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Abstract. We explore the blending of model-based and deep learning approaches for target
recognition in inverse synthetic aperture radar (ISAR) imagery. It evaluates five different
approaches, namely, a model-based geometric hashing approach, a supervised deep learning
approach, and three different blending models that fuse the model-based and deep learning
approaches. The model-based approach extracts scattering centers as features and requires
domain experts to identify and characterize important features of a target, which makes the train-
ing process very costly and hard to generalize when the image quality degrades in low signal-to-
interference-plus-noise-ratio conditions. Next, a deep learning algorithm using a convolutional
neural network is considered to extract the spatial features when raw ISAR data are used as input.
This approach does not need an expert and only requires the labels of images for training. Finally,
three model-based and deep learning approaches are blended together at the feature level and
decision level to benefit from the advantages of both approaches, achieving a higher perfor-
mance. The results show that the blending of the two approaches achieves a high performance
while providing explainable inferences. The performance of the five different approaches is
evaluated under varying conditions of occlusion, clutter, masking of the target, and adversarial
attacks. It is empirically shown that the model-based and deep learning approaches are able to
complement each other and can achieve better classification accuracy upon fusing the integrated
approach. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.59.5
.051407]
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1 Introduction

Computer vision with inverse synthetic aperture radar (ISAR) imagery finds rich applications
such as remote sensing, surveillance, and deep space exploration.1–4 ISAR images are formed
with a high-resolution radar, and the images represent a two-dimensional distribution of target
scatterers in the range (line of sight of radar) and cross-range (perpendicular to range) directions.
The measurement of ISAR images is a complex task that requires uniform motion of the target
with respect to radar. The current systems for ISAR-based target recognition, in general, employ
model-based systems that are designed by experts.5–12 These systems typically involve the care-
ful crafting of meaningful features and their extraction to allow the algorithms to match existing
models with the ISAR images. Such features include the distances and angles between the scat-
tering centers of ISAR imagery. Although this approach provides explainable results to the ISAR
algorithms, the system performance degrades significantly for low ISAR image quality. This
degradation may occur due to various reasons such as low signal-to-inference-plus-noise-ratio,
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observation intervals, multipaths, and viewing geometry of the target. Additionally, the image
collection platforms for ISAR can produce far more imagery (terabytes per day per aircraft),
which image analysts find too difficult to handle.

The recent advances in deep learning and neural networks have demonstrated significant
performance improvements with electro-optical imaging when applied to target recognition
tasks. These data driven models extract spatial features and can be trained without the need for
a subject matter expert. Although bringing such advantages, using deep learning tools, such as
convolutional neural networks (CNNs), for ISAR image classification brings its own challenges.
The deep learning approaches require extensive labeled data and their inferences are not as
explainable as those of the model-based approach.

The scope of this paper is the development of several approaches for target recognition and
their performance evaluation starting with ISAR imagery of target vessels and ending with the
vessel classification. The specific challenges that we address in this paper are automated rec-
ognition of maritime vessels under different distortion conditions namely: occlusion, clutter, and
adversarial attacks. Recognition methods involving template matching are not useful in these
cases because distortions or occlusions change global features such as the object outline and major
axis.13–15 Constrained models of parts and joint articulation used in optical images13,16 are not
appropriate for the relatively low resolution and complex part interactions of ISAR images.

Our approach for target recognition is specifically designed for ISAR imagery. In contrast to
the passive vision systems, the scale of the ISAR image is fixed by characteristics of the radar.
However, where optical images are mainly formed as a result of diffuse reflections from a non-
coherent source of light, ISAR images are formed primarily from the echo signal backscattered
due to the induced electric and magnetic currents on the surface and volume of the target’s body;
they are nonliteral and vary quickly and abruptly with small pose angle variations.17 The peaks
(local maxima) in radar return are related to the physical geometry of an object. The relative
locations of these scattering centers are independent of translation and serve as distinguishing
features.

In this paper, we evaluate five different approaches for classifying maritime targets from
ISAR images. (i) A model-based geometric hashing (MBGH) approach that uses the distance
in range and cross range among scattering centers, (ii) a CNN-based approach that is trained to
extract features in a supervised manner, (iii) a decision level fusion (DLF) that takes the average
of the predictions of the CNN and model-based approaches as the final prediction, (iv) late fea-
ture fusion (LFF) that uses the features of the trained CNN and model-based approaches to train a
support vector machine (SVM) classifier, and (v) early feature fusion (EFF) that uses the features
extracted from the model-based approach as prior information along with the input image to train
the CNN. We used the computer-aided design (CAD) models of two maritime targets and gen-
erated ISAR images using the radar cross-section simulations that incorporate dynamic effects of
the ship motion and radar platform. Figure 1 shows rendered images of the two maritime targets
used in this work.

Fig. 1 Rendered images of the two maritime vessels used: (a) Flyvefisken class patrol boat and
(b) offshore patrol vessel OPV54 Pluvier.
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The reminder of this paper is organized as follows. Section 2 describes the related work and
our contributions for automatic target recognition using ISAR imagery. The simulation setup and
ISAR data are explained together with the technical approaches and an ablation study in Sec. 3.
Experimental results under various distortions are presented and discussed in detail in Sec. 4 and
Sec. 5 concludes our paper.

2 Related Works and Contributions of This Paper

After the Imagenet competition18 entry of Krizhevsky et al.,19 where the authors used CNNs for
extracting features and classifying more than 1000 classes, there has been a wide spread adoption
of CNNs and deep learning within the field of computer vision. Although there has been a wide
spread adoption of CNNs, to date there are only few works20–23 that use deep learning methods
for the classification of ISAR images. The reason for this is that the process of generating and
collecting ISAR images is very expensive and time-consuming. Moreover, the radars used for
collecting ISAR imagery are predominantly used in the defense and military organizations mak-
ing the data classified for public use. On the other hand, there have been many approaches24–31

using deep learning for the classification of synthetic aperture radar (SAR) images. The reason
for this is the availability of the MSTAR dataset,32 which has 10 different ground targets whose
images were collected using an X-band SAR sensor, at one-foot resolution spotlight mode, with
full aspect coverage (0 deg to 360 deg). In the following, we discuss about the related work done
for the two areas, namely: classification of targets using SAR imagery and classification of
targets using ISAR imagery, followed by our contributions.

2.1 Related Works for Classification of SAR Images

Table 1 shows a summary of the related work for the classification of targets using SAR imagery.
Geng et al.24 used a deep convolutional autoencoder (DCAE) to extract features from SAR
images and perform classification. The autoencoder consists of eight layers: a convolutional
layer, a scale transformation layer to aggregate neighbor information, four layers based on sparse
autoencoders to optimize features for classification, and the last two layers for postprocessing.
As compared to the manually hand-crafted approaches,33,34 the DCAE approach performs better
classification on a dataset collected from the TerraSAR-X satellite.

Table 1 Summary of the related work for classification of SAR images.

Authors Comments

Geng et al.24 Used a DCAE to extract features and perform classification using SAR images. This approach
performs better as compared to handcrafted feature extraction methods on the TerraSAR-X
dataset.

Zhou et al.25 Used polarimetric SAR images obtained using the AIRSAR data of San Francisco, California,
to train and extract features from a four-layer CNN.

Huang et al.26 Used transfer learning by training a CNN on the MSTAR dataset and fine tuning on
SAR images to classify different landscapes. The authors verify the learned features by
reconstructing the input image using the features.

Zhao et al.27 Used DisDBN and an ensemble of classifiers to learn high-level features from SAR images.

Gong et al.28 Used a sparse autoencoder and unsupervised clustering to detect ternary changes in
SAR images. The autoencoder transforms the log-ratio image into a feature space for
weakly training the CNN.

Zhang et al.29 Used a CV-CNN for SAR image classification. The authors designed a complex valued
back propagation algorithm.

Gao et al.30 Used a dual-CNN for classifying polarimetric SAR images. In this approach, one branch
extracts polarization features and the other extract features from the Pauli RGB images.
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Zhou et al.25 used deep CNNs for the classification of polarimetric synthetic aperture radar
(POLSAR) images. The POLSAR data are first converted into a normalized 6-D real feature
vector. The six-channel images are then passed to a four-layer CNN with cascaded convolutional
layers. The POLSAR images were obtained using the airborne synthetic aperture radar
(AIRSAR) data of San Francisco, California. These images were used for classifying different
types of land areas such as urban and vegetated areas present within a geographic location.

Huang et al.26 designed a CNN architecture to classify different landscapes in SAR images.
The authors had a very limited dataset of landscape images, hence they pretrained their CNN
architecture on the MSTAR dataset and transferred the weights to fine tune the CNN on their
dataset. Additionally, in order to make sure the CNN architecture learns the correct features and
does not overfit, the authors reconstruct the input image using the extracted feature. The authors
conclude that if the reconstructed images and the input images look similar then the features
learned for classification should be correct.

Zhao et al.27 used discriminant deep belief networks (DisDBN) to learn high-level features
from SAR images to classify landscapes into water bodies, farmlands, buildings, and trees. The
discriminant features are learned by combining ensemble learning with a deep belief network in
an unsupervised manner. First, subsets of SAR image patches are marked with pseudolabels to
train weak classifiers. Second, a specific SAR image patch is characterized by a set of projection
vectors that are obtained by projecting the SAR image patch onto a weak decision space spanned
by each weak classifier. Finally, the discriminant features are generated by feeding the projection
vectors to a deep belief network for classification.

Gong et al.28 used a CNN-based sparse autoencoder and unsupervised clustering to detect
ternary changes in SAR images. First, the sparse autoencoder is used to transform the log-ratio
difference image into a suitable feature space for extracting key features and suppressing outliers
and noise. Next, the learned features are clustered into three classes, which are taken as pseu-
dolabels for weakly training a CNN. In order to select reliable training samples for the CNN, the
authors select training samples from the feature maps learned by the sparse autoencoder. After
obtaining training samples and corresponding pseudolabels, the CNN model is trained using
back propagation with stochastic gradient descent. To evaluate their approach, the authors used
SAR images acquired from the ESAERS-2 satellite over the city San Francisco, CA and the
Radarsat-2 satellite over the Yellow River Estuary in China.

Zhang et al.29 proposed a complex-valued CNN (CV-CNN) for SAR image classification.
The authors used both the amplitude and phase information of SAR images as input to the
CV-CNN. Based on this, the authors derived a complex valued back propagation algorithm
using stochastic gradient descent. The approach is evaluated on the polarimetric SAR image
for classifying different terrain types into 15 classes collected from Flevoland, Netherlands, and
Oberpfaffenhofen, Germany.

Gao et al.30 used a dual branch-CNN (dual-CNN) for classifying polarimetric SAR images.
In their approach, one branch of the CNN is used to extract polarization features from the six-
channel real matrix derived from the complex coherency matrix. The other branch of the CNN is
used to extract spatial features of a Pauli RGB image and both of these features are combined
using a fully connected layer sharing the polarization and spatial property. The authors evaluated
their approach on the AIRSAR data for classifying 14 different land terrains collected from
Flevoland, Netherlands.

2.2 Related Works for Classification of ISAR Images

Table 2 shows a summary of the related works done for classification using ISAR images.
He et al.20 used the point scatter model of aircraft from ISAR images to train a CNN-based
autoencoder. The authors used simulated images of aircraft to train the autoencoder to recon-
struct the input image in an unsupervised manner. After training, the authors extract the latent
space feature, which is given as input to a neural network for classification.

Hu et al.21 used the deep- alternating direction method of multipliers (ADMM)-net (DAN)
proposed by Ref. 40 to reconstruct high-quality ISAR images. DAN is constructed by mapping
the iterative steps of the traditional convex optimization algorithm, ADMM,41 into a deep
network. The authors used three stages of the DAN and each stage corresponds to an ADMM
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iteration. The constructed DAN is trained using the training set pairs of two-dimensional
randomly undersampled data and high-quality image generated by the Range–Doppler method.

Xue and Tong22 detected and localized objects in an ISAR image using deep relation graph
learning. The authors used dilated deformable convolutions to improve the sampling and trans-
formation ability of the CNN, which, in turn, increases the output resolution of the feature maps.
Next, the authors proposed a graph-based attribute association learning to extract heterogeneous
features and learn the semantic relation between different objects.

Xue and Tong23 localized objects in ISAR images using advanced region proposal networks
(ARPN) and a weakly supervised joint sparse learning. The ARPN uses a pairwise ranking loss
and a triplet ranking loss for extracting features from the weakly annotated and unannotated
ISAR images. The joint sparse learning helps extract more discriminative features while also
learning shared and individual features and their correlation.

Mamatha and Kumar35 used ISAR images to classify two different maritime vessels. The
authors used the watershed transform and multiresolution wavelet transform to derive the target
features. The wavelet analysis divides the image into approximate and details subsignals. The
approximate and subsignals, which consist of the wavelet coefficients, statistical moments, and
standard deviation of the ISAR image are taken as input to the classifier. The authors showed that
wavelet coefficients obtained after first level of decomposition perform better on ISAR images
without segmentation, whereas the wavelet coefficients obtained after third level of decompo-
sition perform better on ISAR images with segmentation.

Lee et al.36 proposed a preprocessing step that exploits the cross-range resolution (CRR) of
ISAR images to improve their classification performance. The authors first obtained the CRR of
an unknown target using cross-range scaling algorithms and normalize them such that they are
identical to that of the ISAR images in the training dataset. By doing so, the deterioration in
classification performance resulting from the CRR between the unknown target and the training
images can be avoided.

Table 2 Summary of the related work for classifying ISAR images.

Authors Comments

He et al.20 Used an autoencoder trained on point scatter models of ISAR images to extract features
for classification.

Hu et al.21 Used a three-stage DAN to recreate high-quality ISAR images from under-sampled ISAR
images.

Xue et al.22 Localized and extracted semantic relationship between different objects in ISAR images
by learning a graph-based attribute association.

Xue et al.23 Leveraged weakly supervised learning to localize objects in ISAR images using ARPN
and a joint sparse learning.

Mamatha and
Kumar35

Used the watershed transformation and wavelet decomposition to classify maritime
vessels from ISAR images.

Lee et al.36 Proposed a preprocessing step that exploits the cross-range resolution of ISAR images
to improve the classification performance.

Paladini and
Martorella37

Used the Cloude–Pottier decomposition to extract orientation-invariant feature vectors to
preserve the polarimetric structure.

Zelković et al.38 Used the pulse reflection shape and Doppler shifts to extract features defined by the size
and shape for classifying aircraft.

Martorella et al.39 Used polarimetric ISAR images to match the 3-D scattering center of unknown targets
with the 2-D scattering center of template images.

This paper Compares a MBGH and deep learning approach for classifying maritime vessels from
ISAR images. The authors fuse the two approaches at the classifier level and feature
level and evaluate them under varying distortion conditions. Experimental results show
that the two approaches are complementary to each other.
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Paladini et al.37 classified nonhomogeneous targets from ISAR images by performing a
macroscopic and detailed target analysis. First, the Cloude–Pottier decomposition is used as
a starting point in order to find orientation-invariant feature vectors that are able to represent
the average polarimetric structure of complex targets. After formulating the feature space, a
nearest neighbor classification is done. Additionally, a validation process is performed by ana-
lyzing experimental data of simple targets collected in an anechoic chamber and airborne
Electromagnetics Institute Surface Aperture Radar images of eight ships.

Zeljković et al.38 classified aircraft from ISAR images using the pulse reflection shape and
Doppler shifts of the parts that are in maneuver resulting in rotation of a target. The authors
simulated five different aircraft and tested their images using features defined by size and shape
in a prescribed holding pattern such as (i) number of pixels on the target, (ii) average values of the
x and y coordinates of the pixels on the target, and (iii) size of the object along the x and y
coordinates.

Martorella et al.39 used polarimetric ISAR images (POLISAR) to match scattering points of
an unknown target with the scattering centers of template images. The authors first obtained the
three-dimensional (3-D) point like scattering center and compare it with the two-dimensional
(2-D) scattering centers of the template images. Since the comparison is made between a set of
scattering centers that belong to a 2-D domain and a set of scattering centers that belong to a 3-D
domain, the image projection plane has to be identified (prior to or contextually) with the match-
ing process. The authors addressed this problem by solving the alignment problem proposed by
Cooke et al.42

2.3 Contributions of this Paper

• A robust decision level and feature level fusion approach that automatically classifies
ISAR images of a target under various distortions using model-based and deep learning
approaches.

• An ablation study is done for the model-based approach, deep learning approach, and the
three different fusion approaches under different distortions namely: occlusions, clutter,
masking, and adversarial attacks.

• From the experimental results, we empirically find that the model-based approach and
deep learning approach complement each other.

3 Technical Approach

In this section, we first describe the ISAR imaging system and image data simulation followed
by presenting the details of the MBGH approach, the deep learning approach, and the fusion of
the approaches at the classifier and feature level.

3.1 ISAR Imaging System and Data Simulation

The ISAR imaging simulation is performed using the ANSYS Electronics Desktop software.43

The ISAR imaging is formed by coherently processing echoes from a moving target and exploit-
ing information from frequency shifts caused by motion of the target relative to the radar.
Figure 2 shows an illustration for reformatting the received echo signals from the frequency-
azimuth domain ðf; θÞ to the spatial frequency domain ðfx; fyÞ. The received echo signal
yðf; θÞ of a target at frequency f and azimuth angle θ can be expressed as follows:

EQ-TARGET;temp:intralink-;e001;116;169yðf; θÞ ¼
XL
k¼1

ak exp

�
−j

4πf
c

ðxk cos θ þ yk sin θÞ
�
þ uðf; θÞ; (1)

where L is the number of scattering centers on the target, ak is the amplitude of the k’th scattering
center, and ðxk; ykÞ is the position of the k’th scattering center in the spatial domain. u is the
additive white Gaussian noise (AWGN) with zero mean and variance σ2 and c is the speed of
light. The received radar cross section uniformly sampled in the frequency-azimuth domain
ðf; θÞ and ðfx; fyÞ are related by fx ¼ 2f

c cos θ and fy ¼ 2f
c sin θ. Data uniformity in the spatial
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frequency domain ðfx; fyÞ is essential for Fourier transform. Therefore, in order to generate a
focused ISAR image, the received data should be converted from polar-formatted samples to
Cartesian-formatted samples with uniform spatial frequency sampling spacings Δfx and Δfy,
before applying the Fourier transform. After polar reformatting, the discrete version of Eq. (1) is
given by

EQ-TARGET;temp:intralink-;e002;116;477 yðm; nÞ ¼
XL
k¼1

ak expf−j2π½xkfxðmÞ þ ykfyðnÞ�g þ uðm; nÞ; (2)

where
EQ-TARGET;temp:intralink-;sec3.1;116;419

fxðmÞ ¼ fxð0Þ þmΔfx; m ¼ 1;2; : : : ;M

fyðnÞ ¼ fyð0Þ þ nΔfy; n ¼ 1;2; : : : ; N

and M and N are the number of interpolated data samples in fx and fy, respectively. After polar
reformatting, the spatial reflectivity function of the target can be easily reconstructed by means of
a 2-D Fourier transform. The down-range and cross-range resolutions are inversely proportional
to the spatial frequency bandwidths MΔfx and NΔfy, respectively. In order to increase the
spatial frequency bandwidths MΔfx and NΔfy for obtaining high-resolution ISAR images, the
frequency bandwidth of the radar system and relative angular motion of the radar and target
should be sufficiently large. Otherwise, the Fourier transform will result in limited resolution
ISAR images, causing unreliable classification performance.

3.1.1 Parameters of the ISAR Radar

The ISAR radar is mounted on an aerial platform and the look angle is determined using the
dynamics of ship motion. In our simulations, we assume the ship has minimal or no roll or yaw
motions. For reasons related to restrictions on privacy and confidentiality, we are not allowed to
disclose the parameters of the ISAR radar in this paper. Using the CAD models of the
Flyvefisken class patrol boat and the offshore patrol vessel OPV54 Pluvier as shown in Fig. 1,
we generate the ISAR images at azimuth angles (counterclockwise direction): 15 deg, 22 deg,
30 deg, 150 deg, and 165 deg. The 0-deg azimuth reference for the target is the direction of
the ship’s bow toward the radar as shown in the illustration of Fig. 2. Figures 3 and 4 show
the simulated ISAR images for the two CAD models.

3.2 Model-Based Geometric Hashing for Target Classification

Figure 5 shows the overall framework for the MBGH approach proposed by Jones and Bhanu.11

After obtaining the ISAR magnitude image of the ships, we first normalize the image and segment
the body of the ship. The body of the ship is segmented by suppressing the peak-signal-to-noise

Fig. 2 Polar reformatting from ðf ; θÞ domain to ðf x ; f y Þ domain.

Theagarajan et al.: Integrating deep learning-based data driven. . .

Optical Engineering 051407-7 May 2020 • Vol. 59(5)

Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 02 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Fig. 4 ISAR images of the offshore patrol boat OPV54 Pluvier at azimuth angles 15 deg, 22 deg,
30 deg, 150 deg, and 165 deg. The x axis of the corresponding images is the range and y axis is
the cross range.

Fig. 5 Overall framework of the MBGH approach.

Fig. 3 ISAR images of the Flyvefisken class patrol boat at azimuth angles 15 deg, 22 deg, 30 deg,
150 deg, and 165 deg. The x axis of the corresponding images is the range and y axis is the cross
range.
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ratio (PSNR) below a threshold. In our approach, we set the threshold to gray-scale pixel value of
210. We evaluated different threshold values within the range of (190 to 230) and empirically
chose the threshold as 210 as it provided the best segmentation results without losing too much
information on the target’s body. In order to automatically segment the body of the target, it is
possible to use approaches such as CFAR44–46 or estimate the noise statistics47,48 in the future.
After segmenting the body of the ship, we compute the scattering centers of the ship. The scattering
centers are obtained by computing the local maxima within a 3 × 3 sliding window. Unlike optical
images where the images are formed as a result of diffuse reflections from a noncoherent source of
light, ISAR images are formed from the echo signal backscattered due to the induced electric and
magnetic currents on the surface and volume of the target’s body. Hence, a high intensity at a
particular point in the ISAR image means that there was a high reflection from that point on the
target, resulting in a scattering center. Figures 6(a) and 6(b) show the segmented body of the
OPV54 Pluvier ship at azimuth angle = 30 deg and its associated scattering centers, respectively.

After obtaining theM scattering centers, we treat each scattering center as a reference center
and compute its relative range ΔX and relative cross range ΔY with respect to other scattering
centers. Range refers to the distance along the x axis (horizontal axis) and cross range refers to
the distance along the y axis (vertical axis). This results in MðM − 1Þ∕2 features per azimuth
angle. We repeat this for all the azimuth angles of the ship and record all of the ðΔX;ΔYÞ pairs
into a lookup table together with the target type and azimuth angle. Figures 7(a) and 7(b) show
the visualization of the ðΔX;ΔYÞ pairs for the Flyvefisken and OPV54 Pluvier ships for the
azimuth angles 15 deg, 22 deg, 30 deg, 150 deg, and 165 deg, respectively.

After obtaining the lookup table that consists of the ðΔX;ΔYÞ pairs for all of the azimuth
angles for both models of the ships, during testing we extract theMðM − 1Þ∕2 pairs of ðΔX;ΔYÞ
for the unknown target. For each ðΔX;ΔYÞ pair of the unknown target, we check the lookup
table at those corresponding locations to see if there was a similar ðΔX;ΔYÞ pair for each of the
ships. If so, the corresponding classes and azimuths get a vote. This is repeated for all the
ðΔX;ΔYÞ pairs of the unknown target and at the end the class with the greatest number of votes
is chosen as the class of the unknown target.

3.3 Convolutional Neural Networks for Target Classification

In this section, we explain in detail the architecture of the CNN and data augmentation for train-
ing the CNN. Table 3 shows the architecture of the CNN. The input to the CNN is the magnitude
ISAR image of size 256 × 512. The CNN consists six convolution layers, each layer consists of
k filters or kernels of size m × n × q, where m and n are the dimensions of the kernels and q is
the number of filters. The size of the filters gives rise to the locally connected structures, which
are convolved with the image to produce k feature maps of sizem − nþ 1. A rectified linear unit
nonlinearity is applied to each convolution layer and every convolution layer is followed by
batch normalization. After every convolutional layer, a fully connected layer is used to complete
the CNN. The output of the fully connected layer has one neuron per class (two classes in our
case), which corresponds to the Flyvefisken and OPV54 Pluvier ships. A softmax activation is
applied to the fully connected layer, thus each neuron’s output represents the posterior class
probability.

Fig. 6 (a) Segmented body and (b) scattering centers of the OPV54 Pluvier ship at azimuth
angle = 30 deg. The x axis of the corresponding images is the range and y axis is the cross range.
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3.3.1 Data augmentation for training the CNN

In order to train the CNN, we augment our dataset by translating the locations of the scattering
centers in the ISAR image. The scattering centers are obtained by computing the local maxima
across a 3 × 3 window in the image as described in Sec. 3.2. After obtaining the M scattering
centers, we take a N × N window centered around a scattering center and swap all the pixel
values within the window with the pixel values from within another N × N window selected
randomly on the body of the ship. Figure 8 shows an example of swapping the scattering centers
for the Flyvefisken ship at an azimuth angle of 15 deg.

In Fig. 8, the blue dots indicate the scattering centers, the red bounding box is a 7 × 7window
centered around a scattering center, and the green bounding box is a 7 × 7 bounding box selected

Fig. 7 Visualization of the ðΔX;ΔY Þ pairs of the (a) Flyvefisken class patrol boat and (b) offshore
patrol boat OPV54 Pluvier at azimuth angles 15 deg, 22 deg, 30 deg, 150 deg, and 165 deg,
respectively.
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randomly within the body of the ship. The pixel values within the two bounding boxes are
swapped and the resulting image is augmented to the dataset. For each scattering center,
we swap the window around it with 10 different randomly selected windows, which results in
10 different images. This is repeated for every scattering center and for all azimuth angles for
each ship. In our experiments, we chose the size of the swapping windows to be 7 × 7. We
evaluated windows of sizes 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13 and empirically found
that 7 × 7 was the largest window possible that encompasses exactly one scattering center while
also not overlapping background information when swapping windows close to the boundaries
of the target. This resulted in a total of 1230 images for the Flyvefisken ship and 1150 images for
the OPV54 Pluvier ship. Finally, after augmenting the dataset, we use these 2380 images
for training the CNN. It should be noted that these 2380 images are not exactly the same as
the original images shown in Figs. 3 and 4. Additionally, the original images shown in
Figs. 3 and 4 were used only for testing our approaches.

3.4 Fusion of the CNN and Model-Based Approaches

In this section, we explain in detail the three different types of fusion performed namely: DLF,
LFF, and EFF.

3.4.1 Decision level fusion

DLF is the simplest form of fusion between any two or more approaches where the output prob-
abilities of each individual approach are averaged in order to get the final output probability.
In our approach, after obtaining the output score for each class from the CNN, we convert the
score of each class into a probability distribution over all the classes using the Softmax function
given by

Fig. 8 Example of swapping a scattering center of the Flyvefisken ship at an azimuth angle of
15 deg. The x axis of the image is the range and y axis is the cross range.

Table 3 Architecture of the CNN.

Layer Output dimension Kernel dimension Stride Padding Number of filters

Convolution 1 128 × 256 5 × 5 2 2 16

Convolution 2 64 × 128 5 × 5 2 2 32

Convolution 3 32 × 64 5 × 5 2 2 64

Convolution 4 16 × 32 5 × 5 2 2 96

Convolution 5 8 × 16 5 × 5 2 2 128

Convolution 6 4 × 8 5 × 5 2 2 128

Fully connected layer 2 — — — —
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EQ-TARGET;temp:intralink-;e003;116;735 PrðXiÞ ¼
ExpðXiÞPk
j¼0 ExpðXjÞ

; (3)

where PrðXiÞ is the probability of the output class Xi, i ¼ 1;2; : : : ; k and k is the number of
classes. Similarly, the output of the model-based approach is converted into a probability dis-
tribution for each class using the following equation:

EQ-TARGET;temp:intralink-;e004;116;662 PrðXiÞ ¼
total number of images classified as the class Xi

total number of images
: (4)

Finally, we take the average of the probability distributions of the two individual approaches
and the class with the highest probability is taken as the final classification.

3.4.2 Late feature fusion

In this approach, after training the CNN and the model-based approach, we extract the feature
vectors from the individual approaches and concatenate them into a single feature vector. The
concatenated feature vector is then used as input to train an SVM, which gives us the final pre-
diction. The feature vector from the CNN is extracted by taking the output of the penultimate
layer (convolution 6) as shown in Table 3. After extracting the feature vector from the CNN,
we apply a sigmoid nonlinearity to the feature vector, such that the scale of the feature vector is
between 0 and 1. Next, the feature vector is squashed into a single dimension resulting in a
feature vector of size 4096 × 1 (4 × 8 × 128 ¼ 4096).

The ðΔX;ΔYÞ feature vector from the model-based approach has a dimension of
MðM − 1Þ × 2, where M is the number of scattering centers and it varies with respect to the
azimuth angle between the target and the ISAR. From this, we take only the first 256 ðΔX;ΔYÞ
pairs as the feature vector and normalize it with respect to the dimensions of the image. The
resulting feature vector has a dimension of 256 × 2 and is within the scale of 0 to 1. Then, the
256 × 2 feature vector is then squashed into a single dimension (512 × 1) as shown in Fig. 9.
Finally, the concatenated 4608 × 1 (4096þ 512) dimensional vector is then given as input to
train an SVM with linear kernel for classification. Additionally, in cases where there are not
many scattering centers visible on the target (M < 17), such that the dimension of the extracted
feature vector from the model-based approach is less than 256 × 2, we concatenate zeros to the
end of the feature vector in order to fit its size.

Fig. 9 Squashing the 256 × 2 ðΔX;ΔY Þ feature vector from the model-based approach into a
512 × 1 feature vector.
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3.4.3 Early feature fusion

In this approach, we first extract the 512 × 1 feature vector from the model-based approach as
discussed in Sec. 3.4.2. This feature vector is then concatenated to the bottom row of the input
image as shown in Fig. 10. The resulting image is then passed as input to train the CNN. By
doing so, the CNN is able to utilize the relative distances between the scattering centers as prior
information to further improve its classification when compared to using the ISAR image alone.
Experimental results in Sec. 4 show that by providing this prior information to the CNN, we are
able to improve the classification accuracy.

3.5 Ablation Study for the Performance of the Classifiers Under
Different Articulations on the ISAR Image

In this section, we explain in detail the process for generating different distortions on ISAR images.
We experimented with three different distortions namely: occlusion and clutter, masking, and
adversarial attacks. The reason for introducing distortions to our ISAR images is to simulate a real-
world noisy environment where these distortions could affect the performance of our classifier.

3.5.1 Occlusion and clutter

Occlusions are artifacts in the ISAR image that hide the scattering centers, whereas clutters are
artifacts that may create new scattering centers in the ISAR image that should not exist.
Occlusions and clutters can occur in the real world when there is an unmodeled motion causing
the target image to defocus resulting in scattering centers being in wrong positions. Although this
error can be corrected using suitable mechanical design or by the use of autofocus techniques,
it is a good ablation study to see how the individual classifiers and their fusion perform under
such scenarios.

In our approach in order to introduce occlusion, we randomly select X% of scattering centers
and mask them by replacing the pixel values of the selected scattering centers with the back-
ground value. Clutters are generated by randomly adding X% of new scattering centers. This is
done by randomly selecting a pixel within the body of the ship and replacing the pixel value to
255. In our experiments, we keep the ratio of occlusion to clutters to 1, meaning that for X% of
occlusion in an image we generate X% of clutter. Figure 11 shows an example for 30% generated
occlusion and clutter with window sizes of 5 × 5 for the Flyvefisken ship at an azimuth angle of
15 deg, the red bounding boxes indicate clutter, the yellow bounding boxes indicate occlusion,
and the blue dots are the remaining original scattering centers. In Fig. 11, the ISAR image ini-
tially had 17 scattering centers, 30% of occlusion means that we randomly selected 5 scattering
centers (30% of 17 ≈ 5) and replaced the pixel values to the background pixel value. Next, in
order to generate the clutter, we randomly selected 5 pixel locations on the body of the ship and
replaced the value of each pixel to 255.

Fig. 10 Concatenating the 512 × 1 feature vector extracted from the model-based approach to
the bottom row of the input image, which is then passed to the CNN for training.
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3.5.2 Masking the body of the target

In the real-world scenarios, there are situations where the aircraft is trying maneuver its position
in order to get the target into the field of view of ISAR radar. During such situations, only a
partial area of the body of the target is visible. Hence, we perform an ablation study to see how
the individual classifiers and their fusion perform under such situations. In order to mask the
body of the target, we select the smallest possible square window on the body of the ship that can
mask X% of the area of target. Next, we replace all the values within this window to the back-
ground pixel value. Figure 12 shows an example where 30% of the body of the OPV54 Pluvier
ship was masked. In Fig. 12, the red bounding box is the mask with dimensions 55 × 55 that
blocks ∼30% of the area of the ship. The area of the ship is computed as the number of pixels on
the body after segmenting the ship.

3.5.3 Adversarial attack on the CNN

In Secs. 3.5.1 and 3.5.2, we discussed in detail about distortions related to occlusion, clutter, and
masking. All of these approaches involve manipulating the location of the scattering centers and
the superstructure of the target. In the real-world scenarios, distortions can also occur due to the
presence of noises from adversarial attacks on the ISAR images. Adversarial examples are inputs
to machine learning models that an attacker has intentionally designed to cause the model to
make a mistake. Hence, we perform an ablation study to see how adding adversarial noise to
the ISAR images affects the performance of the individual classifiers and their fusion. Remote
monitoring of maritime targets is a very critical and sensitive military application that requires

Fig. 11 Example of 30% generated occlusion and clutter with window sizes of 5 × 5 for the
Flyvefisken ship at an azimuth angle of 15 deg. The red bounding boxes indicate clutters, the
yellow bounding boxes indicate occlusion, and the blue dots are the remaining original scattering
centers. (For illustration purposes, the occlusion and clutter are enlarged). The x axis of the image
is the range and y axis is the cross range.

Fig. 12 Example of masking 30% of the body of the OPV54 Pluvier ship at azimuth angle of
15 deg. The red bounding box of dimension 55 × 55 is the mask that blocks ∼30% of the area
of the ship. The x axis of the image is the range and y axis is the cross range.
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the system to be robust against adversarial attacks. Adversarial noise can be added into the sys-
tem when the aircraft is transmitting the ISAR images to the ground station.49–52 In our approach,
we induce the adversarial noise in the ISAR image by attacking the CNN using the fast gradient
sign method (FGSM) proposed by Goodfellow et al.53

For any given image X, adversarial attacks try to find a small perturbation (adversarial noise)
δ with kδk∞ ≤ ϵattack such that a classifier gives a misclassification for Xadv ¼ Xþ δ. ϵattack is
a parameter that sets the perturbation limit for each pixel in the image X. In the FGSM attack,
the perturbation δ is generated based on the equation given by

EQ-TARGET;temp:intralink-;e005;116;456δ ¼ ϵattacksign½∇XLðX; yÞ�; (5)

where ∇XLðX; yÞ is the gradient of the loss function used to train the model and y is the class
label. This approach uses the sign of the gradients computed for every pixel to determine the
direction and magnitude of perturbation with which to change the corresponding pixel value in
order to result in a misclassification. After generating the adversarial noise δ, we create the adver-
sarial image Xadv ¼ X þ δ. Figure 13 shows an example of an original image compared to its
corresponding adversarial image that was misclassified by the CNN with ϵattack ¼ 8. From
Fig. 13, we can observe that the adversarial image visually looks grainier compared to the origi-
nal image resembling an AWGN. In this ablation study, we observe the performance of the indi-
vidual classifiers and their fusion under adversarial attacks with strength ϵattack ¼ 2, 4, 8, 10, 12.
We did not use ϵattack > 12 because the adversarial noise becomes too strong making the result-
ing ISAR image indistinguishable even to the human observer.

4 Experimental Results

In this section, we evaluate the individual classifiers and their fusion in the presence of the differ-
ent distortions discussed in this paper namely: occlusion, clutter, masking, and adversarial noise.
In order to train the MBGH approach, we used the original five images of each class shown in
Figs. 3 and 4 to compute the lookup table as shown in Fig. 5. In order to train the CNN, we used
the 2380 augmented images described in Sec. 3.3.1.

4.1 Performance of the Classifiers in the Presence of Occlusion and Clutter

In this section, we evaluate the individual approaches in the presence of varying percentages of
occlusion and clutter. Table 4 shows the performance accuracy and comparison of our individual
classifiers and their different fusions. For each occlusion percentage and window, we generated
200 images for every azimuth angle using the original images shown in Figs. 3 and 4. Since we
have ISAR images for the two classes generated at five different azimuth angles, this results in
1000 images per window per occlusion/clutter percentage for each class. We used these occlu-
sion/clutter images for evaluating the performance of the classifiers in Table 4.

Fig. 13 Example of an adversarial attack with ϵattack ¼ 8 on an ISAR image of the Flyvefisken ship
at azimuth angle of 15 deg. The original image on the left was predicted correctly as the
Flyvefisken ship, whereas the adversarial image on the right was misclassified as the OPV54
Pluvier ship even though the two images look visually similar to a human observer. The x axis
of the corresponding images is the range and y axis is the cross range.
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We experimented with occlusion and clutter percentages from 20% to 80% and window sizes
of 3 × 3, 5 × 5, and 9 × 9. From Table 4, we can observe that, as the percentage of occlusion/
clutter and the window dimension increase, the performance of the model-based approach dras-
tically declines. In the worst case scenario of 80% occlusion and clutter with 9 × 9 dimensional
windows, the performance of the model-based approach is only 52.44%, which is almost close to
random prediction. The reason for this is that as we occlude and add new scattering centers the
values of the ðΔX;ΔYÞ pairs of the distorted images start to vary significantly compared to
the values in the lookup table. Hence, this finding shows that the model-based approach is very
sensitive to the locations of the scattering centers, which is also shown to be consistent with
the work done by Jones and Bhanu.11

On the contrary, the performance of the CNN did not significantly drop with increasing per-
centages of occlusion and clutter as compared to the model-based approach. In the worst case
scenario of 80% occlusion and clutter with 9 × 9 dimensional windows, the CNN achieved
91.10% accuracy. Additionally, with DLF, this accuracy increases to 92.14%. The key reason
for this is that when we create occlusion and clutter, they are mostly concentrated within the body
of target leaving the superstructure of the target largely untouched. Hence, the CNN is able to
detect the superstructure of the target, which leads to a high classification accuracy compared to
the model-based approach.

4.2 Performance of the Classifiers in the Presence of Masking

From the previous Sec. 4.1, we can observe that the CNN is able to detect the superstructure of
the ship resulting in a higher performance accuracy compared to the model-based approach in the
presence of occlusion and clutter. In this section, we evaluate the performance of the individual

Table 4 Performance accuracy (%) and comparison of the individual classifiers and their different
fusions in the presence of varying percentages of occlusion and clutter.

Dimensions of
the window Approacha

Percentage of occlusion and clutter

20% 30% 40% 50% 60% 70% 80%

3 × 3 MBGH 93.51 81.46 74.82 68.33 65.21 63.27 60.56

CNN 100.00 100.00 100.00 100.00 100.00 100.00 100.00

LFF 100.00 100.00 100.00 100.00 100.00 100.00 100.00

EFF 100.00 100.00 100.00 100.00 100.00 100.00 100.00

DLF 100.00 100.00 100.00 100.00 100.00 100.00 100.00

5 × 5 MBGH 91.64 79.60 70.93 66.76 63.20 62.37 60.91

CNN 100.00 100.00 100.00 99.84 99.84 99.26 99.02

LFF 100.00 100.00 100.00 100.00 100.00 100.00 99.76

EFF 100.00 100.00 100.00 100.00 100.00 99.56 99.14

DLF 100.00 100.00 100.00 100.00 100.00 99.92 99.76

9 × 9 MBGH 89.25 77.72 72.27 63.01 60.18 55.27 52.44

CNN 100.00 100.00 100.00 100.00 96.24 93.28 91.10

LFF 100.00 100.00 100.00 99.36 97.38 93.46 90.95

EFF 100.00 100.00 100.00 98.78 95.20 94.22 91.79

DLF 100.00 100.00 100.00 100.00 96.24 94.32 92.14

aMBGH,model-based geometric hashing; LFF, late feature fusion; EFF, early feature fusion; and DLF, decision
level fusion.
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classifiers and their fusions in the presence of masking. Table 5 shows the performance accuracy
and comparison of our individual classifiers and their fusion in the presence of masking. For each
percentage of masking we generated 40 images for every azimuth angle using the original
images shown in Figs. 3 and 4. Since we have ISAR images for the two classes generated
at five different azimuth angles, this results in 200 images per masking percentage for each class.
We used these masked images for evaluating the performance of the classifiers in Table 5.

From Table 5 we can observe that as the percentage of masking increases, the performance of
the CNN declines rapidly. The CNN achieved 61.99% for 20% masking and only 50.28% for
60% masking. Comparing this with the model-based approach, the model-based approach was
able to achieve a higher performance accuracy for all percentages of masking compared to the
CNN. The reason for this is that even though a percentage of the body of target is masked, the
scattering centers in the unmasked portions of the target are not affected. Hence, the model-based
approach is able to use the information of the unaffected scattering centers to predict the targets.
When we performed EFF and LFF, the performance accuracy was higher compared to just using
the CNN as a standalone classifier, but the performance accuracy was still lower compared to
using the model-based classifier as a standalone classifier. This indicates that the CNN was not
able to extract reliable features and was pulling down the performance of the feature level fusion
as a whole. On performing DLF, we were able to achieve slightly higher accuracy of 70.14% at
60% masking compared to all other classifiers.

4.3 Performance of Classifiers in the Presence of Adversarial Attack

In Secs. 4.1 and 4.2, we evaluated our classifiers by manipulating the positions of the scattering
centers and the superstructure of the target. In this section, we evaluate the performance of the
classifier in the presence of adversarial noise. Table 6 shows the performance of the different
classifiers in the presence of the FGSM adversarial attack. For each ϵattack, we generated 40

Table 5 Performance accuracy (%) and comparison of the individual classifiers and their different
fusions in the presence of varying percentages of masking.

Approach

Masking percentage

20% 30% 40% 50% 60%

MBGH 77.83 74.29 72.38 68.16 64.64

CNN 61.99 58.29 52.94 51.13 50.28

LFF 70.24 68.35 66.57 66.12 64.88

EFF 72.58 70.02 70.16 68.29 66.16

DLF 76.04 74.82 72.35 70.98 70.14

Table 6 Performance accuracy (%) and comparison of the individual classifiers and their different
fusions in the presence of varying strength of adversarial attack.

Approach

Adversarial attack strength (ϵattack)

2 4 8 10 12

MBGH 93.31 90.12 86.58 85.11 83.05

CNN 77.22 64.98 62.17 59.55 53.48

LFF 80.66 77.42 79.15 74.10 72.73

EFF 77.35 70.62 68.43 70.11 66.80

DLF 89.87 89.16 87.20 85.37 84.38
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adversarial images for every azimuth angle using the original images shown in Figs. 3 and 4.
Since we have ISAR images for the two classes at five different azimuth angles, this results in
200 images per ϵattack for each class.

From Table 6, we can observe that as the strength of the adversarial attack increases, the
performance of the CNN drastically declines and achieves only 53.48% when ϵattack ¼ 12.
The reason for this is that adversarial attacks are intentionally designed to cause perturbation
in pixel values of an image such that these perturbations cause a covariate shift in the feature
space of the CNN leading to a misclassification.

On the contrary, the model-based approach had the highest accuracy of 93.31% and 90.12%
when ϵattack ¼ 2 and 4, respectively. Additionally, the performance of the model-based approach
did not decline rapidly with increasing ϵattack as compared to the CNN. The reason for this is that,
although the adversarial attack perturbs the pixel values in the image, these perturbations are not
strong enough to affect the difference in pixel values between the scattering centers and their
surrounding neighborhood pixels. But, as ϵattack increases beyond 12, the perturbations become
so severe as to be corrected. When fusing the two approaches, we can observe that the LFF
slightly outperforms the EFF. Moreover, as ϵattack increases beyond 4, the DLF is able to out-
perform all the other classifiers.

4.4 Discussion of Results

In this section, we discuss the performance of the individual classifiers and their fusions in the
presence of the various distortions as discussed above.

4.4.1 Performance of the model-based geometric hashing approach

From Table 4, we can see that, as the percentage of scattering centers that are cluttered/occluded
increases, the performance of the model-based approach declines significantly compared to the
other approaches. This is evident from the fact that the model-based approach uses the relative
distances ðΔX;ΔYÞ between scattering centers in order to predict the class. By manipulating the
locations of these scattering centers using occlusion/clutter, the values of the ðΔX;ΔYÞ pairs start
to vary significantly compared to the ðΔX;ΔYÞ pairs in the lookup table.

Furthermore, in Table 5, as the size of the mask increases, the performance of the model-
based approach steadily declines but not as much as compared to the CNN. The reason for this is
that although part of the body of the target is occluded, the locations of the scattering centers that
are visible are not altered, hence the model-based approach is able to utilize the ðΔX;ΔYÞ pairs
from the visible scattering centers to outperform the CNN. This is even more evident from
Table 6 where in the presence of adversarial noise, the model-based approach still outperformed
the CNN because the locations of the scattering centers were not altered. This shows that the
model-based approach is sensitive to the locations of the scattering centers.

4.4.2 Performance of the CNN

From Table 4, we can see that as the percentage of scattering centers that are cluttered/occluded
increases, the performance of the CNN is unaffected as compared to the model-based approach.
The reason for this is that compared to the model-based approach, the CNN is not dependent on
the locations of the scattering centers, but rather it learns to extract features that are closely
related to the superstructure of a target. This is evident from Table 5, whereas the percentage
of masking of the body of a target increases, the performance of the CNN drastically declines.
The CNN achieved only 50.28% when 60% of the body of a target is masked.

Additionally, in Table 6, as the strength of the adversarial attack (ϵ) increases, the perfor-
mance of the CNN rapidly declines. The reason for this is that FGSM adversarial attacks add an
adversarial noise to the image such that the noise tries to push the direction of the gradient of
the CNN in a different direction compared to the gradient of the original image, resulting in
a misclassification. Since the gradient is derived based on the features learned by the CNN, by
perturbing the gradient, the CNN extracts erroneous features that may not be related to the super-
structure of the ship resulting in a misclassification. Based on these results, we can conclude that
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the CNN and model-based approaches are able to extract features that are almost complementary
to each other.

4.4.3 Performance of the feature level and decision level fusion

From Table 4, we can see that by combining the features extracted by the model-based approach
and CNN, the LFF and EFF approaches are able to outperform the model-based approach and
CNN. Similarly, in Table 5, as the percentage of the masking increases, the performance of the
CNN decreases, but when we fuse the features extracted by model-based approach along with
the CNN, the LFF and EFF approaches are able to improve the classification performance com-
pared to the individual classifiers. Furthermore, in Tables 4 and 5, the DLF is able to slightly
outperform the feature level fusion resulting in higher classification accuracy.

In Table 6, the LFF and EFF approaches outperform the CNN, but fall short when compared
to the model-based approach. Additionally, the LFF outperformed the EFF approach in the pres-
ence of the adversarial attacks. When performing DLF, since the locations of the scattering cen-
ters are not altered, the model-based approach has a higher probability of correct classification
compared to the CNN. Hence, the final classification obtained from the DLF is able to overpower
the individual classification of the CNN resulting in improved performance compared to the
CNN and the model-based approach.

4.5 Additional Experiments

In this section, we describe additional experiments by adding two more targets into our dataset
and experiment with different data representations: in-phase and quadrature phase (I/Q), mag-
nitude only, fast Fourier transform (FFT) of complex radar input, and magnitude and phase.
Since ISAR images are very high-dimensional data, we evaluate the performance of dimension-
ality reduction using the t-distributed stochastic neighbor embedding (t-SNE)54 algorithm, and
then use the resulting feature vector to train an SVMmodel. For reasons related to restrictions on
privacy and confidentiality, we shall refer to the additional two targets as target 1 and target 2,
respectively.

All the experimental results reported in Secs. 4.1 to 4.3 used only the magnitude images of
the targets for classification under different distortion conditions. In this section, we conduct
experiments to empirically observe the classification performance when using different input
data representations as mentioned above without any distortion. For this purpose, we generated
ISAR images for the two additional targets using the same setup as described in Sec. 3.1.1 with
azimuth angles (counter clockwise direction) of 15 deg, 22 deg, 30 deg, 150 deg, and 165 deg.

In order to train the CNN, we performed data augmentation on the ISAR images of the four
targets. The data augmentation was done by adding random noise to both the magnitude and
phase signals. The noise added to each pixel in the magnitude image was randomly selected
between the range of �10% of the original pixel value. Similarly, the noise added to each pixel
in the phase image was randomly selected between �5 deg of the original pixel value. We
selected these ranges empirically such that the resulting image does not significantly deviate
when compared with the original image. This multiplicative noise is similar to simulating speck-
les in SAR images.55 Speckle is caused by coherent processing of reflected signals from multiple
scattering centers of the target. By simulating such kinds of noise, we are making the image to be
more realistic as it would be in a real-world noisy environment. This is also similar to the color
jittering function19,56 that is used for augmenting datasets while training CNNs. This adds more
variability to the images compared to using AWGN and also helps to improve the robustness in
classification by our CNN.

Based on this, we generated 365 images for target 1, 310 images for target 2, 25 images for
OPV54 Pluvier ship, and 45 images for Flyvefisken patrol boat. In order to train the CNN, we
randomly selected 80% of the data from each class for training and 20% for testing. It should be
noted that in this section, we did not use the 2380 images of the OPV54 Pluvier and Flyvefiken
ships that were described in Sec. 3.3.1 for training the CNN. The reason for this is that we wanted
to observe the classification performance when we augment the dataset by adding random noise
to both the magnitude and phase signals of the ISAR image.
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4.5.1 Classification using CNN and different data types

We trained a MobileNet-v2 architecture using the different data representations mentioned
above. MobileNet-v2 is a CNN architecture proposed by Sandler et al.57 that is designed to have
small number of parameters (∼2.2million parameters) compared to a deeper CNNmodel such as
ResNet56 that has ∼23.6 million parameters. Despite having a very small number of parameters
compared to ResNet, MobileNet-v2 has been shown to achieve comparable performance to
ResNet using depthwise separable convolutions.

When using multiple data representations as input, we concatenate the selected data repre-
sentations along with the input channel. For example, when using I/Q data, the size of the result-
ing ISAR image becomes 256 × 512 × 2. This is similar to using three channels for RGB color
images or one channel for grayscale images. Table 7 shows the classification performance for the
four targets using the different data types and Tables 8–11 show the confusion matrices for the
different data representations used in Table 7.

From Table 7, it can be seen that using the I/Q data resulted in the highest classification
accuracy (99.3%) followed using the magnitude data (98.7%). We observed that when using
the magnitude and phase data together, the training of the CNN was less stable compared to
using the other data representations and the accuracy on the testing dataset drops down to
79.3%. Based on this, our results suggest that concatenating the phase and magnitude images
with the input channels may cause the CNN to overfit on the training data resulting in drop in the
performance.

Table 7 Classification accuracy on the testing dataset for the four targets
using different data representations.

Input type Accuracy (%)

I/Q 99.3

Magnitude 98.7

Magnitude/phase 79.7

FFT of complex radar input 85.2

Table 8 Confusion matrix for classification using I/Q data of the four targets.

Prediction → Target 1 Target 2 Flyvefisken OPV54

Target 1 72 0 0 0

Target 2 1 61 0 0

Flyvefisken 0 0 5 0

OPV54 0 0 0 9

Table 9 Confusion matrix for classification using magnitude data of the four targets.

Prediction → Target 1 Target 2 Flyvefisken OPV54

Target 1 70 1 1 0

Target 2 0 62 0 0

Flyvefisken 0 0 5 0

OPV54 0 0 0 9
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4.5.2 Dimensionality reduction using t-SNE and SVM-based classification

Since ISAR imagery is a multidimensional data, in this section, we perform dimensionality
reduction using t-SNE and then perform an SVM-based classification. t-SNE is a nonlinear
dimensionality reduction technique that is used for visualizing high-dimensional data. The
t-SNE algorithm consists of two stages.

1) In this first stage, t-SNE calculates the prior distribution over high-dimensional data.
Consider two images xi and xj. t-SNE first calculates the joint probability pij using the
two conditional probabilities pjji and pijj. The conditional probability pjji is defined as

EQ-TARGET;temp:intralink-;e006;116;356

expð−kxi − xjk2∕2σ2i ÞP
k≠i

expð−kxi − xkk2∕2σ2i Þ
; (6)

where σ2 denotes the bandwidth of the Gaussian kernel. Next, the joint probability pij is
simply calculated as pij ¼ ðpijj þ pjjiÞ∕2N, where the probabilities when i ¼ j is set to
zero such that pij ¼ 0 and N is the number of samples.

2) In the second stage, t-SNE defines a prioir distribution over the points in the low-
dimensional representation to minimize the Kullback–Leibler (KL) divergence between
the two distributions. For a low-dimensional representation of d simensions, the t-SNE
transformations of N samples are represented as yi ∈ Rd for i ¼ 1; : : : ; N. These points
use the following similarity function qij that is defined as

EQ-TARGET;temp:intralink-;e007;116;204qij ¼
ð1þ kyi − yjk2Þ−1P

k≠i
ð1þ kyi − ykk2Þ−1

: (7)

Using these similarity measures, the t-SNE method employs the KL divergence of the
reduced dimension distribution Q from the data distribution P and solves KLðPjjQÞ ¼P

i≠jpij logðpij∕qijÞ. When the clusters in the reduced dimensions reflect separation of target
types, they can be used to infer an unknown target’s class. Additionally, unknown targets can be
inferred as unknown based on their projected distance to the existing clusters.

Next, we use the low-dimensional embedding as input to train an SVM classifier. In the
t-SNE algorithm, there are two parameters to tune, namely: (a) the initialization algorithm and

Table 11 Confusion matrix for classification using FFT data of the four targets.

Prediction → Target 1 Target 2 Flyvefisken OPV54

Target 1 50 13 9 0

Target 2 0 62 0 0

Flyvefisken 0 0 5 0

OPV54 0 0 0 9

Table 10 Confusion matrix for classification using magnitude and phase data of the four targets.

Prediction → Target 1 Target 2 Flyvefisken OPV54

Target 1 57 15 0 0

Target 2 15 47 0 0

Flyvefisken 0 0 5 0

OPV54 0 0 0 9
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(b) the perplexity. The initialization algorithm determines the size, distance, and shape of the
clusters belonging to the low-dimensional embeddings. The perplexity is the parameter that
balances the local and global aspects of embeddings.

In our approach, we consider two initialization algorithms: (i) random initialization and
(ii) principal component analysis (PCA). We experimented with different values of perplexity
between 5 and 50 and found that a perplexity value of 25 with random initialization provided the
best separation between the classes. Figure 14 shows the t-SNE plot for the four targets using
their magnitude image with random and PCA initialization and perplexity values of 25 and 40.
In Fig. 14, t-SNE projects a manifold from a high-dimensional space to a lower dimension and
the axes have no logical meaning. This is similar to PCA. The axes are not meant to be inter-
pretable, they just define a 2-D space into which higher dimensional space is projected, while
preserving relative proportional distances as much as possible.

From Fig. 14, we can observe that random initialization provides the best separation, whereas
PCA-based initialization fails to separate the clusters belonging to target 1 and target 2. Based on
the observation from Fig. 14, we use random initialization with perplexity = 25 in order to obtain
the low-dimensional embeddings of the magnitude images, which is then used for training an
SVM classifier. We split the dataset randomly with 80% of each class as training data and 20%
for testing. After obtaining the low-dimensional features for both the training and testing data-
sets, we train an SVM classifier with a radial basis function kernel given by

EQ-TARGET;temp:intralink-;e008;116;508fðxÞ ¼ expð−γkx − x 0k2Þ; (8)

where x is the input feature vector. There are two parameters γ and C that need to be tuned while
training SVM. The parameter γ determines the output of SVM as shown in the kernel function in
Eq. (8). γ redefines the Euclidean distance in feature space into the distance in kernel space, thus
there are few neighbors in the training set for smaller γ compared to a larger γ. The parameters C

Fig. 14 t-SNE plot for the magnitude images of the four targets with random and PCA initialization
and perplexity values of 25 and 40.
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balances the trade-off between the model complexity and empirical error. When C is large, SVM
mainly fits the samples in the training set, resulting in overfitting. On the other hand, when C is
small, SVM tries to minimize the model coefficients, resulting in a very simple model leading to
underfitting. In our approach, we empirically chose the values of γ ¼ 10 and C ¼ 10 by trial and
error. Based on this setup, the SVM classifier was able to achieve an accuracy of 98% on the
testing dataset.

5 Conclusions

We studied the target recognition problem in the context of ISAR imagery for maritime ship
classification and compared traditional model-based approaches and deep learning approaches.
We presented five different approaches: (i) model-based approach that uses scattering centers on
the target for classification, (ii) supervised deep learning approach that uses a trained CNN for
ISAR target recognition, (iii) DLF that takes the normalized average of the predictions of the
CNN and model-based approaches as the final prediction, (iv) LFF that uses the features of the
trained CNN and model-based approaches to train an SVM classifier, and (v) EFF that uses
the features extracted from the model-based approach as prior information along with the input
image to train the CNN. We evaluated all five approaches in the presence of three different
distortions, namely: occlusion, clutter, masking of the body, and adversarial attack. After ana-
lyzing the results, we empirically find that the model-based approach is sensitive to the locations
of the scattering centers, whereas the CNN is sensitive to the superstructure of the target.
Experimental results show that the model-based approach achieves lower performance compared
to the CNN when the locations of the scattering centers are affected due to occlusion and clutter.
On the other hand, the CNN achieves lower performance compared to the model-based approach
when body of the target is masked. This empirical finding suggests that the CNN and model-
based approaches are able to extract features that are almost complementary to each other.
Moreover, when we fuse these two approaches at both the feature level and decision level,
we are able to achieve an increase in the performance, which is also robust against different
distortions. Based on these findings, we can safely conclude that using an ensemble of
approaches, where each approach is able to provide unique features of a given target, we can
design a target classifier that is robust in prediction under various distortions compared to using
stand-alone classifiers.
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