
RESEARCH ARTICLE

DeephESC 2.0: Deep Generative Multi

Adversarial Networks for improving the

classification of hESC

Rajkumar TheagarajanID
1,2*, Bir Bhanu1,2,3

1 Depratment of Electrical and Computer engineering, University of California, Riverside, Riverside, CA,

United States of America, 2 Center for Research in Intelligent Systems, University of California, Riverside,

Riverside, CA, United States of America, 3 Department of Bioengineering, University of California Riverside,

Riverside, CA, United States of America

* rthea001@ucr.edu

Abstract

Human embryonic stem cells (hESC), derived from the blastocysts, provide unique cellular

models for numerous potential applications. They have great promise in the treatment of dis-

eases such as Parkinson’s, Huntington’s, diabetes mellitus, etc. hESC are a reliable devel-

opmental model for early embryonic growth because of their ability to divide indefinitely

(pluripotency), and differentiate, or functionally change, into any adult cell type. Their adap-

tation to toxicological studies is particularly attractive as pluripotent stem cells can be used

to model various stages of prenatal development. Automated detection and classification of

human embryonic stem cell in videos is of great interest among biologists for quantified anal-

ysis of various states of hESC in experimental work. Currently video annotation is done by

hand, a process which is very time consuming and exhaustive. To solve this problem, this

paper introduces DeephESC 2.0 an automated machine learning approach consisting of

two parts: (a) Generative Multi Adversarial Networks (GMAN) for generating synthetic

images of hESC, (b) a hierarchical classification system consisting of Convolution Neural

Networks (CNN) and Triplet CNNs to classify phase contrast hESC images into six different

classes namely: Cell clusters, Debris, Unattached cells, Attached cells, Dynamically Bleb-

bing cells and Apoptically Blebbing cells. The approach is totally non-invasive and does not

require any chemical or staining of hESC. DeephESC 2.0 is able to classify hESC images

with an accuracy of 93.23% out performing state-of-the-art approaches by at least 20%. Fur-

thermore, DeephESC 2.0 is able to generate large number of synthetic images which can

be used for augmenting the dataset. Experimental results show that training DeephESC 2.0

exclusively on a large amount of synthetic images helps to improve the performance of the

classifier on original images from 93.23% to 94.46%. This paper also evaluates the quality

of the generated synthetic images using the Structural SIMilarity (SSIM) index, Peak Signal

to Noise ratio (PSNR) and statistical p-value metrics and compares them with state-of-the-

art approaches for generating synthetic images. DeephESC 2.0 saves hundreds of hours of

manual labor which would otherwise be spent on manually/semi-manually annotating more

and more videos.

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Theagarajan R, Bhanu B (2019)

DeephESC 2.0: Deep Generative Multi Adversarial

Networks for improving the classification of hESC.

PLoS ONE 14(3): e0212849. https://doi.org/

10.1371/journal.pone.0212849

Editor: Alberto Fernández-Hilario, Universidad de

Granada, SPAIN

Received: May 30, 2018

Accepted: February 11, 2019

Published: March 6, 2019

Copyright: © 2019 Theagarajan, Bhanu. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data and

software are available at the Figshare repository.

Link to the software: https://figshare.com/s/

6f574634fd66c03d3c9f. Link to the data: https://

figshare.com/s/76be390e7e221933ae4f.

Funding: This work was supported in part by NSF

grant 1552454, ONR grant N00014-12-1-1026 and

Bourns Endowment funds. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

http://orcid.org/0000-0001-8065-3893
https://doi.org/10.1371/journal.pone.0212849
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212849&domain=pdf&date_stamp=2019-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212849&domain=pdf&date_stamp=2019-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212849&domain=pdf&date_stamp=2019-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212849&domain=pdf&date_stamp=2019-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212849&domain=pdf&date_stamp=2019-03-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212849&domain=pdf&date_stamp=2019-03-06
https://doi.org/10.1371/journal.pone.0212849
https://doi.org/10.1371/journal.pone.0212849
http://creativecommons.org/licenses/by/4.0/
https://figshare.com/s/6f574634fd66c03d3c9f
https://figshare.com/s/6f574634fd66c03d3c9f
https://figshare.com/s/76be390e7e221933ae4f
https://figshare.com/s/76be390e7e221933ae4f


1 Introduction and background

Human embryonic stem cells (hESC) are derived from the inner cell mass of developing blas-

tocysts and can be maintained indefinitely in vitro in a pluripotent state [1]. hESC have the

ability to self-renew and differentiate into any cell type, thus providing a unique resource for

regenerative medicine and toxicological testing of drugs [2, 3]. The biologists who study hESC

have to manually analyze stem cell videos every day. On an average it takes 3-5 days for a biolo-

gist to manually analyze a single hESC video, taken over a period of 48 hours with a suitable

sampling rate, and annotate its different stages of development. To date, there are very limited

automated tools [4, 5] for classifying hESC from videos making it a very laborious manual

process.

Video Bioinformatics [6]–[10] is an upcoming field to help biologists use efficient and effec-

tive approaches to analyze expansive volumes of video data. In this study, the hESC videos

were recorded using a Nikon BioStation IM [11] which has a phase contrast microscope. Each

frame in the video can contain any number of the following six cell types: 1) Cell clusters (CC),
2) Debris (DEB), 3) Unattached Cells (UN), 4) Attached Cells (AT), 5) Dynamically Blebbing
Cells (DYN), and 6) Apoptotically Blebbing cells (APO). Fig 1 shows the Nikon BioStation IM

and Fig 2 shows the hESC phase contrast images that have been detected and cropped from

full frame images for each class. It should be noted that, our approach is totally non-invasive

and does not require chemicals for staining the hESC.

The Unattached cells, Attached cells, Dynamically Blebbing cells and Apoptically Blebbing
cells are considered as the intrinsic cell types. Cell clusters are a colony of growing cells consist-

ing of a group of two or more different intrinsic cell types that are packed close to each other.

Blebbing cells are membrane protrusions that appear and disappear from the surface of cells.

The changing area of the blebbing cells over time is important for understanding and evaluat-

ing the health of cells. Dynamic blebs indicate healthy cells and Apoptotic blebs indicate dying

cells. The ability to analyze rates of bleb formation and retraction are important in the field of

toxicology and could form the basis of an assay that depends on a functional cytoskeleton [12].

From Fig 2, it can be observed that although certain classes such as Debris and Unattached
cells look very discriminative compared to the remaining four classes. Certain classes like

Attached cells and Dynamically Blebbing cells share very similar color intensities, similarly Cell

Fig 1. The Nikon BioStation IM benchtop live cell imaging system. (a) External features include a incubation unit, joystick for

controlling the position of the camera during sample selection, and a monitor. (b) Culture dish sitting inside the BioStation IM

incubator unit.

https://doi.org/10.1371/journal.pone.0212849.g001

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 2 / 28

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0212849.g001
https://doi.org/10.1371/journal.pone.0212849


clusters and Apoptically Blebbing cells share very similar texture making making it very chal-

lenging to classify these hESC classes.

Previous studies involving the classification of hESC have primarily used manual/ semi-

manual detection and segmentation [13], hand-crafted feature extraction [4]. These manual

methods, hand-crafted feature extraction approaches are prone to human bias and they are

tedious and time-consuming processes when performed on a large volume of data. Therefore,

it is advantageous to develop an image analysis software such as DeephESC 2.0 to automati-

cally classify hESC images and also generate synthetic data to compensate for the lack of real

data.

Recent years have witnessed the boom of CNNs in many computer vision and pattern rec-

ognition applications including object classification [14], object detection [15] and semantic

segmentation [16]. In this paper, we propose DeephESC 2.0, an automated machine learning

based classification system for classifying hESC images using Convolution Neural Networks

(CNN) and Triplet CNNs in a hierarchical system. The CNNs are trained on a very limited

dataset consisting of phase contrast imagery of hESC to extract discriminative and robust fea-

tures to automatically classify these images. This is not a straight forward task as some classes

of hESC have very similar shape, intensity and texture. To solve this we trained triplet CNNs

that help extract very fine-grained features and classify between two very similar but slightly

distinctive classes of hESC. DeephESC 2.0 uses a CNN and two triplet CNNs fused together in

a hierarchical manner to perform fine-grained classification on six different classes of hESC

images. Previous studies have shown that augmenting the size and diversity of the dataset,

results in improved classification accuracy [17].

The process of obtaining video recordings of hESC is a very long and tedious process, and

to date there are no publicly available datasets. To compensate for the lack of data, DeephESC

2.0 uses Generative Multi Adversarial Networks (GMANs) to generate synthetic hESC images

and augment the training dataset to further improve the classification accuracy. We compare

different architectures of Generative Adversarial Networks (GANs) and the quality of the gen-

erated synthetic images using the Structural SIMilarity (SSIM) index and Peak Signal to Noise

Ratio (PSNR). Furthermore, we trained DeephESC 2.0 using the synthetic images, evaluated it

on the original hESC images obtained from biologists and verified the significance of our

results using the p-value.

This paper is organized as follows. Section 2 describes the related work and our contribu-

tions for detecting, classifying and generating synthetic hESC images. The data and technical

Fig 2. Phase contrast images for the six different classes of hESC obtained from the Nikon BioStation IM.

https://doi.org/10.1371/journal.pone.0212849.g002

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 3 / 28

https://doi.org/10.1371/journal.pone.0212849.g002
https://doi.org/10.1371/journal.pone.0212849


approach are presented in Section 3. Experimental results are discussed in detail in Section 4,

followed by the conclusions of our paper given in Section 5.

2 Related work and our contributions

Some preliminary work reported in this paper was originally presented at the International

Conference on Pattern Recognition 2018 [5]. To the best of our knowledge, before our previ-

ous conference paper [5], hESC images have never been automatically classified into six differ-

ent classes using synthetically generated image data. In the following we present the related

work into the following three areas: detection of hESC in video, classification of hESC images

and generation of synthetic hESC images.

2.1 Detection of hESC in video

There are some current methods for detecting cell regions in phase contrast images [4].

Table 1 shows the summary of the related work done for detecting hESC. Ambriz-Colin et al.
[18] proposed two methods for cell region detection from phase contrast images: detection by

pixel Intensity Variance (PIV) and detection by Gray Level Morphological Gradient (GLMG).

The PIV method computes the variance of a pixel in a given neighborhood and based on a

threshold classifies if the pixel belongs to a cell region or background. The GLMG approach

converts the phase contrast image to a binary image and performs morphological dilation and

erosion and based on a threshold separates the cell region and background. Li et al. [19] used a

combination of morphological rolling-ball filtering and a Bayesian classifier to classify the pix-

els into either the cell regions or the background. The major drawback with these approaches

is that they are very susceptible and would fail to classify the pixels even if there is slight change

in pixel intensity or change in texture which normally occurs over time.

Eom et al. [20] used circular Hough transform to detect the shapes of cells in an image and

classify them. This approach is very sensitive to the variation of shapes and appearance of cells.

This approach is not viable for detection of hESC where blebbing is continuously altering the

shape of the hESC. Miroslaw et al. [21] proposed to use correlation using template images for

cell region detection. This approach requires pre-selection of exemplar template images which

Table 1. Summary of the related work for detecting hESC.

Detection of

hESC

Authors Comments

Ambriz-Colin

et al. [18]

Used the Pixel Intensity Variance (PIV) and Gray Level Morphological

Gradient (GLMG) for detecting cell regions from phase contrast images.

Li et al. [19] Used a combination of morphological rolling-ball filter and a Bayesian

classifier to classify pixels into cell regions and background.

Eom et al. [20] Used circular Hough transform to detect the shapes of cells in an image. This

approach is sensitive to variations in the shape.

Miroslaw et al.
[21]

Used template based correlation to detect cell bodies. This approach requires

pre-selecting exemplary cell body images as a template.

Tatiraju et al. [22] Used a variant of the K-means algorithm to segment the cell bodies. This

approach fails in separating cell clusters that are close to each other.

Zarpak et al. [23] Used multiple Gaussian models to represent the pixel intensity distribution of

the cell body. This approach ignores the connectivity between adjacent cell

clusters.

Guan et al. [24] Used individual mixture of Gaussian models to model the pixel intensity

of the foreground cell body and background substrate. This approach also

uses the local spatial information of cell bodies to separate adjacent

clusters close to each other.

https://doi.org/10.1371/journal.pone.0212849.t001

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 4 / 28

https://doi.org/10.1371/journal.pone.0212849.t001
https://doi.org/10.1371/journal.pone.0212849


are not readily available in most cases. Moreover, this approach is most likely to fail in condi-

tions where parts of two or more cells are overlapping in a single image.

The most commonly used algorithms for image segmentation are the K-means segmenta-

tion and mixture of Gaussians by Expectation-Maximization (EM) algorithm. Tatiraju et al.
[22] used a variant of the K-means algorithm such that each pixel intensity is considered as

an individual observation and the authors partition these observations into k clusters. This

method does not consider the intensity distribution of its clusters. As a result the segmentation

obtained lacks the connectivity within the neighborhood pixels. The mixture of Gaussians seg-

mentation proposed by Farnoosh and Zarpak [23] depends heavily on the intensity distribu-

tion models to group the image data. The underlying assumption of their approach is that

intensity distribution of the image can be represented by multiple Gaussians. However, it does

not take into account the neighborhood information. As a result, the segmented regions lack

connectivity with the pixels within their neighborhood.

DeephESC 2.0 detects the hESC regions using the approach proposed by Guan et al. [24].

The algorithm uses the intensity distributions of the foreground (hESC) and background (sub-

strate) as well as the cell property for detection. The intensity distributions of the foreground

and background are modeled as a mixture of two Gaussians and the cell property is translated

into a local spatial information. The algorithm is optimized by parameters of the distributions

and the cell regions evolve with the local cell property. The advantage of this approach is that,

it not only uses information of the foreground and background, but it also uses cell properties

resulting in fine-grained localization of the hESC even in the presence of background noise.

2.2 Classification of hESC images

Although there has been some work for detecting cell regions from phase contrast images,

there is very limited work done for classifying them into different classes. Table 2 shows the

summary of the related work done for classifying hESC. Lowry et al. [25] designed a texture

based multi-stage Bayesian level set algorithm to segment pluripotent and trophectoderm col-

ony images of hESC and their derivatives. The authors used an MR8 approach [26] for model-

ing the texture by convolving image patches with a filter bank containing Gaussian and

Laplacian of Gaussian (LoG) filters at a fixed scale and edge bar filters at three different scales

and several orientations. This results in a texton feature vector containing eight filter responses

for every given pixel in the image. After extracting these texton features, the texturally inhomo-

geneous images are segmented using a multi stage Bayesian Level Set (BLS). The advantage of

using BLS is that it produces smoother segmentation maps with regular borders and is much

more tolerant to poor initial conditions.

Lowry et al. [27] combined set levels, multi resolution wavelet analysis and non- parametric

estimation of the density functions of the wavelet coefficients to segment and classify stem cell

nuclei. The authors also used an adjustable length window to deal with small size textures

where the largest inscribed rectangular window may not contain a sufficient number of pixels

for multiresolution analysis of elongated and irregularly shaped nuclei. Mangoubi et al. [28]

classified hESC into differentiated and pluripotent cell colonies using a wavelet based texture

decomposition. The authors used four visual features namely: textural homegeneity, textural
tightness, border sharpness and border circularity. Based on these visual features, the authors

achieved an accuracy of 96% in classifying colonies that were very distinct from each other and

86% in colonies with a mixed distribution. The authors suggest that a good pluripotent stem

cell colony must exhibit a homogeneous, tight texture throughout, thus allowing a statistical

analysis of the coefficients obtained from a wavelet based texture decomposition to discrimi-

nate between the colonies.

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 5 / 28

https://doi.org/10.1371/journal.pone.0212849


Desai et al. [29] classified fluorescent stem cell nucleus images into pluripotent and differ-

entiated nucleus. Stem cell nuclei are very small in size and have very few pixels on them. The

authors assume that the nucleus exhibits an onion layer texture where we may assume that

within a layer the behavior is homogeneous, but may vary from layer to layer. The authors use

a matrix edge function that adaptively modulates the shape, size, and orientation of neighbor-

hoods over different regions of the texture, thus providing directional information on the tex-

ture that is not available in the more conventional scalar edge field based approaches.

Sammak et al. [30] classified differentiating cells into three classes namely: Trophectoderm,
Neurectoderm, and Progeny cells. The authors showed that during differentiation the edges at

the borders of the cell become more thin. The authors extract features, using wavelet decom-

position and a matrix edge function, which are then given to a Support Vector Machine

(SVM) for classification.

Niioka et al. [31] detect the cellular differentiation of myoblasts to myotubes using Convo-

lutional Neural Networks. During the differentiation process, the cellular morphology changes

from a round shape to an elongated tubular shape due to the fusion of cells. The authors

trained their CNN using stained fluorescent images as input and were able to detect the differ-

entiation with an accuracy of 91.3%.

Chang et al. [32] were able to classify human Induced Pluripotent Stem (iPS) cells in

human cord blood CD34+ images using Convolutional Neural Networks. The authors used a

5 convolutional layer network to classify 256x256 patches of images with an accuracy of 91.8%.

Xie et al. [33] performed cell counting in fluorescent images using a convolutional regression

network. They trained a network to localize fluorescent labeled cell nuclei via down-convolu-

tional feature extraction and symmetrically up-convolutional pixel-wise classification. They

apply their network to a variety of datasets and manually annotated grayscale histology sec-

tions with an average error of 2.9% for their cell counting task. While their method is a

Table 2. Summary of the related work for classification of hESC and contributions of this paper.

Classification of

hESC

Lowry et al. [25] Used Gaussians and Laplacian of Gaussian (LoG) filters to obtain a texton feature vector for each pixels and then use a

multi-stage Bayesian set algorithm to segment and classify pluripotent and trophectoderm colonies.

Lowry et al. [27] Used an adjustable length window to extract features using multi-resolution wavelet analysis which is used to classify the

cell nuclei using a combination of set levels and non-parametric estimation of the wavelet coefficients.

Mangoubi et al.
[28]

Used a wavelet texture decomposition and a set of visual features to distinguish between pluripotent and differentiated

colonies. Based on the results, the authors suggest that a good pluripotent colony must exhibit a tight homogeneous texture.

Desai et al. [29] Used a matrix edge function to classify stem cell nucleus into pluripotent and differentiating nucleus. This approach

assumes that the nucleus exhibits an onion layer texture where the texture is homogeneous within the layer and varies

between different layers.

Sammak et al. [30] Used a wavelet decomposition and matrix edge function to extract features which are given to Support Vector Machine

(SVM) to classify differentiating cells into Trophectoderm, Neurectoderm, and Progeny cells.

Niioka et al. [31] Used CNNs and the morphological changes of the differentiating cell body to detect and classify the differentiation from

myoblasts to myotubes.

Chang et al. [32] Classified 256×256 image patches of human Induced Pluripotent Stem cells in human cord blood CD34++ images using

Convolutional Neural Networks (CNNs).

Xie et al. [33] Used a CNN to localize and count the number of individual cells in fluorescent images.

Witmer et al. [34] Used entropy based filters, CNNs and patches extracted from a sliding 224x224 window to segment and classify cell

colonies into six different sub-colonies.

Theagarajan et al.
[5]

Used a CNNs to classify hESC images into six different classes. Although this approach achieves high classification

accuracy, it has a high error rate in classifying classes that visually have a similar texture such as Cell clusters/Apoptically

Blebbing cells and Attached/Dynamically Blebbing cells.

Our Approach This paper uses a combination of CNN and triplet CNNs in a hierarchical system to classify phase contrast hESC

images into six different classes. This non-invasive approach uses skip connections between convolutional layers which

helps to learn more robust features and also improves the classification between classes that have very similar textures.

https://doi.org/10.1371/journal.pone.0212849.t002

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 6 / 28

https://doi.org/10.1371/journal.pone.0212849.t002
https://doi.org/10.1371/journal.pone.0212849


successful implementation for training a neural network feature classifier for localizing cells, it

is relatively easy to localize cells in a fluorescent dataset compared to more non-invasive com-

plex datasets, such as the data with low contrast and high texture. A drawback of the works

done by [31], [32] and [33] is that they had to stain hESC in order to classify them making it

an invasive approach, whereas, our approach is totally non-invasive.

Witmer et al. [34] developed an automated system to localize six cell colonies namely:

Debris, Dense, Spread, Differentiated, Partially spread, and Partially differentiated. The

authors extracted patches of size 224 × 224 using a sliding window from phase contrast

images. These patches are then passed through an entropy filter that segments the cell colo-

nies by exploiting the difference between the background and foreground of the images. The

segmented patches are then passed through a CNN which classifies the patch into one of the

6 classes. The authors were able to achieve an accuracy of 89.35% in classifying the cell colo-

nies, but a drawback of their approach is that they used a fixed window size of size 224 × 224

for localizing the cell colonies. This leads to smaller sized colonies to be overlooked leading

to an incorrect segmentation.

In our previous work using DeephESC [5], we used a CNN and Triplet CNNs to classify

hESC images into six different classes. DeephESC was able to classify hESC images with an

accuracy of 91.71%, but a problem encountered in this approach is that images belonging to

the class Cell clusters were misclassifed as Apoptically Blebbing cells with an error rate of 7.89%

which was the highest error percentage between any two classes. The reason for this is that Cell
clusters and Apoptically Blebbing cells have a very similar texture and intensity. Fig 3 shows

example images of Cell clusters and Apoptically Blebbing cells. The main distinguishing factor

between these two classes is the presence of smaller cells packed close to the Cell clusters.
In Fig 3, the small cells in the manually annotated red bounding box are the factors that dis-

tinguish between a Cell cluster and an Apoptically Blebbing cell. Since these cells are very small,

and as the image is passed forward through the convolution layers of CNN the dimensions of

the feature maps progressively decrease and hence the receptive fields of the convolution filters

are not able to detect these small cell bodies. To solve this DeephESC 2.0 skips connections

between the initial and final convolution layers. The initial convolution layers learn a more

coarse representation of the image where the receptive field of the filters are able to detect the

small surrounding cells, whereas, the final layers learn a more fine-grained representation. By

Fig 3. Example images of Cell clusters and Apoptically Blebbing cells. The distinguishing features between Cell clusters and

Apoptically Blebbing cells are the small cells in the Cell clusters packed close to each other.

https://doi.org/10.1371/journal.pone.0212849.g003

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 7 / 28

https://doi.org/10.1371/journal.pone.0212849.g003
https://doi.org/10.1371/journal.pone.0212849


skipping intermediate layers and concatenating the feature maps of the initial and final convo-

lution layers, DeephESC 2.0 is able to extract much more robust features that can detect these

small surrounding cells which helps to improve the classification between these two classes.

2.3 Generation of synthetic hESC images

To the best of our knowledge, there is no published work that synthetically generates hESC

images prior to our work in DeephESC [5]. Table 3 shows the summary of the related work for

generating synthetic images of hESC. In DeephESC we evaluated two different approaches for

generating synthetic hESC images namely: Deep Convolution Generative Adversarial Net-

works (DCGAN) [35] and ensemble—Deep Convolution Generative Adversarial Networks

(e-DCGAN) [5].

Generative adversarial nets were recently introduced as a novel way to train a network to

generate synthetic images. They consists of two ‘adversarial’ models: a generative model G that

captures the data distribution, and a discriminative model D that estimates the probability that

a sample came from the training data (real images) rather than the generator G (synthetic

images). In order to learn the distribution Pg(x) over data x, the generator builds a mapping

function from a prior noise distribution Pz(z) to data space as G(z; θg). The discriminator

D(x; θd) outputs a single scalar representing the probability that x came from the training data

rather than Pg(x).
In DeephESC, we trained six different DCGANs (1 for each class) in order to generate syn-

thetic hESC images. A problem encountered with this approach is that using DCGAN we were

able to generate good quality images for all the classes except Cell clusters. The reason for this

is that, Cell clusters have small cells packed very close to each other and the generator network

for Cell clusters was not able to capture all the details in order to learn a good representation of

the class. As a result the generated image had artifacts in it such as haloing and bleeding effects

between cell boundaries.

To solve this we designed e-DCGAN an architecture that uses prior information from an

ensemble of DCGANs to improve the quality of the generated images. By definition Cell clus-
ters are a colony of two or more intrinsic cells (Unattached, Attached, Dynamically Blebbing
and Apoptically Blebbing cells) packed close to each other. In order to generate synthetic

images of Cell clusters, we used the features learned by the GANs corresponding to the four

intrinsic cells in an ensemble manner as input to train another GAN to generate Cell clusters.
Fig 4 shows the architecture of e-DCGAN.

In this paper, DeephESC 2.0 uses a variant of the DCGAN architecture named Generative

Multi Adversarial Network (GMAN) [36]. GMAN is different from DCGAN by the fact that

instead of using a single discriminator, we useNmultiple discriminators to train the generator.

In practice, training against a single discriminator can impede the generator’s learning. This is

Table 3. Summary of the related work for generating synthetic hESC images and contributions of this paper.

Generation of synthetic

hESC images

Theagarajan

et al. [5]

Used an ensemble of Deep Convolutional Generative Adversarial

Networks (DCGAN) to generate synthetic images of six different

classes of hESC. This approach pool together the features learned by

individual DCGANs in order to improve the quality of the synthetic

images.

Our Approach This paper uses an ensemble of Generative Multi Adversarial

Netwoks (GMAN) to generate synthetic hESC images for six

different classes. By using multiple discriminators, the generator

is able to learn a better feature representation of the original

hESC images and hence generate higher quality synthetic images.

https://doi.org/10.1371/journal.pone.0212849.t003

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 8 / 28

https://doi.org/10.1371/journal.pone.0212849.t003
https://doi.org/10.1371/journal.pone.0212849


because if the generator is unlikely to generate any sample considered “realistic” by the dis-

criminator’s standards, the generator will receive negative feedback. This is problematic

because the information contained in the gradient derived from negative feedback only dic-

tates where to drive down Pg(x), not specifically where to increase Pg(x). Furthermore, driving

down Pg(x) necessarily increases Pg(x) in other regions of X (to maintain
R
X Pg(x) = 1) which

may or may not contain samples from the true dataset (whack-a-mole dilemma). In contrast,

a generator is more likely to see positive feedback against an ensemble of discriminators

(because the generator needs to fool only 1 of the N discriminators), which may better guide a

generator towards amassing Pg(x) in approximately correct regions of X.

2.4 Contributions of this paper

To summarize, in comparison with the state-of-the-art and DeephESC, the contributions of

DeephESC 2.0 are:

• An improved hierarchical classifier to classify hESC phase contrast image into six different

classes with an accuracy of 93.23%

• Generating high quality synthetic hESC images using an ensemble of GMANs

• Exhaustive validation of the quality of the generated synthetic images using the Structural

SIMilarity (SSIM) index, Peak Signal to Noise Ratio (PSNR) and statistical p- value tests.

• Training DeephESC 2.0 exclusively on a large amount of synthetic hESC images helps

improve the classification accuracy of the classifier on the original hESC images from

93.23% to 94.46%.

• Comparison and visualization of the features learned using DeephESC [5] and DeephESC

2.0.

3 Materials and methods

3.1 Data

The hESC were cultured in vitro using methods described in detail previously [37]. The videos

were acquired using the Nikon BioStation IM with a 20x objective resulting in a resolution of

600x800. A dataset of 784 cropped images was obtained from nine hESC videos. The dataset

had the following numbers of images for each class: 1) 122 Cell Cluster images; 2) 113 Debris

Fig 4. Archirecture of e-DCGAN for generating synthetic images of Cell clusters. A noise vector Z is given as input to the generators of the four

intrinsic cells, the corresponding synthetic images are passed through their corresponding discriminators to extract a feature vector. The resulting

feature vector is given as input to a DCGAN trained to generate synthetic images of Cell clusters.

https://doi.org/10.1371/journal.pone.0212849.g004

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 9 / 28

https://doi.org/10.1371/journal.pone.0212849.g004
https://doi.org/10.1371/journal.pone.0212849


images; 3) 135 Unattached cell images; 4) 132 Attached cell images; 5) 104 Dynamically Bleb-
bing cell images; and 6) 178 Apoptotically Blebbing cell images. The ground-truth for the

dataset was annotated manually by expert stem cell biologists. The annotation was done by

observing the morphology of the cells in the image as well as how they change in the video.

3.2 Methods for DeephESC 2.0

DeephESC 2.0 is designed in a modular manner with three parts: hESC detection, hESC classi-

fication and hESC generation. Fig 5 shows the workflow of DeephESC 2.0. The source code

was written and developed in PyTorch. The source code and supplied test data are available

online at http://vislab.ucr.edu/SOFTWARE/software.php. To successfully run the source

code requires the following softwares/libraries: python 3.5.2, pytorch 0.3.1, torchvision, PIL,

numpy.

3.2.1 Detection of hESC from videos using a mixture of Gaussians. We detected and

cropped stem cells from video frames of size 600 x 800 using a method developed by Guan

et al. [24]. In the following we provide a brief description of the method. The hESC are grown

in culture dishes coated with a layer of substrate (Matrigel). The substrate becomes the back-

ground after the hESC are placed on its surface. Therefore, we model a hESC image with two

regions of interest: foreground and background [24]. Fig 6 shows examples of the cell (fore-

ground) and the substrate (background) and their intensity distributions. Consequently we

model the intensity distribution of foreground (cell region with a mean μf and variance σf2)

and background (substrate region with a mean μb and variance σb2) as the mixture of two

Gaussians.

With this model, we then want to maximize the absolute difference of mean-to-variance

ratios of the foregroundMVRf and the mean-to-variance ratio of the backgroundMVRb; The

MVRs of the foreground and background data sets are calculated by the following equations:

MVRf ¼
mf

sf
ð1Þ

MVRb ¼
mb
sb

ð2Þ

whereMVRf andMVRb are the MVRs for the foreground and background, respectively. Thus,

the optimization metricM is formulated as:

M ¼ jMVRf � MVRbj ð3Þ

Fig 5. Workflow of DeephESC 2.0 is split into three modules namely: Detection of hESC from video, Generation of synthetic hESC images and

hierarchical classification of the hESC images into six different classes.

https://doi.org/10.1371/journal.pone.0212849.g005

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 10 / 28

http://vislab.ucr.edu/SOFTWARE/software.php
https://doi.org/10.1371/journal.pone.0212849.g005
https://doi.org/10.1371/journal.pone.0212849


substituting Eqs (1) and (2) into Eq (3), we get the following:

M ¼
mf

s2
f
�
mb
s2
b

�
�
�
�
�

�
�
�
�
�

ð4Þ

Eq (4) shows the metric that is used to determine how much the cell region data are differ-

ent from the substrate region data. Since the algorithm is spatially evolving the foreground

region from the initial high intensity variation region by a mean filter at each iteration, the

foreground mean and variance are approaching to the background mean and variance. The

limit ofM is 0 as μf/s2
f approaches to μb/s2

b. Therefore, our problem becomes findingMopt

which is the optimal value for metricM, and the corresponding equation is described below:

Mopt ¼ max
mf ;sf

2 ;mb;sb
2
Mðmf ; sf

2; mb; sb
2Þ ð5Þ

Mopt finds the parameters that maximize the difference between the foreground and back-

ground pixels. Fig 7 shows the detected components of a single frame. These detected compo-

nents are then cropped and passed to the hierarchical classifier to be classified into one of the

six aforementioned classes.

3.2.2 Hierarchical classification of hESC. In this section we explain in detail the architec-

ture, training and parameters of the hierarchical classifier which includes the CNN and Triplet

CNNs. Fig 8 shows the work flow of the hierarchical classifier.

3.2.2.1 Convolution Neural Networks: After detecting and cropping all the cell regions in

a video, we resize all the hESC images to size 64x64. These images are then used for training

the CNN. Table 4. shows the architecture details of our CNN. To train the CNN, we chose a

mini batch size of 64. Since the size of our dataset is very limited, in order to prevent the CNN

from over-fitting, we perform random affine transformations to the images and employ early

stopping. Table 5 shows the data augmentation performed for training the CNN. We perform

early stopping by saving the model after every epoch, only if the validation accuracy increases

compared to the previous epoch. If the validation accuracy has not increased after 3 consecu-

tive epochs we stop the training.

Fig 6. Images of the cell body and the substrate and their corresponding intensity distribution.

https://doi.org/10.1371/journal.pone.0212849.g006

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 11 / 28

https://doi.org/10.1371/journal.pone.0212849.g006
https://doi.org/10.1371/journal.pone.0212849


We randomly chose 10 images from each class (60 images in total) as the validation dataset.

The remaining of the dataset excluding the validation images, was divided into 5 folds for

cross-validation. We did random hyper-parameter search for the CNN to obtain the best

learning rate, momentum and weight decay. We chose random values for the learning rate,

Fig 7. Detected cell bodies of a single frame using the approach proposed by [24]. The detected cell bodies are then

cropped and passed through the hierarchical classifier to be classified into one of the aforementioned six classes.

https://doi.org/10.1371/journal.pone.0212849.g007

Fig 8. Workflow of the hierarchical classifier. The input is either a real or synthetic image belonging to one of the six classes. The outputs of the CNN

and Triplet CNNs are fused at the decision level using the product rule.

https://doi.org/10.1371/journal.pone.0212849.g008

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 12 / 28

https://doi.org/10.1371/journal.pone.0212849.g007
https://doi.org/10.1371/journal.pone.0212849.g008
https://doi.org/10.1371/journal.pone.0212849


momentum and weight decay within a given range and step size and trained the network for

three epochs. The combination of hyper-parameters that gave us the highest classification

accuracy after three epochs are chosen as the best hyper-parameters for the network. The ran-

dom hyper-parameter search was done by evaluating the CNN only on the validation dataset.

Based on this we chose the best hyper-parameters as learning rate = 1.2x10-2, momentum = 0.9

and weight decay = 1x10-3 The network was optimized using the stochastic gradient descent

algorithm with cross entropy loss.

We performed 5-fold cross validation and the results are shown in detail in the experimen-

tal section. After evaluating the CNN we observed that the CNN was able to classify the classes

Debris and Unattached Cells with high accuracy, but the classes Cell clusters/Apoptically Bleb-
bing cells and Dynamically Blebbing Cells/Attached Cells were misclassified the most. The rea-

son for this is that, the classes Cell clusters/Apoptically Blebbing Cells and Dynamically Blebbing
Cells/Attached Cells have similar intensity and texture. The only difference between these clas-

ses is their morphology.

3.2.2.2 Triplet Convolution Neural Network: To solve this misclassification, we train a

Triplet CNN to perform fine-grained classification between Cell clusters and Apoptically Bleb-
bing Cells and similarly, for Dynamically Blebbing Cells and Attached Cells. Fig 9 shows the

visual representation of the architecture for Triplet CNN A and Triplet CNN B from Fig 8.

The Triplet CNN architecture in Fig 9 is different from DeephESC by the fact that, Dee-

phESC does not have any concatenation of feature maps between intermediate layers. By

doing so, the initial convolution layers learn more coarse features while the final convolution

layers are able to learn more fine-grained features. Concatenating the two branches together

helps extract robust features and improves the classification accuracy compared to DeephESC

[5]. The experimental results section shows the visual comparison of features extracted

between DeephESC and DeephESC 2.0 and it can be observed that DeephESC fails to extract

robust features for a given image compared to DeephESC 2.0.

The Triplet CNN takes as input a query image and one anchor image from each class. The

output of the Triplet CNN is the two pairwise distances between the extracted features for

the query image and the two anchor images as shown in Fig 8. For a correct classification, the

pairwise distance between the query image and the anchor image belonging to the same class

must be smaller (close to 0) compared to the distance between the query image and the anchor

image belonging to the opposite class.

Table 4. Architecture of the Convolution Neural Network in the hierarchical classifier.

Input Dimension Output Dimension Number of feature maps Layer (Kernel dimension, stride, padding)

64x64 32x32 64 Convolution (7, 2, 3)

32x32 16x16 64 Maxpool (3, 2, 1)

16x16 8x8 128 Convolution (5, 2, 2)

8x8 4x4 128 Maxpool (3, 2, 1)

2,048x1 6 classes - Fully connected layer

https://doi.org/10.1371/journal.pone.0212849.t004

Table 5. Data augmentation performed to train the CNN.

Affine Transformation Parameters

Image rotation -180˚ to 180˚

Image shearing 0˚ to 30˚

Image zooming 70% to 140% of image size

https://doi.org/10.1371/journal.pone.0212849.t005

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 13 / 28

https://doi.org/10.1371/journal.pone.0212849.t004
https://doi.org/10.1371/journal.pone.0212849.t005
https://doi.org/10.1371/journal.pone.0212849


We used the same 10 validation images from each class used for validating the CNN, to vali-

date the Triplet CNN. We randomly selected 5,000 triplet pairs for validation and 100,000 trip-

let pairs to train both Triplet CNN A and Triplet CNN B using 5-fold cross validation similar

to how we trained the CNN. We chose a mini-batch size of 256 triplets and performed random

hyper-parameter search and random affine transformation to the images as shown in Table 5

that was similarly done while training the CNN. Table 6. shows a summary for the best hyper-

parameters for the CNN, Triplet CNN A and Triplet CNN B.

The Triplet CNNs were optimized using the Stochastic Gradient Descent algorithm with

the Ranked Marginal loss function given by Eq (6). In Eq (6), X1 and X2 are the two anchor

images and G(X) is the pairwise distance between the feature extracted by Triplet CNN for

the query image and the anchor image. In Eq (6) if Y = 1 it indicates that the anchor image x1
belongs to the same class as the query image, whereas, Y = -1 indicates that the anchor image

x2 belongs to the same class as the query image. For all of our experiments we set the value of

the margin as 1.

Loss ¼ Maxð0; � Y � ðGðX1Þ � GðX2ÞÞ þmarginÞ ð6Þ

Upon evaluating the Triplet CNNs with 5-folds cross validation, Triplet CNN A achieved

an average classification accuracy of 95.24% and Triplet CNN B achieved an average classifica-

tion accuracy of 95.83%.

3.2.2.3 Decision level fusion of the CNN and Triplet CNNs: After training the CNN and

the individual Triplet CNNs we combine them in a hierarchical system as shown in Fig 8. The

input hESC image is first passed into the CNN, the CNN is trained to classify the input image

into one of the aforementioned six classes. If the predicted class is Debris or Unattached cells,
we take the prediction of the CNN as the final prediction.

If the predicted class is Attached cell or Dynamically Blebbing cells, the input image is passed

to Triplet CNN A, and we obtain the prediction of Triplet CNN A. Similarly, if the prediction

Fig 9. Architecture of Triplet CNN A and Triplet CNN B in Fig 8. The parameters within the parenthesis indicate the kernel dimension, stride and

padding. By skipping intermediate layers and concatenating the feature maps of branched layers, DeephESC 2.0 is able to extract much more robust

features, further improving the classification.

https://doi.org/10.1371/journal.pone.0212849.g009

Table 6. Best hyper-parameters for training the networks in DeephESC 2.0.

Network Learning rate Momentum Weight decay

CNN 1.2x10-2 0.9 1x10-3

Triplet CNN A 1.2x10-2 0.8 1x10-3

Triplet CNN B 2x10-2 0.8 1x10-3

https://doi.org/10.1371/journal.pone.0212849.t006

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 14 / 28

https://doi.org/10.1371/journal.pone.0212849.g009
https://doi.org/10.1371/journal.pone.0212849.t006
https://doi.org/10.1371/journal.pone.0212849


of the CNN is Cell cluster or Apoptically Blebbing cells, the input image is passed to the Triplet

CNN B and we obtain the prediction of Triplet CNN B.

The decision level fusion was done by taking the complementary pairwise distance (i.e. 1—

pairwise distance) measure outputs from the Triplet CNN and multiplying the corresponding

probability score for that class from the CNN. For example in Fig 8, in Triplet CNN B, the

complementary pairwise distance measure between the input image and anchor image of Cell
clusters is multiplied with the probability score for Cell clusters from the CNN. Similarly, the

complementary pairwise distance measure between the input image and anchor image of

Apoptically Blebbing cells is multiplied with the probability score for Apoptically Blebbing cells
from the CNN, and so on for Triplet CNN A. The results obtained with and without the fusion

are explained in detail in the experimental section.

3.2.3 Generating synthetic hESC images using Generative Multi Adversarial Net-

works. The purpose of this section is to generate synthetic data and add more variability

to the training dataset to help improve the classification performance of DeephESC 2.0. To

achieve this we trained an ensemble of Generative Multi Adversarial Networks (GMAN) [36].

GMAN consists of a generator network G and N discriminator networks (D1, D2, . . ., DN).

The generator takes a random noise vector z as input and returns an image Xgen = G(z). On the

other hand, the discriminator takes a real or a generated image, and outputs a probability dis-

tribution P(S|X) = D(X) over the two image sources S. The discriminator is trained to maxi-

mize the log-likelihood of assigning the correct source while G tries to minimize it:

min
G

max
D
VðD;GÞ ¼ Ex�pdataðxÞ½ logDðxÞ�þ

þEx�pzðzÞ½ log ð1 � DðGðzÞÞÞ�
ð7Þ

In GMAN since we have multiple discriminators, we combine the outputs of the N discrim-

inators using the weighted geometric mean as shown in Eq (8).

GMðV; lÞ ¼ � expð
XN

i

wilogð� ViÞÞ ð8Þ

where, wi ¼ elVi=
X

j
elVj , Vi is the output of the ith discriminator and λ is a constant such that

λ� 0. The objective is that the generator network and the ensemble of discriminators con-

verge to the Nash equilibrium so that D1, D2, . . ., DN are maximally confused and G generates

samples that resemble the training data. In our approach we trained six individual GMANs to

generate images belonging to the corresponding six classes. Fig 10 shows the architecture of a

GMAN. In DeephESC 2.0, we chose to use three different discriminators in our GMAN archi-

tecture. Table 7. shows the architecture of the generator and the three discriminators.

We chose the learning rate for the generator to be 1x10-4 and learning rate of the three

discriminators to be 1x10-5 and mini batch of size 32. All the networks were optimized using

the Adam algorithm [38] with loss function as a combination of Binary Cross Entropy and

Embedding loss as shown in Eq (9).

Loss ¼
� 1

n

Xn

i¼1
yi � logðpiÞ þ ð1 � yiÞ � logð1 � piÞ

þ a �
1

n
Pn

i¼1
jjXi � Xjj

2

ð9Þ

In Eq (9), the first term is the Binary Cross Entropy loss. yi is the ground-truth label (real

or synthetic image), pi is the probability score being a real image. The second term is the

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 15 / 28

https://doi.org/10.1371/journal.pone.0212849


Embedding loss, Xi is an image from the mini batch (either synthetic or real image) and X is a

real image chosen randomly from the training dataset belonging to the same class as Xi. The

Binary Cross Entropy loss ensures that the GMAN is able to extract accurate features to gener-

ate synthetic images resembling the images from the training dataset and the Embedding loss

ensures that the generated images have a similar morphology as the images from the training

dataset. α is an empirical value and was chosen to be 5x10-2.

4 Experimental results

4.1 Detection of hESC from video

We evaluated the detection of hESC objects using the algorithm proposed by Guan et al. [24].

The metrics used for evaluating the detection are Jaccard similarity, Dice coefficient,

Fig 10. Architecture of GMAN. The generator is trained to take as input a random noise vector and generate an image that resembles the training data. The

task of the N discriminators are to predict if the input image to the discriminator is either a real or a synthetic image. In our architecture of GMAN the softmax

outputs of the N discriminators are combined together by computing their geometric mean.

https://doi.org/10.1371/journal.pone.0212849.g010

Table 7. Architecture of the generator and the three discriminators used in our Generative Multi Adversarial Network.

Network Input dimension Output dimension Number of feature maps Layer (Kernel dimension, stride, padding)

Generator 100x1 8,192x1 - Fully connected layer

4x4 8x8 256 ConvolutionT�(6, 2, 2)

8x8 16x16 128 ConvolutionT� (6, 2, 2)

16x16 32x32 64 ConvolutionT� (6, 2, 2)

32x32 64x64 1 ConvolutionT� (6, 2, 2)

Discriminator 1 64x64 32x32 32 Convolution (5, 2, 2)

32x32 16x16 64 Convolution (5, 2, 2)

16x16 8x8 128 Convolution (5, 2, 2)

8x8 4x4 256 Convolution (5, 2, 2)

4,096x1 1 - Fully connected layer

Discriminator 2 64x64 32x32 16 Convolution (5, 2, 2)

32x32 16x16 32 Convolution (5, 2, 2)

16x16 8x8 64 Convolution (5, 2, 2)

8x8 4x4 128 Convolution(5, 2, 2)

2,048x1 1 - Fully connected layer

Discriminator 3 64x64 32x32 32 Convolution (5, 2, 2)

32x32 16x16 64 Convolution (5, 2, 2)

16x16 8x8 128 Convolution (5, 2, 2)

8x8 4x4 256 Convolution (5, 2, 2)

4x4 2x2 512 Convolution (5, 2, 2)

2,048x1 1 - Fully connected layer

� Note: ConvolutionT stands for the Convolution Transpose operation.

https://doi.org/10.1371/journal.pone.0212849.t007

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 16 / 28

https://doi.org/10.1371/journal.pone.0212849.g010
https://doi.org/10.1371/journal.pone.0212849.t007
https://doi.org/10.1371/journal.pone.0212849


Specificity and Sensitivity. The Sensitivity (SEN), measures the proportion of actual positives

which are correctly detected:

SEN ¼
TP

ðTP þ FNÞ
ð10Þ

The Specificity (SPC), is the true negative rate which is given by:

SPC ¼
TN

ðFP þ TNÞ
ð11Þ

The Jaccard similarity (J), is a measure of similarity between the detected results and the

ground-truth:

J ¼
TP

ðTP þ FP þ FNÞ
ð12Þ

The Dice coefficient (DIC), measures the agreement between the detected results and the

ground-truth:

DIC ¼
2TP

ð2TP þ FPþ FNÞ
ð13Þ

The approach achieved a Jaccard similarity (J) of 0.754, Dice coefficient (DIC) of 0.860,

Sensitivity (SEN) of 0.906 and Specificity (SPC) of 0.924.

4.2 Measures for classification performance

We trained and evaluated the classifier using the K- fold cross validation. K- fold cross valida-

tion divides the dataset into K subsets. Each time, one of the K subsets is used as the testing set

and the remaining K—1 subsets are put together to form a training set. Then the average error

across all K trials is computed. The advantage of this method is that it matters less how the

data gets divided. Every data point gets to be in the testing set exactly once, and gets to be in a

training set K—1 times. The variance of the resulting estimate is reduced as K is increased. In

the following we evaluated the classification accuracy using the 5- fold cross validation (K = 5).

4.2.1 Classification results. Table 8 shows the average classification accuracy for the

5-fold cross validation using CNN, CNN-Triplet and Fused CNN-Triplet approach of Dee-

phESC 2.0 and Tables 9, 10 and 11 show the confusion matrices for the CNN, CNN-Triplet

and fused CNN-Triplet, respectively. All the networks in Table 8 were trained and evaluated

on the real hESC images. We compare the results obtained using DeephESC 2.0 with the

Table 8. Comparison of the average classification accuracy of the networks used in DeephESC and DeephESC 2.0.

Approach Network Average Classification Accuracy

ResNet18 [39] CNN 70.44%

VGG19 [40] CNN 72.57%

AlexNet [14] CNN 71.91%

DeephESC [5] CNN 86.14%

CNN-Triplet 89.37%

Fused CNN-Triplet 91.71%

DeephESC 2.0 CNN 86.33% ± 0.29

CNN-Triplet 90.88% ± 0.26

Fused CNN-Triplet 93.23% ± 0.24

https://doi.org/10.1371/journal.pone.0212849.t008

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 17 / 28

https://doi.org/10.1371/journal.pone.0212849.t008
https://doi.org/10.1371/journal.pone.0212849


results obtained using DeephESC. The dataset has a total of 784 real hESC images, 10 ran-

domly chosen images from each class (60 in total) were used as the validation dataset. In order

to maintain fairness in evaluation, these 60 validation images were not used for evaluating the

performance of the networks. The remaining 724 hESC images are split into 5 folds for cross

validation. Note that the results shown in Tables 8–11 are for the 724 images used in the 5 fold

cross validation.

Comparing Tables 9 and 10 it can be observed that, the misclassification between the classes

Cell clusters (CC) and Apoptically Blebbing cells (APO) has been reduced from 14.64% to

6.79% using the CNN-Triplet compared to just the CNN. Similarly, the misclassification of

Attached cells (AT) and Dynamically Blebbing cells (DYN) has been reduced from 12.04%

to 6.94%. Moreover, upon fusing the outputs of the CNN and the Triplet CNN we further

reduced the misclassification of Cell clusters (CC) and Apoptically Blebbing cells (APO) to

3.21% and the the misclassification of Attached cells (AT) and Dynamically Blebbing cells
(DYN) to 3.70%.

Table 9. Confusion matrix for the classification of the 724 real hESC images using the CNN architecture of Dee-

phESC 2.0.

Class CC DEB UN AT DYN APO

CC 97 3 0 0 1 11

DEB 0 100 1 1 1 0

UN 2 0 121 1 0 1

AT 1 2 0 100 16 3

DYN 2 0 1 10 81 0

APO 30 4 2 1 5 126

https://doi.org/10.1371/journal.pone.0212849.t009

Table 10. Confusion matrix for the classification of the 724 real hESC images using the CNN-Triplet architecture

of DeephESC 2.0.

Class CC DEB UN AT DYN APO

CC 102 3 0 0 1 6

DEB 0 100 1 1 1 0

UN 2 0 121 1 0 1

AT 1 2 0 105 11 3

DYN 2 0 1 4 87 0

APO 13 4 2 1 5 143

https://doi.org/10.1371/journal.pone.0212849.t010

Table 11. Confusion matrix for the classification of the 724 real hESC images using the Fused CNN-Triplet archi-

tecture of DeephESC 2.0.

Class CC DEB UN AT DYN APO

CC 105 3 0 0 1 3

DEB 0 100 1 1 1 0

UN 2 0 121 1 0 1

AT 1 2 0 110 6 3

DYN 2 0 1 2 89 0

APO 6 4 2 1 5 150

The Abbreviations used in Tables 9, 10 and 11 are as follows: CC: Cell clusters, DEB: Debris, UN: Unattached cells,
AT: Attached cells, DYN: Dynamically Blebbing cells, APO: Apoptically Blebbing cells.

https://doi.org/10.1371/journal.pone.0212849.t011

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 18 / 28

https://doi.org/10.1371/journal.pone.0212849.t009
https://doi.org/10.1371/journal.pone.0212849.t010
https://doi.org/10.1371/journal.pone.0212849.t011
https://doi.org/10.1371/journal.pone.0212849


4.2.2 Comparison of features learned by DeephESC 2.0 and DeephESC. Fig 11(a) and

11(b) shows the features extracted by the CNN used in DeephESC 2.0. for an Apoptically Bleb-
bing cell and Unattached cell respectively. In Fig 11, the first convolutional layer learns filters

some of which look like edge detectors, filters for image blurring and image sharpening. These

features become more sparse and localized as the data flows further through the layers of the

CNN.

In order to compare the improvement in classification between DeephESC and DeephESC

2.0, we visualized the features learned by DeephESC 2.0. Fig 12(a) shows an image of a Cell
cluster (CC) that was correctly classified by DeephESC 2.0, but was incorrectly classified as

Apoptically Blebbing cell (APO) by DeephESC.

Fig 11. Visualization of features extracted by the CNN in DeephESC 2.0 for (a) Apoptically Blebbing cell and (b)Unattached cell.

https://doi.org/10.1371/journal.pone.0212849.g011

Fig 12. Visualization of features learned by DeephESC 2.0. (a) Image of a Cell cluster. (b) Image after masking the surrounding small cells using a

window. Red bounding boxes are drawn across the masked area only for visualization purposes. (c) Probability heat map for the class Apoptically
Blebbing cell.

https://doi.org/10.1371/journal.pone.0212849.g012

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 19 / 28

https://doi.org/10.1371/journal.pone.0212849.g011
https://doi.org/10.1371/journal.pone.0212849.g012
https://doi.org/10.1371/journal.pone.0212849


We masked the area containing the surrounding small cells in Fig 12(a) with a sliding win-

dow of size 5 x 5 with gray scale pixel value of 85 (pixel range is from 0 to 255) that matches

the surrounding background as shown in Fig 12(b). For visualization purposes we draw a red

bounding box across the masked area in Fig 12(b). The image in Fig 12(b) is then passed

through the hierarchical classifier for each position of the sliding window and the output prob-

ability score of the class Apoptically Blebbing cell (APO) for that center position of the sliding

window is plotted in Fig 12(c).

The inference that we get from Fig 12(c) is that, the bright pixel locations indicate the loca-

tions that the classifier predicts as important features for the image being a Cell cluster. The

reason for this is that, the 5 x 5 mask window centered around that area is masking the small

cells as seen in Fig 12(b), and since the network is unable to see these surrounding small cells,

it predicts the image to be an Apoptically Blebbing cell. Hence, this means that the small cells in

the image are considered as important features for the network to classify the image as a Cell
Cluster.

4.3 Synthetic hESC images from GMAN

Fig 13(a) and 13(b) shows examples for visualizing the features learned by the generators in

DeephESC 2.0 for generating an Unattached cell and Attached cell, respectively. In Fig 13, the

input to the respective generators is a 100x1 dimensional randomly sampled Gaussian noise

vector. We can observe that the FC layer and the first convolutional layer learn features that

are very sparse and localized. As these features progress through the layers of the generator,

the features become more smooth and gradually start to resemble a hESC both in texture and

shape.

4.3.1 Evaluation of the quality of the generated synthetic images. In order to evaluate

the quality of the synthetic images, we first generated 100 synthetic images for each of the six

classes. Fig 14 shows the 600 synthetic images that were generated for validating the quality.

The average Structural Similarity (SSIM) score and average Peak-Signal-to-Noise Ratio (PSNR)

score for a given synthetic image are computed by computing average the SSIM and PSNR

between that given synthetic image and all the real images in the dataset for that given class.

Fig 13. Visualization of features learned by the generators in DeephESC 2.0. (a) Unattached cell and (b) Attached cell.

https://doi.org/10.1371/journal.pone.0212849.g013

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 20 / 28

https://doi.org/10.1371/journal.pone.0212849.g013
https://doi.org/10.1371/journal.pone.0212849


This is repeated for all the 100 synthetic images in each class and the average SSIM score and

PSNR score is obtained. The structural similarity index between two images is calculated by:

SSIMðX;YÞ ¼
ð2mxmy þ C1Þð2sxy þ C2Þ

ðm2
x þ m

2
y þ C1Þðs

2
x þ s

2
y þ C2Þ

ð14Þ

In Eq (14), μx and μy are the average pixel values of image X and Y respectively, s2
x and s2

y

are the variance of the pixel values of image X and Y, respectively, σxy is the covariance between

image X and Y. C1 and C2 are constants given by C1 = (K1 L)2 and C2 = (K2 L)2, where, L = 255

is the maximum range of the pixel values and K1 = 0.01 and K2 = 0.03 are fixed constants. The

PSNR between two images is calculated by:

PSNRðX;YÞ ¼ 10 log10

L2

MSEðX;YÞ

� �

ð15Þ

In Eq (15), L = 255 is the maximum range of the pixel values,MSE(X, Y) is computed by

MSEðX;YÞ ¼
1

mn
Pm

i¼1

Pn
j¼1
½Xði; jÞ � Yði; jÞ�2,m and n are the spatial dimensions of the

Fig 14. The 600 synthetic images used for validating the quality in Table 12. (a) Cell clusters, (b) Debris, (c)Unattached cells, (d) Attached cells, (e)

Dynamically Blebbing cells, (f) Apoptically Blebbing cells.

https://doi.org/10.1371/journal.pone.0212849.g014

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 21 / 28

https://doi.org/10.1371/journal.pone.0212849.g014
https://doi.org/10.1371/journal.pone.0212849


synthetic image X and real image Y. Table 12 shows the average SSIM score and PSNR score

obtained using the 100 synthetic images for each class shown in Fig 14.

From Table 12, it can be observed that our GMAN architecture achieved the highest aver-

age SSIM and PSNR score for all the six classes. Unattached cells had the highest SSIM and

PSNR score of 0.8347 and 26.27 dB, respectively as this class of hESC was the easiest to gener-

ate. The reason for this is that Unattached cells visually have the least complex structure com-

pared to the other five classes. This is further supported by the observation that Unattached
cells had a high correct classification accuracy of 96.80% because they are very easy to classify.

It should also be noted that, the SSIM and PSNR for e-DCGAN and DCGAN are the same

except for the class Cell clusters because both of these approaches use the same architecture of

generators and discriminators for all the classes except Cell clusters.

4.4 Augmenting the dataset

Since SSIM and PSNR metrics tend to ignore the higher order characteristics of the image, we

evaluated the quality of the synthetic images by training the classifier using different propor-

tions of real and synthetic images. The assumption of this approach is that, if the synthetic

images have similar higher order characteristics compared to the real images, then the features

learned by the CNNs during the training on the synthetic images, should also be able to classify

the real images.

To verify this assumption, we trained and evaluated our hierarchical classifier in two differ-

ent data settings:

• Training on 100% real images.

• Training on 100% synthetic images.

Training on 100% real images is the same experiment as reported in Table 8. Table 13

shows the accuracy for each fold in the 5-fold cross validation using the 724 real hESC images.

In the second data setting, we trained our fused CNN-Triplet classifier exclusively on the syn-

thetic images and evaluate the performance on the real hESC images. Table 14 shows the accu-

racy after training the classifier using different amounts of synthetic images.

Observing the results in Table 14, it can be seen that training the classifier exclusively with

the synthetic images resulted in an increase in the classification accuracy. This verifies our

Table 12. Comparison of our GMAN architecture used in DeephESC 2.0 with e-DCGAN [5], DCGAN [35] and c-DCGAN [41] using the SSIM and PSNR metrics.

SSIM has no units and PSNR is measured in decibels (dB).

Approach Metric Cell Cluster Debris Unattached cell Attached cell Dynamically Blebbing cell Apoptically Blebbing cell

GMAN Avg. SSIM 0.6312 0.6217 0.8347 0.6072 0.5921 0.5827

Avg. PSNR 19.71 18.23 26.27 17.56 16.25 16.82

e-DCGAN [5] Avg. SSIM 0.6047 0.5931 0.7731 0.5730 0.5463 0.5498

Avg. PSNR 18.23 15.77 24.29 16.28 14.33 14.24

DCGAN [35] Avg. SSIM 0.5732 0.5931 0.7731 0.5730 0.5463 0.5498

Avg. PSNR 18.23 15.77 24.29 16.28 14.33 14.24

c-DCGAN [41] Avg. SSIM 0.5691 0.5722 0.7231 0.5897 0.5625 0.5411

Avg. PSNR 18.27 15.28 20.96 15.29 15.33 15.09

The scale for SSIM is from 0—1 and has no unit, 0 indicates the images have no resemblance and 1 indicates they are the same images. The ideal range for SSIM score is

from 0.5—0.85. The scale for PSNR is from 0—1 and is measured in dB, 0 indicates the images have no similarity and1 indicates they are the same images. The ideal

range for PSNR score is from 15dB—30dB.

https://doi.org/10.1371/journal.pone.0212849.t012

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 22 / 28

https://doi.org/10.1371/journal.pone.0212849.t012
https://doi.org/10.1371/journal.pone.0212849


assumption that the generated synthetic images do have similar higher order characteristics as

the real images and hence augmenting our dataset helps the classifier to generalize better

resulting in an increase in classification accuracy.

We verified the significance of the accuracy in Table 14 using the statistical p-value test.

The p-value is calculated using the one-way Analysis of Variance (one-way ANOVA). One-

way ANOVA is a technique that can be used to compare means of two or more experiments

using the F distribution. We assume the training using real images in Table 13 and the training

using synthetic images in Table 14 to be two different experiments. Based on this setting, the

one-way ANOVA yields a F score ratio of 33.18, which corresponds to a p-value of 4.24 × 10−4.

We set the significance threshold of the p-value as 0.01. Since, the p-value (4.24 × 10−4) is

lower than the threshold (0.01), our results are proved to be significant.

4.5 Discussion of results

In this section we discuss about the improvement in classification accuracy, quality of the gen-

erated synthetic images and the reasons for misclassification.

4.5.1 Improvement in classification accuracy. This subsection explains the reasons for

the improvement in classification accuracy compared to our prior work in DeephESC [5]. We

show that by concatenating feature maps from the early and final stages of the CNN, the CNN

learns a better feature representation and helps reduce the misclassification between visually

similar classes.

It can be observed from Table 11 that Debris and Unattached cells had the highest classifica-

tion accuracy of 97.08% and 96.80%, respectively. The reason for this is that these two classes

are visually very distinctive compared to Cell clusters/Apoptically Blebbing cells and Attached
cells/Dynamically Blebbing cells.

On the contrary, in comparison with our prior work in DeephESC [5]Cell clusters/ Apopti-
cally Blebbing cells had the highest misclassification rate of 7.89%. The reason for this is that

the CNN was not able to detect the small neighboring cells which distinguish a Cell cluster

Table 13. Accuracy and number of images of each fold for the 5-fold cross validation using the 724 real hESC images. The number in the brackets indicates the num-

ber of images per class for Cell clusters, Debris, Unattached cells, Attached cells, Dynamically blebbing cells, and Apoptically blebbing cells respectively.

Cross validation fold number Number of images for training Number of images for testing Classification accuracy

Fold 1 580 (88, 80, 100, 100, 76, 136) 144 (24, 23, 25, 22, 18, 32) 93.18%

Fold 2 579 (90, 83, 100, 97, 75, 134) 145 (22, 20, 25, 25, 19, 34) 93.02%

Fold 3 579 (90, 83, 100, 97, 75, 134) 145 (22, 20, 25, 25, 19, 34) 93.65%

Fold 4 579 (90, 83, 100, 97, 75, 134) 145 (22. 20, 25, 25, 19, 34) 93.21%

Fold 5 579 (90, 83, 100, 97, 75, 134) 145 (22, 20, 25, 25, 19, 34) 93.10%

Average - - 93.23 ± 0.24%

https://doi.org/10.1371/journal.pone.0212849.t013

Table 14. Comparison of using different data compositions of synthetic images for training the classifier and then

testing it on the 724 real images.

Number of synthetic hESC images per class used for

training

Classification Accuracy on the 724 real hESC

images

5,000 93.84%

10,000 94.26%

20,000 94.31%

30,000 94.43%

40,000 94.46%

https://doi.org/10.1371/journal.pone.0212849.t014

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 23 / 28

https://doi.org/10.1371/journal.pone.0212849.t013
https://doi.org/10.1371/journal.pone.0212849.t014
https://doi.org/10.1371/journal.pone.0212849


from an Apoptically Blebbing cell as depicted in Fig 3. In DeephESC 2.0 we solved this by

concatenating features learned from the initial and final convolution layers which helps the

CNN learn a more robust feature representation as shown in Fig 12 which in turn reduces the

misclassification rate from 7.89% to 3.21%. Similarly Attached cells/Dynamically Blebbing cells
have very similar intensities and texture with the only difference being in their morphology.

Attached cells have a more uniform and homogeneous morphology compared to Dynamically
Blebbing cells. By concatenating the features from initial and final convolution layers we are

able to reduce the misclassification rate from 5.26% to 3.70%.

4.5.2 Quality of the generated synthetic images. This subsection explains why Unat-

tached cells have higher SSIM and PSNR scores compared to the other five classes. We also

explain the disadvantage of using SSIM and PSNR to validate the quality of the images and

how we overcome this problem.

It is observed from Table 12 that the SSIM and PSNR for the five classes Cell clusters,Debris,
Attached cells, Dynamically and Apoptically Blebbing cells were relatively lower compared to

the SSIM and PSNR for Unattached cells. The reason for this is that the structure of these five

classes are much more complex and diverse compared to Unattched cells as shown in Fig 14.

SSIM and PSNR metrics compare the similarity between two images at a pixel level ignoring

the higher order characteristics (such as the overall structure and texture). Although our

approach is able to generate synthetic images which visually look similar to the original images,

due to the diverse variations in shape even a slight change in corresponding pixel values will

result in a significantly low SSIM and PSNR value.

Since SSIM and PSNR tends to ignore higher order characteristics of the image, we evalu-

ated the quality of higher order characteristics of the synthetic images by training our classifier

exclusively on the synthetic image and tested its classification accuracy on the real hESC

images as shown in Table 14. The assumption here is that, if the real hESC images and the gen-

erated synthetic images have similar higher order characteristics, then the features learned by

the CNN trained on the synthetic images should be able to also classify the real hESC images.

From Table 14, we can observe that our CNN trained exclusively on synthetic images is able

to classify the real hESC images with an accuracy of 94.46%. This observation validates our

assumption that the generated synthetic images do have similar higher order characteristics as

the real hESC images.

4.5.3 Saturation of classification accuracy. This subsection shows how the accuracy of

the classifier varies with increasing amounts of synthetic images as well as the trade-off

between the number of images for training Vs the time taken for training. We also show some

examples of hESC images that were predicted incorrectly by our classifier and explain the rea-

son for the misclassification.

It can be observed from Table 14, the classification accuracy increases progressively as we

generate more synthetic images, but after a certain amount of synthetic images (40,000 syn-

thetic images per class) the classification accuracy does not significantly increase. In Table 14

we get an improvement in accuracy of only 0.03% from increasing the number of synthetic

images from 30,000 to 40,000 per class but the time taken to train the classifier significantly

increases. Hence, in order to balance the trade-off between the classification accuracy and the

training time we limit the number of synthetic images per class to be 40,000. Fig 15 shows the

graph of the classification accuracy versus the training time trade-off.

A possible reason for the saturation in classification accuracy is that the ground-truth for

certain images may have been labeled incorrectly by the biologists and the classifier is able to

correctly classify these images even though the ground-truth is wrong. Fig 16 shows examples

of such images that were unintentionally labeled incorrectly by the biologist, but our classifier

was still able to predict the correct class.

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 24 / 28

https://doi.org/10.1371/journal.pone.0212849


Fig 16(a) is an Unattached cell, but due to the presence of a growing Dynamic Blebbing cell
near it, the biologist decided to label it as a Cell cluster. Fig 16(b) is a Dynamically Blebbing cell
that was mislabeled as an Attached cell. Since the morphology of these two classes are very sim-

ilar, the biologist was not sure to which class the hESC belonged to. Fig 16(c) is a Cell cluster
mislabeled as Apoptically Blebbing cell. This is another example where the morphology of of

two classes look very similar and the biologist was not sure as to which class the hESC belonged

to.

Fig 15. Classification accuracy Vs training time trade-off.

https://doi.org/10.1371/journal.pone.0212849.g015

Fig 16. Examples of images that were unintentionally labeled wrong by the biologist, but correctly classified by our classifier. (a) Unattached cell
mislabeled as Cell cluster, (b) Attached cellmislabeled asDynamically Blebbing cell. (c) Apoptically Blebbing cellmislabeled as Cell cluster.

https://doi.org/10.1371/journal.pone.0212849.g016

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 25 / 28

https://doi.org/10.1371/journal.pone.0212849.g015
https://doi.org/10.1371/journal.pone.0212849.g016
https://doi.org/10.1371/journal.pone.0212849


5 Conclusions

We proposed DeephESC 2.0 an automated system for detecting and classifying hESC images.

DeephESC 2.0 outperforms our prior work done in DeephESC [5] in both the classification

and generation of synthetic hESC images. We observed that the certain classes such as Cell
clusters/Apoptically Blebbing cells and Attached cells/Dynamically Blebbing cells have similar

texture and intensity and they are only different in their morphology. To exploit this difference

we designed Triplet CNN architectures with branched convolution layers that can detect these

minute changes in morphology and perform fine-grained classification for further improving

the classification accuracy of these classes. Moreover, by fusing the outputs of the CNN and

Triplet CNNs using the product rule we were able to further improve the classification accu-

racy to 93.23%. We also showed the difference between DeephESC 2.0 and DeephESC in

terms of the learned features, and observed that DeephESC 2.0 was able to learn more robust

features that could detect the presence of small Cell clusters where DeephESC failed.

We designed individual GMANs for each class to generate synthetic hESC images. We eval-

uated the quality of the generated images using the SSIM, PSNR and statistical p- value metrics

and our approach outperformed state-of-the-art approaches for generating synthetic hESC

images. Furthermore, we trained the classifier of DeephESC 2.0 exclusively on 40,000 synthetic

images per class and evaluated the classifier on the real hESC images and achieved further

improved classification accuracy of 94.46%. We discussed the possible reasons for misclassifi-

cation and observed that some images were unintentionally mislabeled by the biologists and

our approach was able to predict their correct class. This shows that our approach is robust

even in the presence of noisy data.

Acknowledgments

Authors would like to thank Dr. Talbot for providing us the hESC data and Benjamin Guan

for the detection of regions-of-interest from video.

Author Contributions

Conceptualization: Rajkumar Theagarajan.

Methodology: Rajkumar Theagarajan.

Software: Rajkumar Theagarajan.

Supervision: Bir Bhanu.

Visualization: Rajkumar Theagarajan.

Writing – original draft: Rajkumar Theagarajan.

Writing – review & editing: Rajkumar Theagarajan.

References

1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic

stem cell lines derived from human blastocysts. Science. 1998; 282(5395): 1145–1147. https://doi.org/

10.1126/science.282.5391.1145 PMID: 9804556

2. Zhu Z, Huangfu D. Human pluripotent stem cells: an emerging model in developmental biology. Devel-

opment. 2013; 140: 705–717. https://doi.org/10.1242/dev.086165 PMID: 23362344

3. Talbot P, Lin S. Mouse and human embryonic stem cells: can they improve human health by preventing

disease?. Current Topics in Medicinal Chemistry. 2011; 11(13): 1638–1652. https://doi.org/10.2174/

156802611796117621 PMID: 21446909

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 26 / 28

https://doi.org/10.1126/science.282.5391.1145
https://doi.org/10.1126/science.282.5391.1145
http://www.ncbi.nlm.nih.gov/pubmed/9804556
https://doi.org/10.1242/dev.086165
http://www.ncbi.nlm.nih.gov/pubmed/23362344
https://doi.org/10.2174/156802611796117621
https://doi.org/10.2174/156802611796117621
http://www.ncbi.nlm.nih.gov/pubmed/21446909
https://doi.org/10.1371/journal.pone.0212849


4. Guan BX, Bhanu B, Talbot P, Lin S, Weng N. Comparison of texture features for human embryonic

stem cells with bio-inspired multi-class support vector machine. IEEE International Conference in

Image Processing. 2014; 4102-4106.

5. Theagarajan R, Guan BX, Bhanu B. DeephESC: An automated system for generating and classification

of human embryonic stem cells. IEEE International Conference on Pattern Recognition. 2018.

6. Bhanu B, Talbot P (Eds.). Video Bioinformatics: From Live Imaging to Knowledge’. Springer. 2015.

7. Lin S, Fonteno S, Satish S, Bhanu B, Talbot P. Video bioinformatics analysis of human embryonic stem

cell colony growth. Journal of visualized experiments. 2010. https://doi.org/10.3791/1933 PMID:

20495527

8. Talbot P, Zur Nieden N, Lin S, Martinez I, Guan BX, Bhanu B. Use of video bioinformatics tools in stem

cell toxicology. Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology. 2014.

https://doi.org/10.1002/9781118856017.ch21

9. Sakamoto R, Rahman MM, Shimomura M, Itoh M, Nakatsura T. Time-lapse imaging assay using the

BioStation CT: A sensitive drug-screening method for three-dimensional cell culture. Cancer science.

2015; 106(6): 757–765. https://doi.org/10.1111/cas.12667 PMID: 25865675

10. Zahedi A, On V, Lin SC, Bays BC, Omaiye E, Bhanu B, et al. Evaluating cell processes, quality, and bio-

markers in pluripotent stem cells using video bioinformatics. PLoS One. 2016; 11(2): e0148642. https://

doi.org/10.1371/journal.pone.0148642 PMID: 26848582

11. Nikon Biostation-IM. http://www.nikoninstruments.com/Products/Cell-IncubatorObservation/

BioStation-IM.

12. Lin S, Fonteno S, Weng JH, Talbot P. Comparison of the toxicity of smoke from conventional and harm

reduction cigarettes using human embryonic stem cells. Toxicology Science. 2010; 118; 202–212.

https://doi.org/10.1093/toxsci/kfq241

13. Nikon. CL-Quant, http://www.nikoninstruments.com/News/US-News/Nikon-Instruments-Introduces-

CL-Quant-Automated-Image-Analysis-Software. 2013.

14. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolution neural networks.

Advances in neural information processing systems. 2012; 1097–1105.

15. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. arXiv preprint. 2017.

16. Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolution encoder-decoder architecture for

image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017; 39(12):

2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 PMID: 28060704

17. Wong SC, Gatt A, Stamatescu V, McDonnell MD. Understanding data augmentation for classification:

when to warp?. Digital Image Computing: Techniques and Applications. 2016; 1–6.

18. Ambriz-Colin F, Torres-Cisneros M, Avina-Cervantes J, Saavedra-Martinez J, Debeir O, Sanchez-Mon-

dragon J. Detection of biological cells in phase-contrast microscopy images. Mexican International Con-

ference on Artificial Intelligence. 2006; 68-77.

19. Li K, Chen M, Kanade T. Cell population tracking and lineage construction with spatiotemporal context.

International Conference on Medical Image Computing and Computer-Assisted Intervention. 2007;

295-302.

20. Eom S, Bise R, Kanade T. Detection of hematopoietic stem cells in microscopy images using a bank of

ring filters. IEEE International Symposium on Biomedical Imaging. 2010; 137-140

21. Miroslaw L, Chorazyczewski A, Buchholz F, Kittler R. Correlation-based method for automatic mitotic

cell detection in phase contrast microscopy. Advances in Intelligent and Soft Computing. 2005;

30:627–634. https://doi.org/10.1007/3-540-32390-2_74

22. Tatiraju S, Mehta A. Image segmentation using k-means clustering, EM and normalized cuts. UC Irvine.

2008.

23. Farnoosh R, Zarpak B. Image segmentation using Gaussian mixture model. International Journal on

Engineering and Science. 2008; 19: 29–32.

24. Guan BX, Bhanu B, Talbot P, Lin S. Bio-driven cell region detection in human embryonic stem cell

assay. IEEE Transactions on Computational Biology and Bioinformatics. 2014; 11(3):604–611. https://

doi.org/10.1109/TCBB.2014.2306836 PMID: 26356027

25. Lowry N, Mangoubi R, Desai M, Marzouk Y, Sammak P. Texton-based segmentation and classification

of human embryonic stem cell colonies using multi-stage Bayesian level sets. IEEE International Sym-

posium on Biomedical Imaging. 2012; 194-197.

26. Varma M, Zisserman A. A statistical approach to texture classification from single images. International

Journal of Computer Vision. 2005; 62(1-2):61–81. https://doi.org/10.1023/B:VISI.0000046589.39864.

ee

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 27 / 28

https://doi.org/10.3791/1933
http://www.ncbi.nlm.nih.gov/pubmed/20495527
https://doi.org/10.1002/9781118856017.ch21
https://doi.org/10.1111/cas.12667
http://www.ncbi.nlm.nih.gov/pubmed/25865675
https://doi.org/10.1371/journal.pone.0148642
https://doi.org/10.1371/journal.pone.0148642
http://www.ncbi.nlm.nih.gov/pubmed/26848582
http://www.nikoninstruments.com/Products/Cell-IncubatorObservation/BioStation-IM
http://www.nikoninstruments.com/Products/Cell-IncubatorObservation/BioStation-IM
https://doi.org/10.1093/toxsci/kfq241
http://www.nikoninstruments.com/News/US-News/Nikon-Instruments-Introduces-CL-Quant-Automated-Image-Analysis-Software
http://www.nikoninstruments.com/News/US-News/Nikon-Instruments-Introduces-CL-Quant-Automated-Image-Analysis-Software
https://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
https://doi.org/10.1007/3-540-32390-2_74
https://doi.org/10.1109/TCBB.2014.2306836
https://doi.org/10.1109/TCBB.2014.2306836
http://www.ncbi.nlm.nih.gov/pubmed/26356027
https://doi.org/10.1023/B:VISI.0000046589.39864.ee
https://doi.org/10.1023/B:VISI.0000046589.39864.ee
https://doi.org/10.1371/journal.pone.0212849


27. Lowry N, Mangoubi R, Desai M, Sammak P. Nonparametric segmentation and classification of small

size irregularly shaped stem cell nuclei using adjustable windowing. IEEE International Symposium on

Biomedical Imaging. 2010; 141-144.

28. Mangoubi R, Jeffreys C, Copeland A, Desai M, Sammak P. Non-invasive image based support vector

machine classification of human embryonic stem cells. IEEE International Symposium on Biomedical

Imaging. 2007; 284-287.

29. Desai M, Mangoubi R, Sammak P. Noise adaptive matrix edge field analysis of small sized heteroge-

neous onion layered textures for characterizing human embryonic stem cell nuclei. IEEE International

Symposium on Biomedical Imaging. 2009; 1386-1389.

30. Sammak PJ, Mangoubi R, Erb TM, Mucko S, Desai M. Methods of generating trophectoderm and neur-

ectoderm from human embryonic stem cells. U.S. Patent 9,607,202. 2017.

31. Niioka H, Asatani S, Yoshimura A, Ohigashi H, Tagawa S, Miyake J. Classification of C2C12 cells at dif-

ferentiation by convolutional neural network of deep learning using phase contrast images. Human cell.

2018; 31(1):87–93. https://doi.org/10.1007/s13577-017-0191-9 PMID: 29235053

32. Chang YH, Abe K, Yokota H, Sudo K, Nakamura Y, Li CY, et al. Human induced pluripotent stem cell

region recognition in microscopy images using convolutional neural networks. IEEE International Con-

ference on Engineering in Medicine and Biology Society. 2017. 4058-4061.

33. Xie W, Noble JA, Zisserman A. Microscopy cell counting and detection with fully convolutional regres-

sion networks. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualiza-

tion. 2018; 6(3):283–292.

34. Witmer A, Bhanu B. Multi-label Classification of Stem Cell Microscopy Images Using Deep Learning.

IEEE International Conference on Pattern Recognition. 2018.

35. Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolution generative

adversarial networks. arXiv preprint. 2017; arXiv:1511.06434.

36. Durugkar I, Gemp I, Mahadevan S. Generative multi-adversarial networks. arXiv preprint. 2016;

arXiv:1611.01673.

37. Lin S, Talbot P. 2011. Methods for culturing mouse and human embryonic stem cells. Embryonic Stem

Cell Therapy for Osteo-Degenerative Diseases. Humana Press. 2011; 31–56. https://doi.org/10.1007/

978-1-60761-962-8_2

38. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. 2014.

39. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. IEEE International Confer-

ence on Computer Vision and Pattern Recognition. 2016; 770-778.

40. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition.

arXiv:1409.1556, 2014.

41. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint. 2014; arXiv:1411.1784.

DeephESC 2.0

PLOS ONE | https://doi.org/10.1371/journal.pone.0212849 March 6, 2019 28 / 28

https://doi.org/10.1007/s13577-017-0191-9
http://www.ncbi.nlm.nih.gov/pubmed/29235053
https://doi.org/10.1007/978-1-60761-962-8_2
https://doi.org/10.1007/978-1-60761-962-8_2
https://doi.org/10.1371/journal.pone.0212849

