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Abstract: The PM2.5 air quality index (AQI) measurements from government-built supersites are 

accurate but cannot provide a dense coverage of monitoring areas. Low-cost PM2.5 sensors can be 

used to deploy a fine-grained internet-of-things (IoT) as a complement to government facilities. 

Calibration of low-cost sensors by reference to high-accuracy supersites is thus essential. Moreover, 

the imputation for missing-value in training data may affect the calibration result, the best 

performance of calibration model requires hyperparameter optimization, and the affecting factors of 

PM2.5 concentrations such as climate, geographical landscapes and anthropogenic activities are 

uncertain in spatial and temporal dimensions. In this paper, an ensemble learning for imputation 

method selection, calibration model hyperparameterization, and spatiotemporal training data 

composition is proposed. Three government supersites are chosen in central Taiwan for the 

deployment of low-cost sensors and hourly PM2.5 measurements are collected for 60 days for 

conducting experiments. Three optimizers, Sobol sequence, Nelder and Meads, and particle swarm 

optimization (PSO), are compared for evaluating their performances with various versions of 

ensembles. The best calibration results are obtained by using PSO, and the improvement ratios with 

respect to R
2
, RMSE, and NME, are 4.92%, 52.96%, and 56.85%, respectively. 

Keywords: ensemble learning; low-cost sensors; air quality index; particle swarm optimization; 

PM2.5; spatiotemporal data; sensor calibration 
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1. Introduction  

The immense amount of industry productions and anthropogenic activities exasperate the 

concentrations of particulate matter with aerodynamic diameter  2.5 m (PM2.5) in natural 

environment. Many researches have generated evidence for the strong correlation between ambient 

PM2.5 concentrations and human health [1], climate change [2], atmospheric visibility [3], plant 

species mortality [4], to name a few. The transportation and dispersion path of PM2.5 is hard to 

analyze and predict due to many uncertain anthropogenic activities (such as vehicle exhaust, coal and 

gasoline combustion, petrochemical production, and steel refinery), and mother-nature scenarios 

(such as soils, crustal elements, volcanic eruptions, wind and precipitation, typhoons, and 

landscapes). These uncertain factors span in both spatial and temporal dimensions. To estimate the 

actual PM2.5 concentrations, expensive and sparsely-distributed supersite sensors have been built by 

the government to monitor possible contaminations at a few regions of interest. 

As the PM2.5 supersites are costly, they are sparsely installed in the monitoring area, lacking the 

ability to provide a satisfactory coverage of the investigated field. Thus, establishing internet of 

things (IoT) with low-cost and low-power sensors is emerging as a complement to the supersites and 

has been implemented in several countries. Hu et al. [5] constructed a sensor network named 

HazeEst which used machine learning techniques to estimate air pollution surface in Sydney by 

combining data from government-built fixed supersites and personally-affordable mobile sensors. 

Miksys [6] deployed inexpensive PM2.5 and PM10 sensors to conduct spatiotemporal predictions of 

fine-grained resolutions in Edinburgh. Chen et al. [7] deployed a participatory urban sensing network 

for PM2.5 monitoring with more than 2500 sensors in Taiwan and 29 other countries.  

Although low-cost sensors can provide denser monitoring networks than those offered by 

supersites, the obtained PM2.5 measurements are less accurate. A feasible solution is to calibrate 

low-cost sensors by finding the relationship function between the measurements of low-cost sensors 

and supersite sensors. The relationship function can be found by mathematical regression, support 

vector regression, gradient regression tree boosting, adaptive neuro-fuzzy inference system (ANFIS), 

to name a few [8]. Many researches have also shown the geographical landscapes and meteorological 

patterns that have various degrees of influence on PM2.5 concentrations [9–11], and this influence 

deteriorates along the spatial and temporal distances. We contemplate the exploitation of 

spatiotemporal data and the model for data imputation and calibration can improve the measurement 

accuracy of low-cost sensors.  

The contributions of this paper include the following. (1) The deployment of low-cost PM2.5 

sensors that provides a denser coverage of air-quality monitoring area than that with 

government-built supersites. Our ensemble for imputation and calibration learning enhances the 

accuracy of measured air quality index (AQI) by low-cost PM2.5 sensors. (2) The dynamics of PM2.5 

concentrations depend on spatial and temporal factors. We include the spatiotemporal learning by 

finding the best composition of training data in both spatial and temporal dimensions. (3) We 

develop an ensemble method from a holistic point of view where the best selection strategy for 

imputation method, the hyperparameter values of calibration model, and the composition of 

spatiotemporal training data, are learned by an effective optimizer. The experimental results manifest 

that our ensemble learning calibrates the low-cost sensors by enhancing R
2
, RMSE, and NME, with a 

significant improvement of 4.92%, 52.96%, and 56.85%, respectively.  

The remainder of this paper is organized as follows. Section 2 describes the state-of-the-art 
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approaches for data imputation and sensor calibration. Section 3 presents the proposed ensemble 

learning for best imputation method, calibration of hyperparameter values, and spatiotemporal data 

composition. Section 4 provides the experimental results with discussions. Finally, Section 5 

concludes this paper.  

2. Related work 

2.1. Data imputation 

Missing value is a commonly encountered problem in IoT applications. The reasons for 

incurring missing values could result from direct failures of sensors, linkage failures or data losses in 

network communication, malfunction of storage servers, or blackout of electricity. Some 

missing-value scenarios can be eradicated by generating multiple duplicates of data and storing them 

in distributed storage servers [12]. But this approach entails a large volume of storage and is not able 

to deal with sensor failures and electricity blackout. An alternative to the data-redundancy approach 

is data imputation by use of statistics or machine learning. Data imputation approaches estimate the 

missing values by analyzing the covariance of existing variable values or learning the multivariate 

relations. The data imputation approaches are useful when the data loss is random and dependency 

exists among variables.  

The mean imputation method [13] is the simplest imputation method which replaces the missing 

values by the mean of existing data for the corresponding variable. The mean imputation method 

does not change the variable mean, however, some statistics such as variance and standard deviation 

are underestimated. The interpolation imputation method [14] assumes the original value of the 

missing data has mathematical relations with its neighboring data of the same variable and thus can 

be restored by various forms of interpolation, such as linear, triangular, weighted, or higher-order 

forms. The KNN imputation method [15] discards the variable of the missing value and uses the 

remaining variable values to search the k nearest records in appropriate distance space. The missing 

value is then filled up by the distance-weighted mean of the values existing in its neighbors. The 

MICE imputation method [16] is a regression method where the imputed value is predicted from a 

regression equation. The SOFT imputation method [17] treats the imputation as a matrix completion 

problem and uses the convex relaxation technique to provide a sequence of regularized low-rank 

solutions and iteratively replace the missing values with those obtained from a soft-thresholded 

singular value decomposition.  

2.2. Sensor calibration 

The low-cost sensors are deployed with a dense coverage than the government-built expensive 

sensors. However, the readings obtained from low-cost sensors are not highly accurate and should be 

carefully adjusted before being released for applications. Sensor calibration is such a process by 

either hardware adjustment or software manipulation. As our sensors are low-cost and hardware 

calibration is not feasible, we focus on software calibration in this paper. The government-built 

high-accuracy sensors provide good references for software calibration of low-cost sensors. When a 

low-cost sensor and a high-accuracy sensor is near enough, they should read the same measured 

value. Therefore, the software calibration can be fulfilled by mathematical equations such as 
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regression. In fact, the US EPA and Taiwan EPA apply regression technique to calibrate sensors by 

reference to manual measurements. Every year, Taiwan EPA releases the linear regression equations 

adopted by automatic sensors (https://taqm.epa.gov.tw/pm25/tw/Download/). As machine learning 

approaches, such as support vector regression [18] and gradient boosted regression tree [19], usually 

manifest better performance over mathematical regressions, this paper adopts XGBoost [20], which 

is one of the best machine learning regression methods, as our calibration model.  

XGBoost is a novel gradient tree boosting algorithm which has won several competitions 

including Kaggle’s challenges (https://www.kaggle.com/competitions) and KDDCup 2015 [21]. By 

using a sparsity-aware split-finding algorithm and weighted quantile sketch, XGBoost machine 

scales up to billions of data examples but only consume fewer computational resources than other 

machine learning regression methods. XGBoost machine has a number of hyperparameters which 

influence the learned ensemble of regression trees between the observations and variable values. The 

hyperparameters and their corresponding value ranges are described in Table 1. 

Table 1. Value ranges and connotations of XGBoost hyperparameters. 

Parameters Ranges Connotations 

g1 [1, 4] Tree maximal level 

g2 [1, 300] Number of boosting trees 

g3 [0, 12] Minimum weighted sum of leaf nodes 

g4 [0.001, 0.9] Learning rate 

g5 [0, 1.0] Proportion of training data 

g6 [0, 2.0] Threshold for split finding 

g7 [0, 2.0] L1 regularization term 

g8 [0, 2.0] L2 regularization term 

The hyperparameter optimization of a machine learning algorithm is a process which searches 

the most appropriate setting values of the hyperparameters to obtain the optimal performance of the 

machine learning algorithm on the addressed problem. The hyperparameter optimization can be 

achieved by random search [22], Taguchi orthogonal method [23], and meta-learning. The 

meta-learning method learns the optimal configuration of machine learning hyperparameters by 

another machine learning approach. This fashion of learning-for-learning has attracted many 

researchers [18,24].  

In addition to the hyperparameter optimization of the adopted machine learning approach, the 

selection of the most appropriate training instances is very critical [25]. The instance selection 

technique not only reduces the data volume but also increases the accuracy of the discovered 

knowledge from a big dataset. For learning the PM2.5 concentration dataset, the selection of span 

coverage of spatial and temporal training instances is related to the local landscape, climate, and land 

usage. Hence, the conception of learning on selection of spatiotemporal PM2.5 training instances is 

particularly useful and it has not been explored in the related literature. 

 

 

 

https://www.kaggle.com/competitions
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3. Method  

3.1. Ensemble learning 

We propose an ensemble method to learn the best configuration of three cooperating tasks: the 

selection of data imputation methods, the hyperparameter optimization of XGBoost model for data 

calibration, and the selection of spatiotemporal training instances. Our system concept is illustrated 

in Figure 1. The available imputation methods we considered are the mean method, interpolation 

method, KNN, MICE, and SOFT. The hyperparameters of XGBoost need to be tuned are the eight 

parameters as described in Table 1. There are two choices of spatial training data for each low-cost 

sensor: using the sequence of readings of its own and its referred supersite, or using the sequence of 

readings of all supersites and low-cost sensors. The available temporal training data is 30-day 

historical hourly PM2.5 measurements. We, thus, consider temporal data in t days for calibration 

where t is selected between 1 and 30.  

 

Figure 1. Concept diagram of the proposed approach. 

 

Figure 2. Representation of the ensemble consisting of imputation method, XGBoost 

hyperparameters, spatial data type, and temporal data range. 
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To construct an ensemble learning of imputation, XGBoost hyperparameters, spatial data 

collection, and temporal data ranges, the task is formulated as a decision problem involving 11 

continuous or integer variables. The decision ensemble solution is represented as a vector, as shown 

in Figure 2, encoding a selection instance of imputation method (I), XGBoost hyperparameters (g1, 

g2, …, g8), spatial data collection (C), and temporal data range (t). To learn the best ensemble, an 

optimization method needs to be applied. In the experiments, we will compare the performance of 

three optimizers which are briefly described as follows.  

3.2. Compared optimizers for ensemble learning 

3.2.1. Particle swarm optimization 

The particle swarm optimization (PSO) [26] is an evolutionary algorithm which is capable of 

learning the optimal value of model hyperparameters. PSO is a bio-inspired algorithm which mimics 

the social dynamics of bird flocking. This form of social intelligence not only increases the success 

rate for food foraging but also expedites the process. Considering a swarm of N particles 

{         } in an s-dimensional Euclidean space, the particle moving trajectory is guided by the 

personal best (pbest) and the global best (gbest). Particle i has a personal memory storing the best 

position among those it has visited, referred to as pbest, and the best position gbest visited by the 

entire swarm. The PSO iterates a swarm evolution until a stopping criterion is satisfied, which is 

usually set as a maximum number of iterations. At each iteration, particle i adjusts its position x
i
 as 

follows. 
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where K is the constriction factor, c1 and c2 are the accelerating coefficients, and r1 and r2 are random 

numbers drawn from (0, 1). We designate the performance of the ensemble learning solution as the 

particle fitness.  

3.2.2. Sobol quasirandom sequence 

Sobol quasirandom sequence is a distribution of points whose function values sum up toward to 

the function integral, and converge as fast as possible [27]. Hence, the Sobol quasirandom sequence 

can be used to generate a small set of samples to reasonably well explore a large space. Considering 

a Sobol quasirandom sequence of N points {         } in an s-dimensional Integer space, the next 

drawn point should minimize the inter-point discrepancy. For a point                  , a 

hypercube Gx is defined as                                 . The next point x is generated to 

minimize the discrepancy as follows. 

                               (3) 

Due to its quasirandom and fast convergence properties, Sobol quasirandom sequence can be 

applied to search the near-optimal values of the ensemble learning instance.  
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3.2.3. Nelder and meads 

Nelder and Meads (N&M) [28] is a direct search heuristic which uses a simplex of S+1 vertices 

{           },      , in an s-dimensional Euclidean space to conduct iterative moves towards 

the global optimum. Starting with an initial simplex, the N&M repeatedly replaces the worst vertex 

(in terms of the objective value) by an improving trial point obtained by performing reflection, 

expansion, or contraction operations. If no such improving trial point can be produced, the simplex 

shrinks its size by dragging the remaining vertices toward the best vertex and repeats the iterative 

moving process. Without loss of generality, let f be the objective function to be minimized and 

                     . We calculate the centroid    of             and reflect      

against    to obtain the reflection point    as follows.  

                        (4) 

If                  , then replace      with    and restart with the new simplex. If 

           , then produce the expansion point    as follows. 

                         (5) 

If            , then replace      with   , otherwise replace      with   . However, if 

           , then a contraction point    should be generated as follows.  

                           (6) 

If              , then replace      with   , otherwise shrink the simplex by retaining    and 

replace the remaining vertices by 

                         (7) 

and resume the process with the new simplex until the simplex size is less than a threshold.  

4. Results and discussions 

We selected three government-built PM2.5 supersites located in central Taiwan area and 

deployed a low-cost sensor for calibration test with each of the supersites. All the low-cost sensors 

are the same product model G7 PMS7003 which is a particle concentration sensor based on laser 

light scattering. The working principle is to use a laser to illuminate the suspended particles in the air 

to generate light scattering. The scattered light is then collected at a certain angle to estimate the 

particle size and the number of particles of different sizes per unit volume. The minimum measurable 

particle diameter is 0.3 m and the sampling response time is less than one second. Taiwan EPA 

supersites adopt beta ray attenuation method. By gauging the beta ray decrement due to passage 

through a filter paper with particle concentrations, the number of particles and their sizes can be 

estimated. The model G7 PMS7003 low-cost sensor has been shown to have a high correlation with 

government-built supersite sensors in several publications [29,30]. We deployed the low-cost sensor 

at the places as close to as possible to the corresponding supersite. However, due to the prohibitive 

zone of government property, the actual distance between the corresponding low-cost sensor and 

supersite is between 85 and 122 meters as shown in Table 2. Fortunately, all the three supersites are 
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located in large open spaces and the low-cost sensors are deployed at nearby school campus, the 

difference between the sensor readings is mainly due to hardware characteristics and the influence of 

local emissions is kept minimal.  

Table 2. Distance between low-cost and supersite sensors. 

Low-cost sensors Nearest supersite sensors Distance (m) 

A1 B1 122 

A2 B2 85 

A3 B3 112 

The Taiwan EPA calibrates the automatic supersite by using a reference to the manual supersite 

on an annual basis. That is, the readings for the entire year from both supersites are collected for 

training, and the regression equation so obtained is used to calibrate the readings from the automatic 

supersite for the next year. As the low-cost sensors are less robust than the supersites, we chose to 

calibrate the low-cost sensors on a monthly basis. The monitored hourly PM2.5 data is from the 

period September 24 to November 22 in 2017, spanning 60 days. The data collected in the first 30 

days are used for the selection of spatiotemporal training data and the data for the remaining days are 

used for testing. We conduct two series of experiments. The first one is for estimating the 

significance of missing-value imputation and the second one is for validating the contribution of 

ensemble learning in a low-cost sensor calibration. The platform for conducting the experiments is a 

notebook computer equipped with an Intel Core i5 CPU and 8.0 GB RAM. All programs are coded 

in Python with machine learning open packages. 

To evaluate the performance of our ensemble learning on data imputation and calibration, we 

adopt the following measures: the coefficient of determination (R
2
), the root mean square error 

(RMSE), and the normalized mean error (NME). Given a set of n observed values {y1, y2, …, yn} and 

another set of n calibrated numbers {x1, x2, …, xn}, we evaluate the calibration performance as 

follows.  
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where y  is the mean observed value.  

4.1. Missing-value imputation 

The data loss is incurred by malfunction of sensors, servers, and network transmissions. The 
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significance of its impact on calibration performance depends on the data loss ratio (DLR) in the 

training set and the robustness of the missing-value imputation methods. Our collected PM2.5 data are 

recorded in time unit of hours, so there should be 720 (24  30) records for each site in both training 

and test sets if no value is missing. We check our dataset and calculate the DLR and the maximum 

time window value is continuously missing in the records. Table 3 tabulates the DLR and the 

maximum time window (in hours) of the missing value in both training set and test set. We observe 

that the DLR ranges from 5.8% to 9.2% in the training set, and it is between 1.4% and 3.9% for the 

test set. The maximum time window of the missing value is 8 or 16 hours for the training set and it is 

9 hours for the test set. It is noted that the imputation method is applied only on training data. The 

test data remains unaltered as being used as the exact values for conducting performance evaluations 

on the calibrated data. The PM2.5 concentration has high variability over time but manifests a daily 

periodic pattern. The observed PM2.5 concentration in a day usually reaches its lowest value around 

noon and starts climbing in the evening until it reaches its highest value in midnight. The maximum 

time window of the missing value is 8 or 16 hours in our training set, the daily pattern can be learned 

and used to replace the missing value. The imputation methods that we applied in the ensemble 

worked well on our training set as it can be seen in the experimental results. If the maximum time 

window of the missing value exceeds 24 hours, we suggest the reader to directly remove the null 

records in order to avoid any bias.  

Table 3. Data loss ratio in the monitored data of the low-cost sensors. 

 Training set Test set 

Low-cost sensors DLR Max. time window 

(hours) 

DLR Max. time window 

(hours) 

A1 5.8% 8 3.9% 9 

A2 9.2% 8 3.5% 9 

A3 7.5% 16 1.4% 9 

We apply our ensemble learning approach with or without missing-value imputation learning to 

obtain the calibration results. To realize the influence of training-data imputation on the test-data 

calibration, we compute the R
2
, RMSE, and NME between the PM2.5 readings of the paired 

supersites and low-cost sensors. The numeral performance is shown in Table 4. It is seen that the R
2
, 

RMSE, and NME between the original readings without performing any imputation and calibration 

learning is 73.57%, 13.20, and 0.6188, respectively. By performing the proposed ensemble learning 

on both imputation and calibration, all three optimizers, Sobol, N&M, and PSO, significantly 

enhance the three performance measures. The improvement ratio to the original measures is listed in 

parentheses. PSO is the best optimizer which improves the three performance measures by 4.92%, 

52.96, and 56.85%, respectively. Sobol is the second best optimizer followed by N&M. Next, we 

apply the ensemble learning on calibration, however, no imputation is performed on the training set. 

The three optimizers are still able to perform calibration reasonably well. The improvement ratio 

decreases by about 1% as compared to performing ensemble learning on both imputation and 

calibration. The reason may be due to the fact that the DLR in the training set is not too high (see 

Table 3), so the execution of imputation does not significantly affect the regression trees learned by 

XGBoost. The ensemble calibration also works best with the PSO optimizer, followed by Sobol and 

N&M. 
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Table 4. Calibration performance of low-cost sensors with or without imputation. 

 R
2
 RMSE NME 

No Imputation and No Calibration: 73.57% 13.20 0.6188 

Ensemble Learning on Both Imputation and Calibration: 

Sobol 76.51% (3.99%) 6.27 (52.47%) 0.2677 (56.74%) 

N&M 75.25% (2.28%) 6.56 (50.27%) 0.2741 (55.69%) 

PSO 77.19% (4.92%) 6.21 (52.96%) 0.2670 (56.85%) 

No Imputation, Only Ensemble Calibration:   

Sobol 75.96% (3.25%) 6.32 (52.13%) 0.2708 (56.24%) 

N&M 74.69% (1.52%) 6.73 (48.99%) 0.2802 (54.72%) 

PSO 76.36% (3.78%) 6.29 (52.35%) 0.2714 (56.14%) 

4.2. Calibration 

Our ensemble approach learns the best strategy for combining the imputation method, XGBoost 

hyperparameter values, and spatiotemporal data composition for calibration of low-cost PM2.5 

sensors. Our previous experimental result has shown the execution of data imputation does improve 

the performance of subsequent calibration, however, the influence is not significant. Now, we want to 

measure the contribution of ensemble learning on spatiotemporal data for calibration. We classify our 

ensemble learning into three types: ensemble learning on spatial data, ensemble learning on temporal 

data, and ensemble learning on spatiotemporal data. Each type of ensemble learning is separately 

applied with each of the three optimizer, namely, Sobol, N&M, and PSO. We detail the comparative 

performance of various ensemble learning for calibration methods in Table 5, the best calibration 

result for each low-cost sensor by every type of ensemble learning is shown in boldface under the 

corresponding performance metric. The baseline result is obtained without applying ensemble 

learning, i.e., the performance is measured between original test data of the supersites and low-cost 

sensors. The experimental results have the following implications. (1) It is seen that PSO is the best 

optimizer for ensemble learning with temporal and spatiotemporal data. PSO also performs well for 

ensemble learning with spatial data, though Sobol performs slightly better than PSO. N&M is 

outperformed by the other two optimizer for all types of ensemble learning. (2) All the three types of 

ensemble learning for calibration can achieve significant improvement on RMSE and NME, but only 

the ensemble learning on spatiotemporal data is able to enhance the R
2
 measure. This phenomenon 

indicates that the ensemble learning can actively choose the best composition of training set from 

either spatial or temporal perspectives, and the application of spatiotemporal learning can achieve the 

overall best calibration performance. (3) Figure 3 shows the mean performances over the three 

low-lost sensors by using various types of ensemble learning strategies. It is clearly seen that both 

Sobol and N&M enhance the mean RMSE and NME while slightly deteriorate R
2
 at the same time 

when applying either ensemble spatial learning or ensemble temporal learning. On contrary, PSO 

makes good explorations in spatial and temporal spaces considering the tradeoffs among the three, 

sometimes conflicting, performance objectives. Therefore, PSO well surpasses Sobol and N&M with 

every type of ensemble learning.  
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Table 5. Calibration performance of microsite sensors with various ensembles. 

Calibration methods R
2
 RMSE NME 

No Ensemble Learning: 

A1 72.95% 12.95 0.5768 

A2 65.55% 15.81 0.8877 

A3 82.21% 10.83 0.3918 

mean 73.57% 13.20 0.6188 

Sobol Ensemble Learning on Spatial Data: 

A1 76.44% 7.20 0.3067 

A2 64.37% 6.99 0.3592 

A3 79.62% 5.69 0.1732 

mean 73.48% 6.63 0.2797 

N&M Ensemble Learning on Spatial Data: 

A1 75.34% 7.45 0.3114 

A2 60.22% 7.38 0.3670 

A3 79.11% 5.84 0.1803 

mean 71.56% 6.89 0.2862 

PSO Ensemble Learning on Spatial Data: 

A1 76.48% 7.20 0.3067 

A2 63.59% 7.04 0.3583 

A3 79.73% 5.71 0.1748 

mean 73.27% 6.65 0.2799 

Sobol Ensemble Learning on Temporal Data: 

A1 75.60% 7.19 0.3087 

A2 62.88% 7.02 0.3569 

A3 79.66% 5.75 0.1748 

mean 72.71% 6.65 0.2801 

N&M Ensemble Learning on Temporal Data: 

A1 74.68% 7.52 0.3121 

A2 58.83% 7.44 0.3659 

A3 79.17% 5.83 0.1794 

mean 70.89% 6.93 0.2858 

PSO Ensemble Learning on Temporal Data: 

A1 76.26% 7.20 0.3062 

A2 65.46% 6.90 0.3536 

A3 79.36% 5.72 0.1733 

mean 73.69% 6.61 0.2777 

Sobol Ensemble Learning on Spatiotemporal Data: 

A1 77.43% 6.82 0.2951 

A2 68.21% 6.96 0.3569 

A3 83.88% 5.04 0.1512 

mean 76.51% 6.27 0.2677 

Continued on next page 
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Calibration methods R2 RMSE NME 

N&M Ensemble Learning on Spatiotemporal Data: 

A1 76.98% 6.84 0.2956 

A2 68.78% 7.33 0.3641 

A3 80.01% 5.52 0.1628 

mean 75.26% 6.56 0.2742 

PSO Ensemble Learning on Spatiotemporal Data: 

A1 77.43% 6.85 0.2972 

A2 69.98% 6.85 0.3536 

A3 84.16% 4.93 0.1502 

mean 77.19% 6.21 0.2670 

 

(a) 

 

(b) 

 

(c) 

Figure 3. Mean performances over the three low-lost sensors by using various ensembles. 
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Figure 4 shows the hourly comparison between the exact PM2.5 (readings of the supersite) and 

the calibrated PM2.5 (calibrated readings of the low-cost sensor) for the three sites. For each site, we 

separately show the calibrated curve obtained by Sobol, N&M, and PSO, respectively. All the three 

optimizers apply ensemble hyperparameters and spatiotemporal data learning to automatically 

calibrate the readings from the low-cost site to align with the exact readings reported from the 

expensive government-built supersite. But N&M seems to over-calibrate the readings at some epochs 

and manifest many fluctuations in the calibration, this behaviour is particularly conspicuous as can 

be seen in Figure 4(e). On contrary, Sobol and PSO tend to be relatively conservative in calibrating 

peak and valley values as compared to N&M. One promising direction of our future research is to 

blend the calibration results from the three optimizers to adaptively capture the main trend and 

fluctuating details of the exact PM2.5 series.  

 

 

Figure 4. Hourly comparison between the exact PM2.5 and the calibrated PM2.5 obtained 

by Sobol, N&M, and PSO. 

Figure 5 shows the scatter plots and gradient between the exact PM2.5 and the calibrated PM2.5 

obtained by Sobol, N&M, and PSO. The gradient ranges from 0.67 to 0.88. The highest gradient is 

obtained by applying Sobol to calibrate A1 sensor, and the lowest gradient is observed when A2 

sensor is calibrated by N&M or PSO. The gradient so obtained is mainly influenced by the selected 
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supersite rather than the applied optimization method. A2 sensor tends to produce a lower gradient 

than those obtained with A1 sensor and A3 sensor. The comparative results of gradient conform to 

those of other performance metrics observed in Table 5.  

 

 

Figure 5. Scatter plots and gradient between the exact PM2.5 and the calibrated PM2.5 

obtained by Sobol, N&M, and PSO. 

5. Conclusions 

Establishing a low-cost PM2.5 sensor IoT is complement to the AQI monitoring network of 

government-built supersites. Low-cost sensors provide a dense coverage of monitoring area but lack 

high-accuracy measurements. Calibration of low-cost sensor measurements by reference to 

high-accuracy supersites is cheap and automatic. In this paper, we have proposed a novel ensemble 

approach for learning the best strategy to select the imputation method, hyperparameter values of 

calibration model, and the composition of spatiotemporal data. Three optimizers, namely, Sobol, 

N&M, and PSO, were tested with various kinds of ensemble learning. The experimental results show 

that our ensemble method actively learns the optimal strategy for combining imputation, 

parameterization of calibration, and composition of spatiotemporal data. The best performance is 

obtained by using PSO, and the improvement ratio with respect to R
2
, RMSE, and NME, is 4.92%, 

52.96%, and 56.85%, respectively. 
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