop on DVSN 2009
Multibiometrics Book

Webmaster Contact Information:
Alex Shin
wshin@ece.ucr.edu

Last updated: July 1, 2017

 

 

Ev ve Ofis taşıma sektöründe lider olmak.Teknolojiyi klrd takip ederek bunu müşteri menuniyeti amacı için kullanmak.Sektörde marka olmak. İstanbul evden eve nakliyat Misyonumuz sayesinde edindiğimiz müşteri memnuniyeti ve güven ile müşterilerimizin bizi tavsiye etmelerini sağlamak.

Learning-Integrated Interactive Segmentation and
Classification of Synthetic Aperature Radar Imagery


Presented by: Stephanie Fonder

ABSTRACT: Segmentation is a low-level task that is a first step to many computer vision problems. Although image segmentation algorithms exist which perform reasonably on a limited data set, a general solution for the image segmentation problem has not been developed. We present an approach to image segmentation, in which user selected sets of examples and counter-examples supply information about the specific segmentation problem at hand.
In this approach, image segmentation is guided by a genetic algorithm which learns the appropriate subset and spatial combination of a collection of discriminating functions, associated with image features. The genetic algorithm encodes discriminating functions into a functional template representation, which can be applied to the input image to produce a candidate segmentation. The quality of each candidate segmentation is evaluated within the genetic algorithm, by a comparison to two physics-based segmentations. Through the process of segmentation, evaluation, and recombination, the genetic algorithm non-exhaustively optimizes functional template design. The contributions of this thesis include: genetic learning of functional template design, physics-based segmentation evaluation, novel crossover operator and fitness function, as well as a system prototype and experiments on synthetic and SAR imagery.


Experimental results demonstrate that evolved templates select meaningful features, which complement each other for improved segmentation quality over any single feature. Evolved segmentations consistently outperform segmentations derived from the Bayesian best single feature and typically perform at least as well, if not better than segmentations derived from the actual best single feature defaults.

Top Slot Gacor Online Populer Paling Banyak di Mainkan 2025-2026 di Indonesia

Slot Toto Togel Gacor

Join toto togel Paling Banyak Di mainkan.

Situs Toto

With situs toto, mainkan game kesukaanmu di sini.

best online gambling rupiahtoto

rupiahtotorupiahtoto deposit sekali wd berkali-kali.

platform terbaik toto slot online

rupiahtoto raih kemenanganmu di rupiahtoto.

rupiahtoto : pusatnya slot togel online populer

ingat hanya di rupiahtoto rupiahtoto deposit 10rb WD sultan.

slot dengan pembayaran lengkap

slot ovoslot ovo, plat and win.

rupiahtoto best slot togel in Indonesia

Sign up at rupiahtoto situs resmi sejuta umat, menang dengan mudah di sini!.

toto slot terupdate dengan RTP tinggi

toto slot toto slot terbanyak di mainkan sepanjang masa.

slot dana deposit murah

Find success at slot dana agen slot dana dengan metode-metode depo gampang

sweet bonanza terbaik

Enjoy live betting like never before at sweet bonanzagame slot sweet bonanza tergacor saat ini.

link situs terbaik di Indonesia dalam permainan judi online resmi

amazing slot togel onlinerupiahtoto pasang angka impian mu di sini.

slot gacor: nomor #1 di Indonesia

slot gacorslot gacorbest slot gacor Indonesia.

https://amps303.org/

https://amps303.org/ https://amps303.org/https://amps303.org/