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a b s t r a c t 

Person re-identification is an important technique towards automatic recognition of a person across non- 

overlapping cameras. In this paper, a novel patch selection method based on parsing and saliency de- 

tection is proposed. The algorithm is divided into two stages. The first stage, primary selection: Deep 

Decompositional Network (DNN) is adopted to parse a pedestrian image into semantic regions, then slid- 

ing window and color matching techniques are proposed to select pedestrian patches and remove back- 

ground patches. The second stage, secondary selection: saliency detection is utilized to select reliable 

patches according to saliency map. Finally, PHOG, HSV and SIFT features are extracted from these patches 

and fused with the global feature LOMO to compensate for the inherent errors of saliency detection. By 

applying the proposed method on such datasets as VIPeR, PRID2011, CUHK01, CUHK03, PRID 450S and 

iLIDS-VID, it is found that the proposed descriptor can produce results superior to many state-of-the-art 

feature representation methods for person identification. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Person re-identification aims to identify pedestrians in non-

overlapping cameras. It plays a role in a variety of practical

applications, such as pedestrian searching, tracking, and analyz-

ing behavior in different camera scenes. Person re-identification

makes a significant contribution in reducing time as it can be

used to seek a specific person from large amounts of images or

videos rather than a human doing this manually. For the above

reasons, person re-identification has gained much attention among

researchers [1–11] . However, it remains a challenging problem.

A person could undergo significant variations in pose, viewpoint,

scale, and illumination when walking through several different

cameras. Moreover, background clutter, image blur, and occlu-

sion make the situation even worse. All these problems make

intra-person variations even larger than inter-person variations. 

In this paper, we focus on constructing robust feature repre-

sentation to solve these problems. Existing methods for feature

representation mostly focus on two different aspects: hand-crafted

features and deep features [3] . 

For hand-crafted features, many of them have been developed

to achieve precise matching, such as the covariance descriptor
∗ Corresponding author. 

E-mail address: zhangyunzhou@mail.neu.edu.cn (Y. Zhang). 
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ased on bio-inspired features (gBiCov) [5] , salient color names

ased color descriptor (SCNCD) [8] , and ensemble color model

ECM) [4] . It can be found that these methods have some com-

on problems. They do not remove the background noise, and

he attribute types are simplex. Although ECM fuses different

olor attribute, it has no gradient and other attributes. However,

he features we want to construct should have less noise but

ore diverse attributes. Therefore, a preprocessing of removing

ackground noise is necessary, and we also consider combining

ultiple attributes to enhance features. In this paper, Pyramid

istogram of Oriented Gradients (PHOG [12] ), HSV and Scale In-

ariant Feature Transform (SIFT [9] ) features representing gradient,

olor, and extreme points are fused to complement each other. 

For deep features, they have continuously updated the highest

ecognition rate in recent years. A lot of methods are proposed to

xtract the deep features based on Convolutional Neural Network

CNN). Some of them try to design new CNN frameworks get

etter deep features, e.g., JointRe-id [13] . Some works enhance

eep features by fusing with multiple hand-crafted features, e.g.,

FN [14] . Others obtain more discriminating deep features by

odifying the loss function in the training process of CNN, e.g.,

uadruplet [15] . Although each of these method has achieved

reakthrough results, we still find their weakness in some prac-

ical application scenarios. The problem is that data-driven deep

earning cannot play a full role if the samples in the training set

https://doi.org/10.1016/j.neucom.2019.09.073
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.09.073&domain=pdf
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re insufficient. So we can see that deep learning methods are

sually applied to large-scale person re-identification datasets,

uch as Market1501 [16] , DukeMTMC-ReID [17] , and MSMT17

18] . It inspires us to construct a new feature representation to

olve the problem of insufficient samples, and the new feature is

upposed to improve accuracy more than some deep features. 

So we consider about picking out valuable patches from im-

ges precise feature matching. Actually, there are already many

esearches about local feature exist, much like our idea. Whether

ou design a local feature (e.g., SDALF [19] ) or map an existing

ocal feature space to another space (e.g., LFDA [6] ), they all have a

ame problem: feature drift. The location of most similar patches

n different images changes cross different camera views, and we

all this phenomenon feature drift. Some methods try to solve

t by saliency features, and get effective improvement, such as

CNCD [8] and SalMatch [20] . The fly in the ointment is that

hey ignore the inherent error of saliency. Therefore, we utilize

raph-Based Visual Saliency (GBVS) [21] to change location-guide

eature matching into saliency-guide feature matching, so as to

ffectively solve the problem of feature drift. In addition, we

dopt the strategy combined with global feature Local Maximal

ccurrence (LOMO [3] ) to compensate for the inherent errors

aused by saliency detection. 

In summary, the proposed method makes the following contri-

utions for person re-identification: 

(1) We propose a patch selection method, which can effectively

solve the problem of insufficient samples in actual scenarios,

and has great significance in engineering applications and

has some theoretical value. 

(2) In the primary selection, we propose a preprocessing

method to remove background noise. We use Deep De-

compositional Network (DDN) to divide the picture into

semantic regions, and propose sliding window and color

matching techniques to remove the background patches. 

(3) In the secondary selection, we utilize saliency detection

to solve the problem of feature drift and patch unbalance

caused by primary selection. It makes us matching features

in saliency-guide, rather than location-guide. 

(4) We propose a strategy that combines local features with

global features to solve the problem of mismatching caused

by saliency detection. PHOG, HSV and SIFT features are

extracted from the selected patches. LOMO features are

extracted from the whole image and fused with them to

compensate for the inherent error of saliency detection. 

The paper is organized as follows. The review of related work

s provided in Section 2 . The proposed algorithms are described

n detail in Section 3 . Experimental results using six public bench-

ark datasets are presented and analyzed in Section 4 . Finally, the

onclusions are given in Section 5 . 

. Related work 

.1. Deeply-learned methods for person re-identification 

Person re-identification is classified into two categories: single-

hot case, and multi-shot case. In general, single-shot person

e-identification is required to match a single probe image to a

ingle gallery image. As for multi-shot case, a probe image or

mages can be matched to frames in the gallery and the matching

esults can be combined to obtain the result for a video sequence. 

In recent years, deep learning has been widely used in image

ecognition tasks and has made great breakthroughs especially in

erson re-identification. Yi et al. [13] proposed a method which

an simultaneously learn features and a corresponding similarity

etric for person re-identification. Chen et al. [22] presented a
ovel multi-channel parts-based convolutional neural network 

CNN) model that utilized a triplet framework. The CNN model

as trained by an improved triplet loss function that assigned

he same ID for the closer instances in the learned feature space

nd assigned a different ID for the farther instances. Furthermore,

nstead of directly training on the sample images, some methods

13,22–24] exploited a part or patch-based deep architecture to

earn discriminative feature representations, in local regions of

eople, with CNNs. For example, Yi et al. [24] split the input image

nto three rectangular overlapping patches from top to bottom

rstly, and then extracted the deep features of each patch through

NN architecture. 

Through observing the datasets applied by the above methods,

e find a rule: the deep learning methods are extremely suitable

or large-scale datasets, such as Market1501 [16] and DukeMTMC-

eID [17] , and perform well in normal multi-shot datasets, such as

UHK03, but perform relatively poorly in single-shot dataset, such

s VIPeR [1] . It inspired us to propose a new method to effectively

olve the latter two cases, which is why our approach is only test

n datasets such as CUHK03 and VIPeR but not on large-scale

atasets. 

.2. Background extraction methods for person re-identification 

Background extraction is an important process to improve per-

on re-identification. It separates the target from the background

o eliminate the interference of the noisy environment. Based on

n improved Random Walks algorithm, Chang et al. [25] proposed

n approach that combined the shape prior information and

he color seed constraint into the Random Walk formulation, so

hat each human was divided into several parts where the color

eatures of the HSV histogram and the 1-D RGB signal, along with

exture features, were utilized for person re-identification. Le et al.,

26] attempted to make a decision on what super-pixels belonged

o humans and which others belonged to background through the

ollowing two techniques: the combination of super-pixels and

ocal saliency information and the combination of super-pixels and

ose estimation. 

Background noise is often ignored in many previous feature

epresentations. In this paper, a new background noise removal

trategy is proposed. It is a preprocessing technique of patch

rimary selection. At first, the pedestrian images are parsed into

emantic regions with a Deep Decompositional Network (DDN)

27] , such as head, body, arms, and legs. Then pedestrian patches

re extracted from the environment using sliding windows and

olor matching. 

.3. Saliency methods for person re-identification 

The saliency of an image carries a lot of potential information

hat is useful for recognition task. The following methods utiliz-

ng saliency are mainly related to human perception in person

e-identification. Zhao et al. [28] propose a computational model

o estimate the probabilistic saliency map and formulate person

e-identification as a saliency matching problem. Saliency match-

ng and patch matching were tightly integrated into a unified

tructural RankSVM framework. Chen et al. [29] establishes a

imilarity among patches via fusing multi-directional saliency

fter distribution analysis for the consistency of saliency. Le et al.

26] took full advantage of the saliency for keeping super-pixels

hat display a high saliency score (indicating a human) and remov-

ng the others (background). In this paper, saliency detection is

sed for secondary selection, which changes the matching of local

eatures from location-guide to saliency-guide, so as to obtain

ore reliable patch sequences. 
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Fig. 1. The architecture of the feature representation. It consists mainly of three parts, i.e ., primary selection, secondary selection, and feature fusion. (1). For each pair of 

pictures, we split them into patches and parse them into semantic regions with DDN which will be described in detail in 3.2. The overlap rate is computed to remove the 

background patches. The threshold of overlap rate is set to 25%. (2). The patches are further selected by saliency detection. The patch sequences with higher saliency scores 

are obtained. e.g., the most reliable patches that have higher saliency scores are pained in red. (3). We extract the PHOG, HSV histogram and SIFT features from the selected 

patches and fuse them with global LOMO features. 
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2.4. Fusion strategy for person re-identification 

In this paper, a novel feature representation that combines the

global and local features is proposed, which is quite different from

other general methods. Most feature-based methods either extract

the features from the images directly [3,8,30] or use only the local

descriptors [1,9,19] . Liao [3] designed an efficient feature represen-

tation named Local Maximal Occurrence (LOMO), and a subspace

and metric learning method known as Cross-view Quadratic

Discriminant Analysis (XQDA) [3] . Gray and Tao’s work [1] pro-

posed an ensemble of invariant features (EIFs) where the feature

representation can effectively handle the variation of human

poses/viewpoints and color difference for matching pedestrians ob-

served under different scenes conditions. Every image was divided

into a grid of local patches, and then the color histogram in LAB

color space and SIFT features are extracted for metric learning [28] .

The difference from the above works is that we not only fuse

many types of features, but also consider the relationship between

the global and the local. Considering that our patch selection

method has a certain mismatching rate caused by saliency detec-

tion, we compensate for it by combining the global features with

the local features extracted from the selected patches. The fused

feature representation is evaluated with several metric methods

which are proven to be effective for person re-identification. 

3. Technical approach 

3.1. Structure of the feature representation 

The structure of the technical approach consists of three parts:

primary selection, secondary selection, and feature fusion. The

overall process of the proposed work is shown in Fig. 1 . 

As can be seen from Fig. 1 , parsing and saliency detection

are two important techniques for the two patch selection stages,

respectively. Throughout the patch selection, our operation unit

is patch. Firstly, as a pre-processing, DNN divides the pedestrian’s

body and background into semantic regions of different colors
3.2.1). It inspires us to propose a patch based sliding window and

olor matching method to remove the background patches and

reserve the pedestrian patches (3.2.2). Afterwards, saliency de-

ection is utilized to get the saliency map (3.3.1), through with we

hange location-guide feature matching into saliency-guide feature

atching (3.3.2), and obtain the reliable patch sequences with

igher saliency scores (3.3.3). Finally, global and local features are

xtracted and fused (3.4.1) to obtain complete feature representa-

ion, and metric learning is performed to evaluate it (3.4.2). 

.2. Primary selection 

.2.1. Semi-supervised DDN 

It is not feasible to fine-tune DDN model directly on person

e-identification datasets, because there are no ground truth of

abel maps. In other words, person re-identification datasets have

o label for DDN model. So we modify it into a semi-supervised

DN model, and the training loss function is defined as 

 = 

∑ 

x l 

C( y l , 
∧ 
y l ) + λ

∑ 

x u 

E( y u ) , (1)

he first term in Eq. (1) is the loss function trained on the labeled

arsing dataset. The second term is the loss function trained on

he unlabeled person re-identification dataset. Before that, let’s

eview the original DDN. 

Fig. 2 illustrates the architecture of the DDN which directly

aps low-level visual features to the label map of body parts. The

nput is the feature vector, while the output is a set of label maps

f body parts. This architecture is utilized for pedestrian parsing,

nd mainly consists of one down-sampling layer, two occlusion

stimation layers, two completion layers, and two decomposition

ayers. 

The input x is down-sampled to x d . Otherwise, x is mapped

nto a binary occlusion mask x o ∈ [0, 1] n through the weight

atrices w 

o 1 , w 

o 2 and the biases b o 1 , b o 2 . To reduce the number

f parameters in the network, x o and x d are set to the same size. If
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Fig. 2. DDN architecture, which achieves parsing and subtraction in a unified deep network. 
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d  
he i -th element of the feature is occluded, x o 
i 

is set to 0, otherwise

 

o 
i 

= 1 . The binary occlusion mask x o is denoted as 

 

0 = τ ( W 

o 2 ρ( W 

o 1 x + b o 1 ) + b o 2 ) , (2)

here the function τ (x ) = 1 / (1 + exp (−x )) . For the first layer

f occlusion estimation, the rectified linear function [31] ρ(x ) =
ax (0 , x ) is utilized as the activation function and we use a

igmoid function as the activation function in the second layer. 

In the architecture of the DDN, the input of the completion

ayers which are modeled as the denoising autoencoder (DAE)

32] is the element-wise product of x o and x d . While the output

s the completed feature vector x c via the weight matrices W 

c 1 ,

 

c 2 , W 

c 
1 ′ , W 

c 
2 ′ , and the biases b c 1 , b c 2 , u c 1 , u c 2 . W 

′ is the trans-

ose of W . Through projecting high dimensional data into a low

imensional space, the encoders W 

c 1 and W 

c 2 find the compact

epresentation of noisy data. The encoders W 

c 
1 ′ and W 

c 
2 ′ are used

o reconstruct the data. We reconstruct x c with x o and x d . The

econstruction process is as follows, 

 = ρ( W 

c 2 ρ( W 

c 1 ( x o � x d ) + b c 1 ) + b c 2 ) , (3)

here � represents the element-wise product, and z denotes the

ompact representation. According to Eq. (3) , we can get 

 

c = ρ( W 

c 1 ′ ρ( W 

c 2 ′ z + u 

c 2 ) + u 

c 1 ) , (4)

At the back end of DDN, the completed feature x c is de-

omposed into several label maps from y 1 to y M 

through the

orresponding weight matrices W 

t 1 , W 

t 2 
1 

, ..., W 

t 2 
M 

, and biases b t 1 ,

 

t 2 
1 

, ..., b 
t 2 
M 

. We denote the label map y i ∈ [0, 1] n as 

 i = τ (W 

t 2 
i 

ρ( W 

t 1 x c + b t 1 ) + b t 2 
i 
) (5)

So the loss function for labeled parsing dataset becomes 

 

x l 

C( y l , 
∧ 
y l ) = || 

∧ 
Y l −Y l || 2 F (6) 

here Y l = { y l 
i 
} and 

∧ 
Y l = { 

∧ 
y l } are the set of outputs and the set of

round truth labels ( Fig. 3 ). 

Now we use the current DDN to train the unlabeled person

e-identification dataset. The training follows the hypothesis of

ow-density separation [33] . Specifically, the object of our training

s to make the probability that the output tends to a class close to
, and the sum of the probabilities toward other classes tend to be

ero. We define the loss as an entropy 

 

x u 

E( y u ) = −
N ∑ 

i =1 

y u i ln (y u i ) , (7) 

here N denotes the number of samples and y u 
i 

is the output.

inally we get the semi-supervised DDN loss function 

 = || 
∧ 

Y l −Y l || 2 F −
N ∑ 

i =1 

y u i ln (y u i ) (8)

.2.2. Background noise removal 

After segmenting the images of pedestrians into a set of se-

antic regions, we propose a method based on the use of sliding

indows and color matching to remove the cluttered environment

round the pedestrians. At first, every image is divided into a

rid of local patches, and then the background is masked through

omputing the overlap rate between the mask and patches. This

ask is preset, such as the pedestrian’s upper body is green and

he background is dark blue. The whole process is shown in Fig. 4 .

Every image is divided into patches of size 10 × 10, with a step

ize of 5 pixels. To determine if a patch will be masked, we apply

ith following equation: 

( P i j ) = 

u (M − P i j ) 

x p ∗ y p 
, (9) 

here P ij indicates the patch at the i -th row and j -th col of the

mage, i, j ∈ N + , { i, j| i < = m, j < = n } . c ( P ij ) denotes the overlap-

ing rate between the sliding mask M and the P ij and u ( x ) is in-

icated as the number of non-zero elements in matrix x. x p and

 p represent the number of patches in the horizontal and verti-

al direction, respectively. The patches for which c( P i j ) < = 25% are

eserved, whereas others are masked. Because the background of

he same pedestrian often changes under different cameras, back-

round noise removal focuses features on pedestrian patches by re-

oving background patches, making feature matching more accu-

ate. We define all the reserved patches of each image as the set S 1.

.3. Secondary selection 

The primary selection may cause two problems, one is feature

rift and the other is patch unbalance. The location of most similar
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Fig. 3. The test results of the VIPeR dataset for person re-identification with DDN. 

Fig. 4. The process of masking the background based on sliding windows and color match. 
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patches in different images changes cross different camera views.

The number of pedestrian patches selected from different images

may not be same, which may lead to different feature lengths.

Person saliency is distinctive and reliable in pedestrian matching

across disjoint camera views. If the patches of two images from

the same person are matched, the saliency values of these patches

should be similar to each other, regardless of their location. In

addition, the number of patches is easily controlled by saliency

scores, so as to keep the features consistent in length. 

3.3.1. Saliency detection 

Based on human focus of attention [28] , salient regions are

defined with the following properties: (1) making the pedestrian

more distinctive than other distractors; (2) being reliable to search

for the same pedestrian across different camera views. Compared

with the abstract features, it’s easier for a human to identify the

same person, because if the salient region occurs in one camera

view, it usually remains salient in another camera view. For exam-

ple, in Fig. 5 , a human would easily identify that there is a red bag

on the shoulder of person p 1, p 2 carries a yellow bag, p 3 has a red

umbrella in his hand while p 4 holds a green parcel in his hand. 

A reliable approach to map the salient regions is saliency learn-

ing [28] . It divides pedestrians into different parts and manually

merges super-pixels that are coherent in appearance. Then the
egmented body part is randomly selected and presented to a

abeler. The labeler is allowed to select the most likely image from

he list based on visual perception. However, this method requires

 significant amount of man hours, so it is impractical for large

atasets. In this paper, GBVS [21] is employed to automatically

etect the salient regions. Moreover, to reduce the huge cost of

atching time, we select only 25 patches whose saliency scores

re relatively higher than others. This number is the empirical

esult of the compromise between computation time and matching

ccuracy. 

As we can see from Fig. 6 that the salient region is detected

y the GBVS algorithm that computes bottom-up saliency maps

hich show a remarkable consistency with the attentional deploy-

ent of human subjects. In many cases, different persons from

ifferent camera views have different spatial distribution, whereas

he salient region of the same pedestrian under different camera

iews is discriminative from others. For example, the salient region

n ( a 1) is a backpack. The similar salient region also exists in ( a 2),

o ( a 2) is the correct match of ( a 1). There is a green bag hanging

n the pedestrian’s arm in ( a 3). The yellow bag on the shoulder

f the woman in ( a 4) is very eye-catching. While the woman in

 a 5) holds a white paper in his hand. They are all the incorrect

atches of ( a 1). For the same reason, ( b 2) is the correct match of

 b 1). ( b 3), ( b 4), ( b 5) are the incorrect matches of ( b 1). 
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Fig. 5. Silent region could be the part of the human body or the decorations the person carries. The salient regions are circled with the yellow dotted lines. 

Fig. 6. Illustration of saliency detection with the GBVS algorithm and the saliency map of the pedestrian image is shown. Best viewed in color. 
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.3.2. Saliency-guide matching 

We hope to match the features of similar patches in different

mages, but in fact, due to the change of pose and views under

ifferent cameras, they are offset in position, and even some patch

eatures may shift from pedestrian to background. Now we change

he feature matching from location-guide to saliency-guide, which

ffectively solves the problem of mismatching caused by feature

rift. 

At first, the image is constructed as a Gaussian pyramid to

xtract multi-scale features in the down-sampling process. 

 (σ ) = I(x, y ) � G (x, y, σ ) , (10)

 (x, y, σ ) = 

1 

2 πσ 2 
e (−

x 2 + y 2 
2 σ2 ) 

, (11)

here R ( σ ) is the initial feature map using the GBVS model, I ( x,

 ) represents the image, G ( x, y, σ ) denotes Gaussian pyramid, σ
s the scale factor or bandwidth of Gaussian pyramid and � in

q. (10) denotes the convolution operator. 

Secondly, the activation maps are formed using the feature

aps, and the most important thing is to construct the Markov

atrix. We assume that the scale of the feature graph is con-

tant. In other words, we ignore the scale σ . We then define the
issimilarity of R ( x, y ) and R ( p, q ) as 

((i, j) || (p, q )) 
�= 

∣∣∣∣log 
R (i, j) 

R (p, q ) 

∣∣∣∣, (12)

here R ( x, y ) and R ( p, q ) represent the feature value of the pixels

t ( i, j ) and ( p, q ), respectively. We obtain the fully-connected

irected graph G A through connecting every node of the lattice

 , labeled with the indices ( i, j ) or ( p, q ). The directed edge from

ode ( i, j ) to node ( p, q ) will be assigned a weight 

 1 ((i, j) , (p, q )) 
�= d((i, j) || (p, q )) · F (i − p, j − q ) , (13)

 (a, b) 
�= exp 

(
−a 2 + b 2 

2 σ 2 

)
, (14) 

here σ is a constant which denotes the free parameter. The

arkov chain is defined on directed graph G A . We normalize

he weights on the edges of G A to be 1. Now the stationarity of the

arkov chain is utilized to obtain the probability that the state

ode transforms to another, thereby estimating the saliency of the

irected graph and obtaining the saliency map A . 

Finally, we normalize the saliency map A , and construct the di-

ected graph G . We redefine a Markov chain on G , and introduce
N N 



92 Y. Liu, Y. Zhang and S. Coleman et al. / Neurocomputing 374 (2020) 86–99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

a  

o  

f  

m  

r  

i  

c  

t  

s  

e

 

l  

r  

m  

t  

i  

t  

T  

a  

S  

P  

1  

p  

(  

i  

u  

o  

t  

t

(

 

a  

H  

f  

s  

t  

P  

a  

n  

i  

h  

f  

f

 

t  

c  

t  

i  

a  

t  

i  

a  

o  

t  

t

3

c

d

 

an edge from ( i, j ) to ( p, q ) with weight: 

w 2 ((i, j) , (p, q )) 
�= A (p, q ) · F (i − p, j − q ) , (15)

where A denotes the final saliency map; every element inside

represents the saliency value of the pixel in this position. The size

of A is the same as the original image. Every image is divided

into patches of size 10 × 10 with a step size of 5 pixels, and the

patches which have the higher saliency value are selected by 

s ( { p A } ( i, j ) ) = a v erage ( { p A } ( i, j ) ) , (16)

where p A ( i, j ) denotes the patch at the i -th row and j -th column

of A, s ( p A ( i, j )) is the average saliency value of p A ( i, j ). We use

0.6 as the empirical value of s ( p A ( i, j )). The patches are reserved

corresponding to the original image where s ( p A (i, j)) > = 0 . 6 ,

while others are removed. We define all the reserved patches of

each image as the set S 2. 

3.3.3. Aligned patch sequences 

After primary selection and secondary selection, we obtain

corresponding patch sets S 1 and S 2, respectively. Now we define

their intersection S = S1 ∩ S2 as a set of reliable patches. Due

to the different views under different cameras, the proportions

of pedestrian and background are also different. Some images

have more pedestrian patches than background patches, while

others are the opposite. This problem of patch unbalance results

in a different number of reliable patches selected per image, and

correspondingly different lengths of extracted features. 

In order to ensure that the dimension of the local features

extracted from each image is the same, 25 patches are selected

from each image from camera A which have a relatively high

saliency value within the set S . Using the priori saliency spatial

distribution of these patches, we find 25 patches corresponding to

the previous 25 patches from each image from camera B with the

nearest neighbor classifier for saliency. 

Now the similarity of saliency between the patch pairs for

different images across disjoint camera views is defined as 

si m saliency 

(
P A,u , P B, v 

)
= exp 

( 

−
d (p A,u 

i 
, p B, v 

j 
) 

2 

2 σ 2 
d 

) 

(17)

Saliency patches of a pedestrian image are represented as

P A,u = { p A,u 
i 

| i = 1 , 2 , . . . , 25 } , where ( A, u ) denotes the u -th image

under camera A, i denotes the position of the patch in this image,

and p A,u 
i 

is the saliency vector of the patch. d ( ·) is the Euclidean

distance, and σ d is a bandwidth parameter. Finally, we get the

corresponding patches of images from camera B. 

I B,u = f ind 
(
min 

(
si m saliency 

(
P A,u , P B, v 

)))
(18)

The special form is 

I B,u 
i 

= f ind 

( 

min 

( 

exp 

( 

−
d (p A,u 

i 
, p B, v 

j 
) 

2 

2 σ 2 
d 

) ) ) 

, (19)

where find ( ·) denotes finding the indexes of patches of an image

from camera B according to the saliency matching with the patches

of the image from camera A. I B,u 
i 

is an element of I B,u which de-

notes the indexes set as mentioned above, i ∈ { 1 , 2 , . . . , 25 } . 

3.4. Feature fusion and metric learning 

In order to overcome the shortcomings of either of the meth-

ods and take advantage of them, the global features and local

descriptors are fused in the process of metric learning, so that we

can clearly separate the different pedestrians. 
.4.1. Feature extraction and fusion 

The features we fuse consist of one global feature (LOMO)

nd three local features (PHOG, HSV, SIFT). We adopt the strategy

f combining global feature and local features to compensate

or inherent errors of saliency detection which may result in

ismatching. Specifically, PHOG contains oriented gradient, HSV

eflects color distribution, and SIFT captures extreme points in

mages. As about the global feature (LOMO), although it also

ontains some color information, it reflects the color distribu-

ion of the whole image, using image pair matching rather than

aliency-guide patch pair matching. In a word, they complement

ach other without redundancy. 

The LOMO algorithm analyzes the horizontal occurrence of

ocal features, and maximizes the occurrence to make a stable

epresentation against viewpoint changes. Besides, to handle illu-

ination variations, the Retinex transform [3] and a scale invariant

exture operator are applied. To make person re-identification eas-

er than using original images, we apply the HSV color histogram

o extract features which has 8 × 8 × 8 bins = 512 dimensions.

he Scale Invariant Local Ternary Pattern (SILTP) [34] descriptor is

lso extracted for reducing the impact of illumination invariant.

ILTP is an improved operator over the well-known Local Binary

attern (LBP) [35] . We utilize sliding windows with a size of

0 × 10 pixels and an overlapping step of 5 pixels to locate local

atches in 128 × 48 pixel images. Two scales of SILTP histograms

 SILT P 0 . 3 
4 , 3 

and SILT P 0 . 3 
4 , 5 

) are extracted, and the dimension of SILTP

s 3 4 × 2 = 81 . A three-scale pyramid representation is built for

tilizing the multi-scale information, which down-samples the

riginal 128 × 48 image by two 2 × 2 local average pooling opera-

ions and then repeats the above feature extraction procedure. So

he final feature has (8 × 8 × 8 color bins + 3 4 × 2 SILTP bins) ×
 24 + 11 + 5 horizontal groups) = 26960 dimensions. 

On the other hand, the PHOG, HSV histogram and SIFT features

re extracted from every selected patch. PHOG is the Pyramid

istogram of Oriented Gradient, which is an effective descriptor

or classification; it is the splicing of the HOG features at different

cales. In this work, the number of layers of pyramids is L = 3 , and

he number of bins of gradient division is n = 8 . The dimension of

HOG features is (1 + 4 + 16 + 64) × 8 = 680 . Color histogram is

 significant descriptor that performs outstandingly in the recog-

ition task. To obtain the HSV histogram features, the RGB image

s converted to a HSV image at first. The dimension of the HSV

istogram feature is 8 × 8 × 8 = 512 . Besides, we extract the SIFT

eatures that has 128 dimensions. The schematic representation of

eature extraction is shown in Fig. 1 . 

After finishing the feature extraction, we obtain features with

he dimension of 26 , 960 + ( 680 + 512 + 128 ) × 20 = 53 , 360 . Before

oncatenating them, we fuse them based on metric learning. Due

o the diversity of our features and the complexity of the process-

ng process, we count the time consumption of feature extraction

nd algorithm execution. First, we count the time of feature extrac-

ion and fusion on the VIPeR dataset, and the average time for each

mage was 46.6ms. The experiment is repeated 10 times and aver-

ged (i7-6700 CPU, 2.60 GHz, Matlab, Windows). Then we perform

ur algorithm on CUHK03 dataset including semi-supervised DDN

raining, which takes a total 2,586,463 ms ≈ 43 m 6 s, about half

he time of FFN [14] (Titan xp, 12GB video memory, GPU, Linux). 

.4.2. Metric learning 

We define dist i,j as the distance between the features x i and x j 
ross different camera views. 

is t 2 ( x i , x j ) = || x i − x j || 2 2 

= w 1 · dist 2 
i j, 1 

+ w 2 · dist 2 
i j, 2 

+ . . . + w d · dist 2 
i j,d 

= ( x i − x j ) 
T W ( x i − x j ) , 

(20)
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Table 1 

Parameter settings. 

Paraneters Values Descriptions 

s p 10 × 10 the size of patches 

s w 10 × 10 sliding windows 

c thr 0.25 the threshold of overlapping rate c ( P i,j ) 

n P 25 the number of patches we selected based on saliency 

detection 

s thr 0.6 the threshold of saliency value 

σ 0.5 the scale factor of Eq. (11) 

σ d 0.5 bandwidth parameter of Eq. (17) 

Table 2 

TOP r rank matching accuracy (%) ON VIPeR dataset. 

Method Rank = 1 Rank = 10 Rank = 20 Reference 

Ours 56.83 92.03 97.27 Proposed 

FFN [14] 51.1 91.4 96.9 2016 WACV 

EBb [41] 51.9 84.8 90.2 2018 CVPR 

MLCS [42] 34.58 80.59 90.43 2017 TCSVT 

LDCA [11] 38.08 73.52 82.91 2017 CVPR 

SCSP [43] 53.5 90.2 96.6 2016 CVPR 

LSSL [44] 47.8 87.6 94.2 2016 AAAI 

LOMO + XQDA [3] 40.00 80.51 91.08 2015 CVPR 

SCNCD [8] 37.80 81.20 90.40 2014 ECCV 

kBiCov [5] 31.11 70.71 82.45 2014 IVC 

SalMatch [20] 30.16 65.54 79.15 2013 ICCV 

Mid-level Filter [9] 39.11 65.95 79.87 2014 CVPR 

SSCDL [45] 25.60 68.10 83.60 2014 CVPR 

MtMCML [46] 28.83 75.82 88.51 2014 TIP 

ColorInv [35] 24.21 57.09 69.65 2013 TPAMI 

LF [6] 24.18 67.12 82.00 2013 CVPR 
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here w i ≥ 0, W = diag(w ) is a diagonal matrix, and (W ) ii = w i .

 can be determined by learning. d denotes the dimension of

he feature which is equal to 53,360 in this paper. We replace

 with a common semi-definite symmetric matrix M , so we get

ahalanobis distance. 

is t mah ( x i , x j ) = ( x i , x j ) 
T M( x i , x j ) = || x i − x j || 2 M 

, (21)

 denotes the metric matrix which is obtained through metric

earning. Note that M is the semi-definite symmetric matrix. M

s directly embedded into the evaluation of the neighbor clas-

ifier, and we obtain M through optimizing the performance of

he evaluation. Now we discuss the acquisition of M with the

eighborhood Component Analysis (NCA) as an example. 

Neighbor classifiers use the majority voting method when

aking a decision. Each sample in the neighborhood casts one

ote, and the samples outside the field casts zero votes. For sample

 j , the probability of its effect on x i classification is 

p i, j = 

exp (−|| x i − x j || 2 M 

) ∑ 

l exp (−|| x i − x l || 2 M 

) 
, (22) 

here l is the number of the samples. As can be seen from

q. (22) , p i,j is the largest when i = j. If we recognize the max-

mum accuracy as an optimal object, the accuracy based on

eave-one-out (LOO) is computed as follows 

p i = 

∑ 

j∈ �i 

p i j , (23) 

here �i represents the set of subscripts that belong to the same

lass as x i . The accuracy for the entire sample set is 

m 

 

i =1 

p i = 

m ∑ 

i =1 

∑ 

j∈ �i 

p i j (24) 

Then we substitute Eqs. (22) into the ( 24 ) and make M = P P T ,

e get the NCA optimal object 

in 

P 
= 1 −

m ∑ 

i =1 

∑ 

j∈ �i 

exp 

(
−|| P T x i − P T x j || 2 2 

)
∑ 

l exp 

(
−|| P T x i − P T x l || 2 2 

) (25) 

Through solving Eq. (25) , we obtain the metric matrix M that

aximizes the accuracy of the neighbor classifier. 

Finally, we get Cumulative Match Characteristic (CMC) curves

f person re-identification. Using several different metric methods,

e do experiment on different datasets to prove that our proposed

ethod is more effective than many state-of-the-art methods. 

. Experimental results 

There are several existing challenging benchmark datasets for

erson re-identification. In this work, we perform experiments

sing six datasets, VIPeR [1] , PRID2011 [37] , CUHK01 [38] , CUHK03

36] , PRID 450S [39] , iLIDS-VID [40] , which are public benchmarks

vailable to conduct experiments. We emphasize that our ap-

roach can effectively solve the problem of insufficient samples in

ctual scenarios. This is why our method has not been tested in

arge datasets such as Market1501 [16] , DukeMTMC-ReID [17] , and

SMT17 [18] . 

.1. Parameters and implementation details 

The parameter settings in this paper are shown in Table 1 . In

ddition, we perform fine tuning on the basis of original DDN, so

he initialization of parameters and bias are the result of previous

raining. Two scales of center/surround Retinex is used for image

reprocessing when LOMO features are extracted. For all the

xperiments, we repeat the procedure 10 times to calculate an

verage performance. 
.2. Comparison with state-of-the-art methods 

We perform a number of experiments and the results show

hat the proposed algorithm achieves better performance than

any of the existing methods. In order to demonstrate the advan-

ages of our method in the case of insufficient samples, we also

ompared the with many deep learning methods, which are listed

eparately in the tables. Fig. 7 shows the CMC curves for different

ethods on every dataset. The red solid lines represent the results

f our algorithm. It can be seen from Fig. 7 that our method has

he highest matching rate. 

.2.1. Experiments on VIPeR 

The VIPeR dataset contains two cameras, each of which cap-

ures one image per person. It also provides the viewpoint angle

or each image. It has been used by many researchers and is still

ne of the most challenging datasets. The VIPeR dataset contains

32 pedestrian image pairs taken from arbitrary viewpoints under

arying illumination conditions. It is randomly split into two

ubsets containing the same number of pictures for training and

est respectively. 

We evaluated the proposed algorithm and several state-of-

he-art algorithms, Fig. 7 (a) shows the results of the comparisons

hrough CMC curves on the VIPeR dataset. The cumulative match-

ng scores (%) at rank 1, 10, and 20 are listed in Table 2 . From

able 2 it can be seen that our method is superior to all com-

ared state-of-the-arts, surpassing the 2 nd best method by 3.33%

56.83–53.5) in Rank-1, 0.63% (92.03–91.4) in Rank-10, and 0.37%

97.27–96.9) in Rank-20. Compared to eliminating background-bias

EBb) method, our method improves the rank-1 by 4.93%, rank-10

y 7.23%, and rank-20 by 7.07%. It indicates the superiority of pri-

ary patch selection by background noise removal. Compared to

he deep learning method FFN, our method improves the Rank-1

y 5.73%. This indicates that in the single-shot case, our feature

usion strategy is more effectively than FFN that fuses deeply

earning features with multiple hand-crafted features. 
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Fig. 7. CMC curves of VIPeR, PRID2011, CUHK01, CUHK03, PRID 450S, iLIDS-VID datasets. 
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4.2.2. Experiments on PRID2011 

The PRID2011 dataset consists of images extracted from

multiple person trajectories recorded from two different, static

surveillance cameras. Images from these cameras contain a view-

point change and a stark difference in illumination, background

and camera characteristics. The PRID dataset has 385 trajectories
rom camera A and 749 trajectories from camera B. Among them,

nly 200 people appear in both cameras. 

Fig. 7 (b) shows the results of the comparisons through CMC

urves on the PRID2011 dataset. The cumulative matching scores

%) at rank 1, 10, and 20 are listed in Table 3 . From Table 3 it can be

een that our method is superior to all compared state-of-the-arts
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Table 3 

TOP r rank matching accuracy (%) ON PRID2011 dataset. 

Method Rank = 1 Rank = 10 Rank = 20 Reference 

Ours 78.3 92.6 97.5 Proposed 

VGG-GRU + TP_Mean [47] 75.1 97.5 99.5 2017 ICIC 

LBP&Color + RFA-Net+RankSVM [48] 58.2 93.4 97.9 2017 ECCV 

LBP&Color + RFA-Net+Cosine [48] 54.9 93.7 98.4 2017 ECCV 

RC [49] 70.9 82.7 87.3 2018 CVPR 

DVDL [50] 40.6 77.8 85.6 2015 ICCV 

STFV3D + KISSME [2] 64.1 89.9 92.0 2012 CVPR 

TDL [51] 56.7 87.6 93.4 2016 CVPR 

Table 4 

TOP r rank matching accuracy (%) ON CUHK01 dataset. 

Method Rank = 1 Rank = 10 Rank = 15 Rank = 20 Reference 

Ours 83.2 97.1 98.4 98.8 Proposed 

Quadruplet [15] 62.6 86.0 88.9 89.8 2017 CVPR 

MCPB_CNN [22] 53.7 91.0 95.4 96.3 2016 CVPR 

JointRe-id [13] 47.5 80.0 86.8 87.9 2015 CVPR 

EBb [41] 82.5 98.2 98.7 99.0 2018 CVPR 

LSSCDK [52] 66.0 90.0 93.3 95.0 2016 CVPR 

Kernel X-CRC [53] 61.2 87.3 91.2 93.2 2019 JVCIR 

CVPDL [54] 59.5 89.7 91.7 93.1 2015 ICOAI 

Ensembles [55] 51.9 83.0 88.5 89.4 2015 CVPR 

Mid-Level Filters [9] 34.3 65.0 71.2 74.9 2014 CVPR 

SalMatch [20] 28.5 55.7 66.1 68.0 2014 ICCV 
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Table 5 

TOP r rank matching accuracy (%) ON CUHK03 dataset. 

Method Rank = 1 Rank = 10 Rank = 15 Rank = 20 Reference 

Ours 91.8 99.1 99.4 99.6 Proposed 

BraidNet-CS + SRL [56] 88.2 98.7 99.2 99.5 2018 CVPR 

JointRe-id [13] 54.7 91.5 96.8 97.3 2015 CVPR 

FPNN [36] 20.7 68.7 80.1 83.1 2014 CVPR 

SPReID [57] 91.2 99.2 99.5 99.6 2018 CVPR 

EBb [41] 91.7 – 98.7 99.0 2018 CVPR 

Ensembles [55] 62.1 94.3 97.2 97.8 2015 CVPR 

KISSME [2] 14.2 52.6 66.4 70.0 2012 CVPR 

LOMO + XQDA [3] 52.2 92.1 95.6 96.3 2015 CVPR 

Table 6 

TOP r rank matching accuracy (%) ON PRID 450S dataset. 

Method Rank = 1 Rank = 10 Rank = 15 Rank = 20 Reference 

Ours 72.5 96.4 97.8 98.7 Proposed 

FFN [14] 66.6 92.8 96.6 96.9 2016 WACV 

Kernel X-CRC [53] 68.8 95.9 97.3 98.4 2019 JVCIR 

LSSCDK [52] 60.5 88.6 92.2 93.6 2016 CVPR 

DRML [58] 56.4 82.2 88.9 90.2 2016 ICIP 

X-KPLS [59] 52.8 90.0 94.8 95.4 2017 ICPR 

MED_VL [60] 45.9 82.9 89.8 91.1 2016 AAAI 

ECM [4] 41.9 76.9 82.6 84.9 2015 WACV 
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n Rank-1. It surpasses the 2 nd best VGG-GRU+TP_Mean by 3.2%

78.3–75.1) in Rank-1. Although it is 4.9% (97.5–92.6) and 2.0%

99.5–97.5) lower than VGG-GRU+TP_Mean in rank-10 and rank-20,

espectively, it is not inferior to the suboptimal LBP&Color+RFA-

et+Cosine. As can be seen that compared with multiple hits, our

ethod has a obvious advantage in accuracy of one hit. 

.2.3. Experiments on CUHK01 

The CUHK01 dataset contains two images for every identity

rom each camera. This dataset has one pair of disjoint cameras

nd the image quality of this dataset is relatively good. It contains

71 persons captured from two camera views. Camera A captures

he frontal or back views of pedestrians while camera B captures

hem in a side view. 

The CMC curves of comparison with other algorithms are

escribed in Fig. 7 (c). All the corresponding data are recorded in

able 4 . The proposed method achieved 83.2% at rank-1, which

lightly outperforms the second one EBb with an improvement

f 0.7% (83.2–82.5). The proposed method is comparable to the

ost advanced algorithms EBb at rank-15 and rank-20, which

chieved accuracy at 98.4% and 98.8%, respectively. Compared

o SalMatch, we far surpassed it in all the results. It shows that

sing background noise removal, patch selection, feature fusion

echniques is far more effective than just using saliency matching. 

.2.4. Experiments on CUHK03 

The CUHK03 is one of the highest cited person re-identification

ataset which consists of five different pairs of camera views,

nd the number of pictures in this dataset exceeds 14,0 0 0. There

re 13,164 bounding boxes detected by a Deformable Part Model

DPM) of 1467 different identities in CUHK03 dataset. 

Fig. 7 (d) and Table 5 provide the matching results of all the

ompared algorithms. It can be seen that the proposed method is

uperior to the 2 nd best SPReID by 0.6% (91.8–91.2) in Rank-1, and

ies with SPReID in Rank-20. SPReID extracts local features from

uman body parts obtained by human semantic parsing. Both

PReID and our method use parsing for person re-identification.

PReID focuses on parsing to make pedestrian body segmenta-

ion more accurate, while we focus on selecting reliable patch
equences for precise matching. So if we learn from SPReID, the

ackground noise will be smaller. Then the selected patch se-

uence will be theoretically more reliable, and finally the accuracy

ill be improved. 

.2.5. Experiments on PRID 450S 

The PRID 450S dataset contains 450 pairs of single-shot pedes-

rian images, which are captured from two adjacent cameras. It

s another challenging dataset, similar to the VIPeR dataset, for

ackground interference, partial occlusion and viewpoint changes. 

We evaluated the proposed approach by comparing the state-

f-the-art approaches on the PRID 450S dataset. This evaluation

as conducted using the images of detected persons. It can be

een from Table 6 that our method is superior to all compared

tate-of-the-arts, surpassing the 2 nd best Kernel X-CRC by 3.7%

72.5–68.8) in Rank-1, 0.5% (96.4–95.9) in Rank-10, 0.5% (97.8–97.3)

n Rank-15 and 0.3% (98.7–98.4) in Rank-20. Compared to Kernel

-CRC, our local features contain gradient, color, and extreme

oints, not just the color model as Kernel X-CRC does. It indicates

he superiority of diverse features. Fig. 7 (e) describes the matching

esults of all the compared algorithms on the PRID 450S dataset. 

.2.6. Experiments on iLIDS-VID 

The iLIDS-VID dataset involves 300 different pedestrians ob-

erved across two disjoint camera views in a public open space.

t comprises 600 image sequences of 300 distinct individuals,

ith one pair of image sequences from two camera views for

ach person. Each image sequence has variable length ranging

rom 23 to 192 image frames, with an average of 73 frames. The
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Table 7 

TOP r rank matching accuracy (%) ON ILIDS-VID dataset. 

Method Rank = 1 Rank = 10 Rank = 15 Rank = 20 Reference 

Ours 86.2 98.5 99.4 99.6 Proposed 

CSsA + CSE [61] 85.4 98.8 99.2 99.5 2018 CVPR 

TDL [51] 56.3 95.6 97.9 98.3 2016 CVPR 

TAPR [62] 55.0 93.8 96.9 97.2 2016 ICIP 

SI 2 DL [63] 48.7 89.2 96.6 97.3 2016 IJCAI 

DRML [58] 43.1 72.7 80.0 82.0 2016 ICIP 

FAST3D [64] 28.4 66.7 75.2 78.1 2016 ICIP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The relationship between matching rate and the threshold of overlapping 

rate (%) on VIPeR dataset. 
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iLIDS-VID dataset is very challenging due to clothing similarities

among people, lighting and viewpoint variations across camera

views, cluttered background and random occlusions. Fig. 7 (f) and

Table 7 show the matching results of all the compared methods.

We can see that our method is superior to all the state-of-the-art

methods, surpassing the 2 nd best method by 0.8% (86.2–85.4)

in Rank-1, 0.2% (99.4–99.2) in Rank-15, and 0.1% (99.6–99.5) in

Rank-20. And it is only 0.3% (98.8–98.5) lower than CSsA+CSE.

Moreover, the proposed method far surpasses recent methods

(TDL, TAPR, SI 2 DL and DRML) in all results. These validate that a

combination of techniques may be more effective than just using

a single technique for person re-identification. 

4.3. Ablation analysis 

To further illustrate the rationality of each step of our process,

we conduct ablation experiments for our method on VIPeR dataset.

We verify the roles of four key parts of our algorithm, including

background noise removal, saliency detection, local features, and

global features through experiments. We take turns to remove

key part (C1–C4) and compare with the complete method (C5), as

shown in Table 8 . It can be seen that Rank-1 and Rank-10 results

of all incomplete methods are inferior to the complete method,

which implies the importance of the default part. 

Firstly, we remove the process of background noise removal

(C1), in other words, there is no primary selection, S1 = S. As

can be seen from Table 8 that due to background noise, the

performance degrades 6.57% and 1.49% for the Rank-1 and Rank-10

accuracy, respectively. Then we investigate the role of saliency

detection (C2). We eliminate secondary selection based on saliency

detection, and select 25 patches from S 1 according to the prin-

ciple of proximity. Specifically, P ( ·) in Eq. (17) is redefined as the

coordinate of the patch rather than saliency value. It can be seen

that the accuracy drops sharply, degrading 12.15% and 6.86% for

the Rank-1 and Rank-10, respectively. Next, we remove the local

features (C3),which means that only global feature LOMO is used

and there is no patch selection. The feature representation is the

same as [3] . Rank-1 and Rank-10 become 40.00% and 80.51%.

It also proves the necessity of the patch selection method we

proposed. Finally, global feature (C4) is removed to demonstrate

its role in compensating for inherent errors in saliency detection.

As can be seen from Table 8 that without the assistance of LOMO,

there is s slight decrease in accuracy, with rank-1 and rank-10

dropping by 5.09% and 2.42%, respectively. 

4.4. Comparison with the most relevant methods 

In this paper, the three key points of the proposed approach

are utilizing local descriptors with the global features, background

noise removal, and saliency detection. There are three correspond-

ing algorithms, including LOMO+XQDA, saliency learning, and

super-pixel segmentation for person re-identification. The follow-

ing will introduce their differences with our proposed method and

the experimental results. 
We compared the matching rate with LOMO features, saliency

earning, and the method based on super-pixel segmentation for

erson re-identification on VIPeR, CUHK01, and CUHK03 datasets.

able 9 records the results of the experiments which indicates that

he proposed method is always better than others at rank-1. 

.5. Parameter analysis of the proposed method 

.5.1. The threshold of overlapping rate in background noise removal 

The proposed system achieves accurate salient person re-

dentification through background removal based on super-pixel

egmentation. However, in this paper, we apply the pedestrian

arsing via a DDN network to achieve the background removal.

he experiments show that the proposed method has obvious

dvantages over the other methods. 

In this paper, we take the pedestrian parsing as an important

ethod for removing the background. We parse the pedestri-

ns with the DDN network which allows the background to

e removed from the edges of a human. It is an important

reprocessing for picking up the pedestrian patches. 

In the process of removing the background noise, we set the

hreshold of overlapping rate c ( P i,j ) to 25%, which was empiri-

ally determined after many experiments. It directly determines

hether the patch belongs to the pedestrian or the background.

he experimental result for choosing the overlap rate threshold are

hown in Fig. 8 . We compared the matching rate when selecting

ifferent thresholds ranging from 0.1 to 0.4 at rank-1 on the VIPeR

ataset, which shows that 25% as the threshold is appropriate. 

.5.2. The number of selected patches 

The number of patches in S has a great impact on the matching

ate and execution efficiency. If the number is too small, effective

nformation will be missed, resulting in lower accuracy. Too many

ill increase the computation time and reduce the execution

fficiency. 

Fig. 9 describes the relationship between the number and the

atching rate at rank-1 on the VIPeR, CUHK01, CUHK03, and

LIDS-VID datasets. As we can see from Fig. 9 , the matching rate

ncreases as the number of selected patches increases. However,

fter the number exceeds 25, the rate of growth becomes very

low, while the cost of time is multiplied. Finally, we selected 25

atches, which provides a compromise between computation time

nd matching accuracy. 
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Table 8 

Experimental results for different configurations on VIPeR datasets. 

Config. Background noise removal Saliency detection Local features Global features Rank-1 Rank-10 

C1 × √ √ √ 

50.26 90.54 

C2 
√ × √ √ 

43.31 86.52 

C3 × × × √ 

40.00 80.51 

C4 
√ √ √ × 51.74 89.62 

C5 
√ √ √ √ 

56.83 92.03 

Table 9 

Person re-id matching rates(%) at different ranks on VIPER, CUHK01, AND CUHK03 datasets. 

VIPeR CUHK01 CUHK03 

Method rank@1 10 15 20 1 10 15 20 1 10 15 20 

Ours 56.8 92.0 96.2 97.2 69.2 92.8 96.1 97.8 68.2 95.2 97.8 98.4 

LOMO + XQDA [3] 40.0 80.5 88.3 91.0 61.8 86.5 91.5 93.7 52.2 92.1 95.4 96.3 

Saliency learning [28] 44.1 81.8 88.4 91.2 28.5 55.7 66.4 68.0 56.8 93.8 96.2 97.5 

BackSub-reid [26] 27.2 64.2 75.2 77.8 19.2 44.8 65.8 68.7 40.2 72.1 84.5 86.4 

Fig. 9. The relationships between matching rate and the number of selected patches on VIPeR, CUHK01, CUHK03 datasets. 
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. Conclusions 

In this paper, we proposed a new patch selection method based

n parsing and saliency detection for person Re-identification. We

olve the problem of feature drift and patch imbalance of local

eatures, and effectively compensate for the inherent errors caused

y saliency detection by combining local features with global

eatures. It provides more ideas for solving related problems. In

ddition, our method can effectively deal with the real scenario

f insufficient samples, which has a strong engineering application

alue. It is another highlight of our work. 
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