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Tracking Across Cameras in a CRF Model
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Abstract— Tracking multiple targets across nonoverlapping
cameras aims at estimating the trajectories of all targets, and
maintaining their identity labels consistent while they move from
one camera to another. Matching targets from different cameras
can be very challenging, as there might be significant appearance
variation and the blind area between cameras makes the target’s
motion less predictable. Unlike most of the existing methods that
only focus on modeling the appearance and spatiotemporal cues
for inter-camera tracking, this paper presents a novel online
learning approach that considers integrating high-level contextual
information into the tracking system. The tracking problem is for-
mulated using an online learned conditional random field (CRF)
model that minimizes a global energy cost. Besides low-level
information, social grouping behavior is explored in order to
maintain targets’ identities as they move across cameras. In the
proposed method, pairwise grouping behavior of targets is first
learned within each camera. During inter-camera tracking, track
associations that maintain single camera grouping consistencies
are preferred. In addition, we introduce an iterative algorithm to
find a good solution for the CRF model. Comparison experiments
on several challenging real-world multicamera video sequences
show that the proposed method is effective and outperforms the
state-of-the-art approaches.

Index Terms— Conditional random field (CRF) model,
multitarget tracking, social grouping behavior.

I. INTRODUCTION

ITH more and more surveillance cameras deployed at
Wpublic places (e.g., airports, parking lots, and shopping
malls) to monitor a large area, the demand for effective
and automated surveillance and monitoring systems is rapidly
growing [1]-[6]. Since using multiple cameras with overlap-
ping field-of-views (FOVs) is not cost efficient in both the
economical and computational aspects, cameras with nonover-
lapping FOVs are widely used in real-world applications.
Tracking multiple targets across nonoverlapping cameras is
of great importance, as it is crucial for many industrial
applications and high-level analysis, such as anomaly detec-
tion, crowd analysis, and activity detection and recognition.
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Fig. 1.
boxes with the same color indicate the same person, and the dashed lines
illustrate the trajectories generated by targets walking across different cameras.

Tracking results of our proposed model on Dataset4 [7]. Bounding

Although there have been some improvements in this area, it
remains a much lesser explored topic compared with single
camera multitarget tracking.

The goal of multitarget tracking across nonoverlapping cam-
eras is to automatically recover the trajectories of all targets
and keep their identities consistent while they travel from one
camera to another, as shown in Fig. 1. As compared with single
camera tracking, where successive observations of the same
target are likely to have a large similarity in appearance, across
space and time [8], tracking across nonoverlapping cameras is
a more challenging task due to the following factors.

1) Significant Appearance Variation: In multicamera track-
ing, the observations of the same target in different
cameras often have significant differences, caused by
illumination variation, pose change, and difference in
sensor characteristics.

2) Less Predictable Motion: The open blind area between
the FOVs of nonoverlapping cameras makes the motion
prediction for each target less reliable. When a target
leaves the FOV of one camera, it may enter the FOV of
another camera, or exit from the region (under surveil-
lance) in the blind area.

In most of the existing inter-camera multitarget tracking
approaches, first, intra-camera tracking is carried out in each
camera to produce tracks of different targets, and then, inter-
camera tracking is conducted in the form of track association
so that consistent labeling of each target across cameras
can be achieved. To match tracks from different cameras,
prior work mainly relies on the appearance and spatiotem-
poral cues. However, such low-level information is often
unreliable especially for tracking in nonoverlapping cameras,
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Fig. 2. Block diagram of our tracking system shown with a simple illustrative example. Blocks shown in red contain novel aspects of this paper. Tracks

with the same color contain the same target. Best viewed in color. For the legends please see the box in the upper right-hand side.

as discussed earlier. In this paper, we consider integrating
high-level contextual information, i.e., social grouping behav-
ior, to mitigate ambiguities in inter-camera tracking.

Sociologists have found that up to 70% of people tend to
walk in groups in a crowd for better group interaction [9], [10].
In addition, the leader—follower phenomenon generally exists
in reality, which means pedestrians are likely to follow other
individuals with the same destination either consciously or
unconsciously to facilitate navigation [11]. Therefore, when
two people are observed walking together in one camera for
some time, it is very likely that these two people will appear
together in a neighboring camera (see the example shown
in Fig. 1). Based on the above observations, we propose
an online learning approach for inter-camera tracking, which
favors track associations that maintain group consistency. Note
that we not only focus on groups that are formed by people
who know each other, but are also interested in groups of
individuals who have correlated movement.

We assume that the intra-camera tracking results for all
the cameras are given, and the topology graph for cameras
is known. To associate tracks from different cameras that
contain the same person, an online learned conditional random
field (CRF) model is used, as shown in Fig. 2. Track pairs that
are linkable under certain spatiotemporal constraints form the
nodes in the CRF model. Each node has a binary label (1 or 0)
indicating whether the corresponding two tracks are linked or
not in the final tracking result. A global appearance model
is used to estimate the energy cost for each node. We use
elementary groups [8] to analyze group status in each single
camera. Two tracks form an elementary group if they have
similar motion pattern and are temporally close to each other.
Single camera grouping information is used to infer across
camera grouping behavior. If two nodes in the CRF model
contain at least one elementary group, an edge is created
between them. Energy cost for each edge is estimated using
the combination of both grouping and appearance information.
For each track, we learn a target-specific appearance model
online using AdaBoost. If two linked nodes not only have a
high probability to maintain group consistency across cameras,

but also have high appearance affinities according to target-
specific appearance models, their corresponding edge will
be assigned a small energy cost. Then, the tracking task is
formulated as an energy minimization problem, i.e., to find the
label assignment for the CRF graph that produces the smallest
overall energy cost.

The rest of this paper is organized as follows. Section II
discusses related work and presents contributions of this paper.
The proposed CRF model and its corresponding approximation
algorithm are described in Section III. Experiments are given
in Section IV. Section V concludes this paper and provides
possible directions for future work.

II. RELATED WORK AND CONTRIBUTIONS
A. Related Work

Multitarget tracking across cameras has been an active topic
in computer vision for many years, a recent comprehensive
survey for this problem can be found in [5]. In general,
methods for cross-camera multitarget tracking can be catego-
rized into two groups according to the structure of camera
networks: methods for overlapping FOVs and methods for
nonoverlapping FOVs. Techniques used for tracking in these
two groups have significant differences. For instance, tracking
in a camera network with the overlapping FOVs normally
require explicit camera calibration [12], [13], while it is not
a necessity for tracking with nonoverlapping FOVs. Thus,
publicly available tracking data sets are designed either for
overlapping cameras or nonoverlapping cameras. In this paper,
we focus on inter-camera tracking with nonoverlapping FOVs.
This multitarget tracking is essentially a data association task,
in which tracks from the same subject are to be matched. Due
to the illumination and pose change across cameras, such data
association is quite challenging.

Among various approaches for multitarget tracking, the
appearance cue is commonly utilized. To tackle illumina-
tion change, brightness transfer functions (BTFs) have been
exploited [14]-[16]. The BTFs model color changes between
a pair of cameras through mapping functions. Variations of
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BTFs include multivariate probability density function [15],
joint brightness, tangent functions [17], and so on. Different
BTFs are evaluated in [18], and the findings suggest that
under certain conditions, such as during the entrance of a new
subject, BTFs are prone to error. Besides BTFs, color correc-
tion models can also be used for tracking objects [19], [20].
In general, learning BTFs or color correction model requires
large amount of training data and these models may not be
robust against drastic illumination changes across different
cameras.

In addition, spatiotemporal cue can be combined with
appearance cue to improve the multitarget tracking perfor-
mance. For example, Kuo ef al. [21] learned a discriminative
appearance model in a multiple instance learning framework,
which can combine multiple descriptors and similarity mea-
sures effectively. This appearance model is used in conjunc-
tion with spatiotemporal information for improved tracking
accuracy. Gao et al. [22] jointly exploits both the spatial and
the temporal correlation from multiple tracking results, and
achieves the state-of-the-art tracking performance. In partic-
ular, the temporal information is used to identify tracking
consistency, and the spatial information helps to establish
pairwise correlation among multiple tracking results. The work
in [23] exploits spatiotemporal relationships among the targets
to identify group merge and split events with time. It is
designed to simultaneously track individuals and groups in
a camera network, which is important for the problem of
tracking in a cluttered scene. In addition, both spatiotemporal
context and relative appearance context can be used jointly
for inter-camera multitarget tracking. For example, in [24], the
spatiotemporal cue supports sample collection for appearance
model learning, and the relative appearance context helps
disambiguate people in proximity. An inter-camera transfer
model, including both the spatiotemporal and appearance
cues, is proposed in [25]. In particular, the spatiotemporal
model is learned using an unsupervised topology recovering
approach, and the appearance model is learned by modeling
color changes across cameras.

Another recently popular research topic, person reidentifi-
cation, is closely related to inter-camera multitarget tracking.
Both problems aim to match the observations of the same peo-
ple across nonoverlapping cameras. However, in most person
reidentification work, only a single or multiple snapshots of
people are to be matched. Therefore, contextual information
is often not available for person reidentification problem.
On the other hand, in an inter-camera tracking problem,
each person is presented by a track, which is a string of
detections extracted from consecutive frames. In order to
handle the large intra-class variation in person reidentification,
the robust appearance models have been studied [26]-[29].
Another way is to learn specialized distance metrics or feature
transformations [30]-[34]. For training purpose, a training
set with corresponding detection pairs, which share similar
imaging conditions as the testing samples, is required.

While most of the previous work (e.g., [25], [35]) only
considers pairwise relationships using global optimization
techniques, such as Hungarian algorithm, we employ CRF
to simultaneously model both the pairwise and higher order
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relationships for track association. The CRF model has been
adopted in several single camera multitarget tracking papers.
Yang and Nevatia [36] use CRF to learn the dependencies
and distinguish the difficult pairs of tracklets in single camera
tracking. Heili et al. [37] formulate the tracking problem using
a CRF framework with pairwise similarity and dissimilarity
hypotheses. Compared with person reidentification, in which
only images of the subjects are matched, our framework is a
dynamic system, meaning that the track association is executed
to cover both the spatial and temporal spans. Such a system
is more desirable for tracking and monitoring in practical
applications.

B. Contributions of This Paper

As compared with the state of the art described earlier in
this paper, the contributions of this paper are as follows.

1) A novel CRF framework that combines social grouping
behavior with traditionally used appearance and spa-
tiotemporal cues for robust multitarget tracking across
nonoverlapping cameras.

2) An online learning approach for modeling the unary and
pairwise energy costs in the CRF model. The proposed
approach does not require a large training set with
known correspondence between samples, and it is able
to adapt environmental changes.

3) An effective approximation algorithm for the CRF model
that produces good tracking results with low energy cost.

4) Evaluation on four challenging real-world surveillance
video sequences is used to validate the effectiveness of
the proposed method.

III. TECHNICAL APPROACH
A. CRF Model for Inter-Camera Tracking

In this section, we formulate inter-camera tracking as an
inference problem using the CRF framework. An outline of
the proposed tracking system is shown in Fig. 2.

Given a set of tracks T = {Ty, T», ..., Ty}, which is the
result of intra-camera tracking of M nonoverlapping cameras
Camp, Camy, ..., Camy;. Each track 7; is a string of detec-
tions that correspond to the same person and they are extracted
from a set of continuous frames. The time interval for T;
is denoted as [t}) cem tf“d], and its corresponding camera is
Cam(7;). The task of inter-camera multitarget tracking is to
associate tracks from different cameras that contain the same
person under certain spatiotemporal constraints. Since the CRF
framework is capable of encoding relationship between obser-
vations, it is especially suitable for capturing and modeling
contextual information in the scene.

We create a CRF graph G = {V, E}. Each vertex v; =
(Ti1 , Tiz) in V represents a linkable pair of tracks, assuming Tl.1
starts before Tiz, and each edge e¢; = (v}, v?) in E indicates
that the connected two vertices are correlated (detailed expla-
nations for CRF graph creation is presented in Section III-B).
Let L = {l1,l»,...,l,} be a set of binary labels for all
vertices, i.e., all possible track associations, with [; = 1
indicating Tl.1 is associated with Ti2 in the final tracking result,
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and /; = 0O represents the opposite. During tracking, our goal
is to find the label configuration L* that maximizes the overall
linking probability, given the value of 7. Mathematically, the
inter-camera tracking problem can be defined by the following
optimization equation:

1
L* = argmax P(L|T) = arg min Eexp(—‘I—‘(LlT)) )
L L

where Z is a normalization factor that does not depend on L,
and W(-) is a potential/cost function. We assume that the
joint distributions of more than two associations have no
contributions to the conditional probability P(L|T), then

L* = argmin ¥ (L|T)
L

argmin | > U@IT) + Y B, 1|T) )

L i ij
where U(l;|T) and B(l;,[;|T) are the unary and pairwise
energy functions and correspond to the node and edge costs
in the CRF graph, respectively. Learning of the unary and
pairwise costs are described in Sections III-C and III-D.

For efficiency, track association is not applied on the entire
videos. Instead, a predefined time sliding window is used,
and a CRF model is learned online for each sliding win-
dow. Moreover, in order to prevent impractical associations,
a valid label set L needs to follow certain constraints. Let
L' be the set of all labels that are assigned to 1, namely,
L' = {l; = 1} VI; € L. Similarly, L° corresponds to the set of
labels assigned with 0. For a label /i, with its corresponding
vertex denoted as vy = {Tkl, Tkz}, we use C(ly) to represent
the set of its conflicting labels. A label [, is conflicting to I,
if its corresponding vertex v, = {Txl, TXZ} falls into one of the
following patterns: 1) 7,! = T}/ and T? + Tk2 and 2) T2 = Tk2
and Tx1 #* Tkl. Then, L is a valid label set, if

Vige L', C@ly) c L°. (3)

This constraint implies that each track can be associated
with and associated by only one other track.

B. CRF Graph Creation

In the CRF graph, each vertex represents a pair of linkable
tracks. Track 7; can be associated with T} if they satisfy the
following spatiotemporal constraints.

1) Spatial Constraints: First, T; and T; are captured
in different cameras, namely, Cam(7;) # Cam(T}).
Second, according to the camera topology graph, linking
T; and T; forms a feasible path allowing people to walk
from Cam(7;) to Cam(T;) without entering the FOV of
any other cameras.

2) Temporal Constraints: T starts before T;. Let Gap;; =
t?egm
then 0 < Gap;; < GAP should hold, where GAP is
a threshold for maximum time gap between any two
linkable tracks.

— tie“d be the time gap between these two tracks,
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The spatial constraints enable us to focus only on inter-
camera tracking, as well as eliminate those practically infea-
sible track associations. The temporal constraints prevent us
from linking track pairs with time overlap, as one individual
cannot appear at two different places at the same time. The
threshold GAP avoids track pairs outside the time sliding
window to be considered.

Given a set of tracks, the linkability of any two tracks is
evaluated according to the above spatiotemporal constraints.
A set of vertices V is created, and each vertex in V denotes
a pair of linkable tracks as

v ={v = (1. 77)}
s.t. T can be linked to Tiz. 4)

1

In order to build edges between the vertices in the CRF
graph, we first find elementary groups in each single camera.
Elementary group is a flexible structure for within-camera
grouping analysis [8]. An elementary group is a group includ-
ing only two people, and they move with similar motion
pattern and are temporally close to each other. Because the
number of groups and the sizes of groups in the scene are
unknown and may change over time, learning the complete
group structure directly is quite challenging. Elementary group
provides a simple but effective way for inferring useful group
information, since a group of any size can be presented by
a set of elementary groups. Note that the elementary group
analysis is carried out in an online mode.

In a single camera, track 7; forms an elementary group
with T; if they have the following properties: 1) T; and T;
co-exist for at least # s (¢ is set to 2 in our experiments) and
2) the angle between the velocities of 7; and 7 is smaller
than 45°. The first constraint guarantees that the two tracks in
an elementary group are temporally close to each other. As we
assume there is only a small variation in the walking speed
of most pedestrians, two targets are considered as dynami-
cally correlated if they walk toward approximately the same
direction. We consider only the moving direction of a target
and do not use its walking speed during elementary group
learning. Because the velocity of each target is calculated
based on its corresponding detections on the image plane using
a Kalman filter. The computed velocity is not as precise as the
one obtained by projecting locations of a target into the 3D
scene coordinates. However, camera parameters are required
for computing such projection, and not every surveillance
video sequence comes with this information.

Unlike [8], we relax the elementary group criterion by
removing the spatially close constraint. The groups we are
interested in not only refer to acquaintances who are walking
side by side, but also include people who do not know each
other but have similar motion pattern, such as one person
is following the other toward the same destination. In the
second situation, the distance between the two pedestrians
may not be very close. Thus, interpersonal distance is ignored
when forming elementary groups, so that more leader—follower
instances can be detected. Moreover, for pedestrians that are
too far away, they will not appear together for a long time
in the same scene, as one would exit the scene much earlier
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than the other. We assume that if two people are observed
appearing together and have similar motion pattern in one
camera, then they are likely to reappear together in a neigh-
boring camera. Thus, we can improve track association across
cameras with elementary grouping information in each single
camera.

Let EG = {g; = (Tlf, T;,)} be the set of elementary groups
found in all cameras. An edge is created for two vertices
v = (Til, Tiz) and v; = (le, sz), if at least one elementary
group can be formed by the four involved tracks. Mathemati-
cally, we define a set of edges E for the CRF graph as

E = {(i,vj)} Yvi, vjeV

st. (T, 1}) e EG or (T2, T}) e EG.  (5)

Moreover, edges are divided into conflicting ones and non-
conflicting ones. A conflicting edge means that the connected
two vertices cannot be assigned with label 1 at the same
time, in order to guarantee a valid label set. Note that the
edges are created between vertices containing targets with
the same motion direction, e.g., from Cam; to Camj. During
tracking, the set of track pairs that maintains the overall group
consistency are more likely to be associated. In the example
shown in Fig. 2, two elementary groups (71, T>) and (73, T4)
are found based on all the input tracks. Therefore, if we know
T and T3 have a high probability to be associated, then
the probability for linking 7> and 74 should be increased,
as the same group of people are likely to reappear together
in a neighboring camera. Besides overall group consistency,
the associated tracks should also keep appearance consistency
according to the online learned target-specific appearance
models. Both the group and the appearance consistency
are estimated using the online learned pairwise costs
(see Section III-D).

C. Unary Energy Functions

Unary energy functions in (2) evaluate the energy cost for
linking two tracks. The cost is defined as the negative log-
likelihood of two tracks being the same target according to a
global appearance model Papp, (-)

U(ll :1|T):_1nPappl(Tll» lelT) (6)

1) Track Division: In a track, detections from adjacent
frames often have high appearance similarity. In order to
reduce redundancy and create concise and robust represen-
tation, for each track we combine visually similar detections
into a subtrack and consider each subtrack as an appearance
instance of a target, as used in [35].

More specifically, given a track, its first detection is used as
a reference detection for its first subtrack. Following detections
that have high appearance similarity (>0.9) compared with
the reference detection are included into the first subtrack.
When the similarity of a detection to the reference detection
is below 0.9, this detection is considered as the reference
detection for the next subtrack. The process continues until
we reach the end of the track. In addition, we set the maximal
length of a subtrack to 20 frames (about 1 s) to ensure that
there is no large pose variation for detections contained in the
same subtrack.
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I A

(a) Target Image (b) Source Image (c) Transformed Image

Fig. 3. Example of applying the color transfer method on images obtained
by two different cameras. (a) Camarget (outdoor). (b) Camgource (indoor). The
full image frames captured by each camera are shown in the first row. The
person appears in both cameras and its corresponding HSV color histograms
are presented in the second row. It is obvious that the person in (c) transformed
image is more like the person in the target image based on HSV color
histograms.

2) Color Transfer: In order to compute appearance sim-
ilarity of tracks from different cameras, we first need to
handle appearance variance across cameras. In this paper, we
adopted the color transfer method proposed in [25] and [38]
as a preprocessing step to normalize color between different
cameras. Given two images, the color transfer method achieves
color normalization by imposing the color characteristics of
one image (target image) onto the other (source image), as
shown in Fig. 3. In our experiments, the first full image from
one camera is used as the target image, and the images from
other cameras are considered as source images.

As correlations exist among the three different color chan-
nels of the RGB color space [38], to change the color of one
pixel, the values of this pixel in all channels must be modified.
Such correlations are undesirable for color transfer. Therefore,
images are transferred from the original RGB color space to
the laf color space, where there is little correlation between
different color channels. Then, the target image is transformed
according to the color characteristics exacted from the source
image, as

I
I = —’l(ls —mls) —i—mi

s
o

= 2 =)+

* O-tﬁ B s

ﬂ ZJ_ﬁ(ﬂS_mg)—i_mt (7)

s

where [, a, and f represent the pixel value in a corresponding
color channel, m and o denote the mean and standard deviation
of one image. The target and source images are indexed by
subscript f and s, respectively. [[*, a*, f*] is the representation
of the transformed image in the laf color space. After color
transformation, the transformed image is converted back to the
RGB color space from the /af color space.

Given two tracks T; and T; with Cam(7;) # Cam(T}),
HSV color histograms are extracted from each detection. The
average of HSV color histograms from the same subtrack is
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regarded as one appearance descriptor for the target contained
in the track. W subtracks are randomly selected from each
track, and their average similarity is used as the similarity for
T; and T;. Mathematically, the global appearance model for
T; and T; is defined as

w
1 o
Papp, (T3, T5|T) = W z BC(d,, d;) (8)
n=1

where d is the nth randomly selected subtrack in track 7;.
BC(:) is the Bhattacharyya coefficient [39], it is used as a
measure for the appearance similarity of two subtracks.

D. Pairwise Energy Functions

The pairwise energy functions are formulated according to
the global grouping cues and the target-specific appearance
cues, as defined in

B(l;, 1j1T) = —In(Pgroup (i, [j1T) X Papp, (i, 1;1T))  (9)

where Pgoup is the probability of maintaining group consis-
tency for a specific assignment of (/;,/;), and Papp, is the
probability of keeping appearance consistency based on the
value of /; and /;. Details for Pgroup and Pypp, are presented
in the following parts.

1) Group Consistency: According to the observation that
two people walking together for a certain time in one camera
are likely to reappear together in a neighboring camera, given
the labels of two connected vertices in the graph, we can infer
its probability of maintaining group consistency.

Let v; = (Til, Tiz) and v; = (le, sz) be two possible
track associations, without knowing the edge configuration of
the graph, the probability of maintaining group consistency
for a specific label assignment of (/;,/;) is 1/C, where C is
the number of all possible values for (/;,/;). Assuming we
know v; is connected to v; in the graph, which indicates
that Cam(Tl.l) = Cam(le), Cam(Tiz) = Cam(sz). If both
(Til, le) and (Tiz, sz) are elementary group, then assigning
(/i,1;) to (1, 1) maintains the group consistency. For instance,
in the example shown in Fig. 2, as (71, T») and (73, Ty) are
both elementary groups in Cam; and Camy, then assigning
(1, 1) to vertices (T, T3) and (7>, T4) keeps the group consis-
tency compared with the other alternatives [i.e., (1,0), (0, 1),
and (0, 0)]. Based on the above analysis, a group consistency
score Sgroup for each edge is defined below

: 1 1 2 2
L, if (T, T)) € EG, (T?,T}) € EG
Seroup(i, 1j1T) = and ; =1; =1

—, otherwise.
C
(10)
To define Pgroup, We normalize Sgroup to have a summation
equal to one to fit the requirement of a probability, as
Sgroup(li > lj |T)
Zl;,l_/ Sgroup(lia lj|T) .

Note that if (v;,v;) is a nonconflicting edge, C = 4, as
there are four possibilities, i.e., (1, 1), (1, 0), (0, 1), (0, 0), for

Pgroup(li;lj|T) = (1D
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Fig. 4. Local patches (indexed from 1 to 15) with various scales are defined
at different locations of a detection. Patches 1-6 have the same size and are
served as basic patches, patches 7-14 are different combinations of basic
patches, and patch 15 captures the middle third region of a detection.

the label assignment of (/;, ;). But if (v;, v;) is a conflicting
edge, indicating /; and /; cannot have label 1 at the same time,
then C = 3 for such cases.

2) Local Appearance Consistency: It is obvious that from
group consistency alone we cannot obtain sufficient informa-
tion to make confident track association decisions. Therefore,
we integrate local appearance consistency into the pairwise
energy functions. An edge possesses local appearance consis-
tency if the label given to each related vertex is in accordance
with appearance similarity/dissimilarity of the corresponding
track pair.

Mathematically, given an edge (v;,v;), where v; contains
track pair (7,', 7*) and v; includes (le, sz). Let App;; be a
discriminative appearance model learned for track Tik , which
produces high similarity for a track that contain similar target
as T.k, and gives low similarity otherwise. Then, we define

1
Papp, as

Papp, (li = 1,1j = 1|T) = P(l; = DP(; = 1)

Papp, (li = 1,1; = 0IT) = P(; = )(1 = P(; = 1))

Papp, (li = 0,1; = 1|T) = (1 — Pl = ) P(l; = 1)

Pupp, (i = 0,1; =0|T) = (1 — P(l; = 1))(1 — P(l; = 1))
(12)

where P is the probability of two tracks that contain the same
person based on the discriminative appearance model App.
It is defined as P(l; = 1) =0.5 x (App,-l(Tiz) + Appiz(Til)).

The discriminative appearance model for each track is
learned online using AdaBoost. We capture the appearance
information of each target using various features, such as
HSV color histograms [40], local binary pattern (LBP) [41],
histogram of gradient (HOG) [42], and color names [43].
Each feature descriptor is computed at different local patches
defined on a detection, as shown in Fig. 4. We resize each
detection to 63 x 27, and extract the target contained therein
using background subtraction. Local patches are defined at dif-
ferent locations with various scales to increase the descriptive
ability. Features of the same type in one subtrack are averaged
to construct a concise representation for the target. In general,
one track may contain several subtracks, and there are in total
15 x 4 = 60 features for each subtrack.

Given two subtracks #, and ?#,, comparing each of the
60 appearance feature descriptors produces one appearance
similarity. A concatenation of the 60 similarities scores forms a
feature vector f (4, 1p). In our experiments, different methods
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are used to measure the similarity between different types
of features. Bhattacharyya coefficient [39] is used for color
histograms and HOG features, y2 distance is used for LBP
features, and cosine similarity is used for color names.

AdaBoost adaptively learns a strong classifier using a num-
ber of weak classifiers that minimizes the overall classification
error. The generated strong classifier is a linear combination of
weak classifiers, and the weight for each selected weak classi-
fier indicates its importance. In our target-specific appearance
model, the similarity computed from each feature is used
in a weak classifier, and the learned appearance model is
formulated as

T
H(f (tas t5)) = D aths (f (tas 1))

t=1

13)

where T is the number of total iterations, a, is the weight-
ing parameter assigned during the learning process, and
he(f(tq,1p)) is a weak classifier based on one of the features
extracted from subtracks ¢, and 7.

In order to learn the discriminative appearance model online
for each target, we collect training samples during track
association. Given a track Ty, a pair of subtracks can form
a positive training sample if they are two different subtracks
in Ty. A negative sample can be generated by two subtracks
if one of them is from 7, and the other is from another track
that has time overlap with 7. Therefore, a positive sample
consists of feature similarities of the same target, while in a
negative sample the feature similarities are calculated from
two different targets.

Once the discriminative appearance model is learned for a
target, we can compute the appearance similarity between this
target and the other targets using

w
Appi (T7) = D Hin (£ (1. 18))) (14)
w=1

where App;; is the target-specific appearance model learned
for track Til, and it is used to compute the similarity between

Ti1 and Tiz. We randomly select W subtrack pairs from both
tracks, and use the average of their similarity for the similarity
of the track pair.

Note that both the global appearance model Pypp, in the
unary energy function and the local appearance model Papp,
in the pairwise energy function are defined to compute the
visual similarity of two linkable tracks. However, the local
appearance model in the pairwise energy function only applies
to the vertices that have edge in the CRF graph, while all the
vertices in the CRF graph are required to compute the global
appearance affinity using the unary energy function. The local
appearance model is generated by online AdaBoost learning,
which has higher computational cost as compared with the
global appearance model. Therefore, to improve the efficiency,
local appearance model is not integrated in the unary energy
function.

In the proposed tracking method, appearance affinities of
all linkable track pairs are computed. The association of two
tracks indicates that they are visually similar. Keeping the
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appearance consistency of each member in the group implies
that the group-level appearance consistency is also maintained.

E. Energy Minimization Algorithm

We formulated the across-camera multitarget tracking
task as an energy minimization problem using CRF model,
as shown in (2). Since the proposed CRF model does not
follow the submodularity principle (see the Appendix),
we cannot obtain exact inference using the global graph
cut optimization techniques [44]. Moreover, traditional
approximation approaches for CRF, such as loopy belief
propagation (LBP) and alpha expansion, cannot be directly
applied for our problem, as solutions produced by these
methods may not satisfy the constraint for a valid label set
[see (3)]. Therefore, we developed an iterative approximation
algorithm to find a good labeling solution.

More precisely, we first obtain an initial labeling of all
vertices using only Hungarian algorithm with unary costs,
similar to [35]. As Hungarian algorithm allows only one
assignment for each participant, this ensures the initial label
set to be a valid one. Then, vertices assigned with label 1, i.e.,
the selected track associations, are sorted in ascending order
according to their unary costs. Next, for each label 1 vertex,
we find all edges that are connected to the current vertex.
For each of these edges, all other label configurations are
considered, and the one with the minimal graph energy cost is
selected. Note that, for a conflicting edge, there are only three
labeling possibilities: (1,0), (0, 1), and (0, 0). If the chosen
label configuration generates an energy cost lower than the
current one, we update the label set with the change. In order
to maintain the constraints for a valid label set, each time
when the label of a vertex changes from O to 1, we check
if the constraint in (3) is violated. When violations exist, the
new update is preferred.

A summary of the energy minimization algorithm is
provided in Algorithm 1.

Our proposed energy minimization algorithm finds the label
set in a greedy fashion, thus, it may lead to a local optimal
solution. However, a better solution, i.e., a label set with
lower energy cost, is achieved after each iteration. Therefore,
it ensures that we achieve better tracking results than using
unary costs only.

IV. EXPERIMENTS

To validate the effectiveness of the proposed tracking
approach, it is compared with several baseline methods and
the state-of-the-art approaches. We carried out experiments on
four different sets of data that are publicly available.

A. Data Sets

Although multitarget tracking in surveillance cameras has
been studied for several years, there are fewer public data
sets available for real-world multicamera tracking as com-
pared with single camera tracking. In this paper, we use
the NLPR_MCT data set [7] to evaluate the performance of
the proposed method. The NLPR_MCT data set has both
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Algorithm 1 Algorithm for Finding Labels With Low Energy

Cost

Input: Tracklet set T = {71, .., T,}; CRF graph G = {V, E}

QOutput: A label set L

1: Use Hungarian algorithm to find an initial label set L with
the lowest unary energy cost, and evaluate current graph
energy cost ¥ in Eq. 2.

2: Sort label 1 vertices according to their unary costs as
{o1, ..., 0m}

3:fori=1,..,m do

4 Find a set E; including all edges connecting to v;

5 Set updated graph energy cost ¥ =400

6: for all e = (v;,vy) € E; do

7

8

9

Change labels of (v;, vy) to a untested possibility,
maintain constraints for a valid label set,
evaluate the new graph energy cost W,y

10: if Yiew < ¥’ then

11: ¥ =Y

122 if ¥ < ¥ then

13: Y=y

14: Update L with the change

Fig. 5. Camera topology for Datasetl and Dataset2. Cam| and Cam; are
outdoor cameras, and Cams is an indoor camera.

Passage CAM2

Fig. 6. Camera topology for Dataset3. Cam|—Camy are all indoor cameras.

the outdoor and indoor scenarios. In addition, there exists
illumination variations across cameras, which makes it a very
challenging data set for multitarget tracking.

Four different subdata sets are contained in the NLPR_MCT
data set, and each of them corresponds to a nonoverlapping
multicamera network. Dataset] and Dataset2 have the same
camera setting, including three cameras (two outdoor and
one indoor), as shown in Fig. 5. Dataset3 contains four
videos that are captured by four indoor cameras, the topology
of these cameras is shown in Fig. 6. The nonoverlapping
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Parking Area

CAM3

CAM2

Fig. 7.
Camp—Camjs are all outdoor cameras.

Camera topology for Dataset4. Cam; is an indoor camera and

TABLE I
SPECIFICS FOR EACH SUBDATA SET IN THE NLPR_MCT DATA SET [7]

Dataset1 Dataset2 Dataset3 Dataset4
# of Cameras 3 3 4 5
Resolution 320 x 240 | 320 x 240 | 320 x 240 | 320 x 240
Duration 20min 20min 3.5min 24min
# of Targets 235 255 14 49
Frame Rate 20fps 20fps 25fps 25fps

camera network of Dataset4 consists of four outdoor and
one indoor cameras, the topology of these cameras is shown
in Fig. 7. More specifics for each subdata set are listed
in Table I.

It is clear that the quality of input tracks, i.e., within-
camera tracking results, will greatly affect the performance
of multitarget tracking across cameras. In order to have a
fair comparison on the cross-camera tracking ability, first,
we use the same input tracks for all the tested methods
in our experiments. The input tracks are the single camera
tracking ground truth provided in the NLPR_MCT data set.
Then, the estimated single camera tracking results are used
to validate the robustness of the proposed tracking method
against imperfect input.

B. Evaluation Metrics

As has been noticed in multitarget tracking in a single
camera that it is very difficult to have a direct quantitative
comparison of different tracking approaches due to the lack
of a standardized benchmark [46]. The same issue persists
in multitarget tracking across cameras. Inspired by the widely
used CLEAR MOT metrics [47] for single camera multiobject
tracking, the NLPR_MCT data set provides an evaluation met-
ric, multicamera tracking accuracy (MCTA), which is a single
scalar metric that combines the detection accuracy (detection),
the single camera tracking accuracy (trackingSCT), and the
inter-camera tracking accuracy (tracking'T). The definition of
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Camera 1

Our Model

Camera 2
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Camera 3

Baseline1

Frame 2296

Frame 3480

Time

\4

Fig. 8. Visual comparison of our model (the first row) and Baselinel (the second row) on Datasetl. It is observed that Baselinel mistakenly identifies a new
target in Camera 3 (the one pointed by arrow) as target 3, while our model avoid this error by maintaining the group consistency between targets 3 and 4.
Bounding box with the same color indicates the same target. Best viewed in color.

MCTA is given below

MCTA = Detection x TlrackingSCT X TrackingICT

_ 2 x precision x recall |- >, mme;
precision + recall >ty
C
y (1 _ m) (15)
2t

where precision and recall reflect the performance of the object
detector, mme; is the number of mismatches (i.e., ID-switches)
for time ¢ in a single camera, and mme{ is the number of
mismatches for time ¢ across different cameras, tp; and tp§
are the number of true positives for time 7 within camera
and across cameras, respectively. Note that, according to the
defined criteria, when a new target first enters the scene, it
produces a new cross-camera true positive instead of a within-
camera true positive.

The MCTA metric ranges from O to 1, a higher value
indicates a better tracking performance. In order to focus on
the ability of across-camera multitarget tracking, we first use
single camera tracking ground truth as input tracks. Therefore,
the first two terms in (15), i.e., Detection and TrackingSCT,
both have value 1. The cross-camera tracking performance
is only affected by mme®, the number of mismatches across
cameras.

C. Experimental Results

In this evaluation, our goal is to link tracks in different
camera views that contain the same target under certain
spatiotemporal constraints. The number of cross-camera true

TABLE II

NUMBER OF SINGLE CAMERA TRUE POSITIVES (TPy)
AND CROSS-CAMERA TRUE POSITIVES (TP.)
IN EACH SUBDATA SET

Datasetl Dataset2 | Dataset3 | Dataset4
TPs 71853 88419 18187 42615
TP, 334 408 152 256

positives in each subdata set is shown in Table II. We introduce
two baseline models for comparison.

1) Baselinel: Use only Hungarian algorithm with global

appearance model, no grouping information is used.

2) Baseline2: Our proposed CRF model without the local

appearance consistency in (9).

A quantitative comparison of our proposed model and the
baseline models using single camera tracking ground truth as
input is shown in Table III. It is observed that our proposed
model significantly improves the tracking performance on
all subdata sets compared with Baselinel. For Datasetl and
Dataset2, our model increases MCTA by almost 0.3. For
Dataset3, the improvement with respect to MCTA is 0.25. The
largest improvement is achieved in Dataset4, where the MCTA
improves by 0.46 when our proposed model is used. Therefore,
it is validated that by integrating social grouping information
we can achieve a better tracking performance, since high-level
context provides other useful information that is not included
in low-level features. A visual comparison of our model and
Baselinel on Datasetl is shown in Fig. 8.

In Baseline2, only group consistency is taken into account
for edge cost calculation in the CRF graph. The tracking
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Camera 1

Our Model

Baseline2

Frame 7720

Camera 2

Frame 8184
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Camera 3

Frame 9188

Time

\4

Fig. 9. Visual comparison of our model (the first row) and Baseline2 (the second row) on Dataset2. In the result of our model, target 28 and 29 are correctly
tracked in all cameras. But their IDs are switched in Camera 3 in the result of Baseline2, due to the lack of local appearance consistency. Bounding box with

the same color indicates the same target. Best viewed in color.

TABLE III
COMPARISON OF CROSS-CAMERA TRACKING RESULTS ON THE NLPR_MCT DATA SET WITH SINGLE CAMERA TRACKING GROUND TRUTH AS INPUT

Method Datasetl Dataset2 Dataset3 Dataset4
mme® | MCTA | mme® | MCTA [ mme® | MCTA | mme® | MCTA
Baselinel 156 0.5329 197 0.5172 89 0.4145 150 0.4141
Baseline2 91 0.7275 102 0.7500 62 0.5921 118 0.5391
This paper 54 0.8383 81 0.8015 51 0.6645 70 0.7266
USC-Vision [24] 27 0.9152 34 0.9132 70 0.5163 72 0.7052
Hfutdspmct [45] 86 0.7425 141 0.6544 40 0.7368 155 0.3945
CRIPAC-MCT [45] 113 0.6617 167 0.5907 44 0.7105 110 0.5703

performances of Baseline2 on all subdata sets are better than
that of Baselinel, which further validates the effectiveness
of grouping information for track association. Comparison
between our proposed model and Baseline2 indicates that local
appearance consistency plays an important role in eliminating
incorrect track association, as it requires that the linked track
pair should not only have a high appearance similarity in the
global appearance model but also be visually similar according
to the local appearance model. A visual comparison of our
model and Baseline2 on Dataset2 is shown in Fig. 9. In Fig. 10,
we provide the tracking results of our model on Dataset3.
More tracking results on Dataset4 using the proposed method
are shown in Figs. 1 and 11.

In addition, the proposed CRF model is compared with
other methods for tracking in multiple nonoverlapping cam-
eras. These methods are reported in the multicamera object
tracking (MCT) challenge [45] held at ECCV 2014 visual
surveillance and reidentification workshop. We select the
top three methods for comparison, their corresponding tracking

performances on each subdata set with single camera ground
truth as input are shown in Table III, with USC-Vision [24]
being rank 1, Hfutdspmct being rank 2, and CRIPAC-MCT
being rank 3.

The proposed tracking method takes advantage of social
grouping information to produce robust track association.
Thus, the more occurrences of across camera grouping, the
more benefit can be gained. By analyzing the videos in
the four subdata sets, we found that the number of times
that two pedestrians walking together in one camera for a
while and then reappear together in a neighboring camera
are 32, 79, 14, and 57 for Datasetl-Dataset4, respectively.
Since there are 334, 408, 152, and 256 cross-camera true
positive track associations in the four subdata sets, respectively
(see Table II), the percentages of true positive track associa-
tions that involve across camera grouping are 19.2%, 38.7%,
18.4%, and 44.5% for Datasetl-Dataset4. According to the
results shown in Table III, our proposed model takes advantage
of the adequate grouping information contained in the videos
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Camera 2 Camera 1

Frame 4480 Frame 4604

Frame 4789 Frame 4981

Time

A
7

Fig. 10. Sample tracking results of our proposed method on Dataset3. In the first row, by taking advantage of the grouping information, targets 55 and 56
are successfully tracked in all cameras, even under significant within- and across-camera illumination changes. In the second row, target 162 in Camera 4 is
not correctly linked to the same target (target 175) in Camera 3. This target is severely occluded by target 161 in Camera 3, even with group information
we are unable to link them, as such association does not maintain appearance consistency. Bounding box with the same color indicates the same target. Best

viewed in color.

Camera 1

Camera 2

Frame 3829 Frame 5250

Camera 3

Frame 6053

Camera 4 Camera 5

s

Frame 8577 Frame 9831

Time

Fig. 11.

\ 4

Sample tracking results of our proposed method on Dataset4. Target 30 is correctly tracked in all cameras. Target 36 in Camera 3 is mistakenly

linked to another target in Camera 4 (pointed by green arrow). This error occurs because the two targets with green arrow in Cameras 3 and 4 have group
consistency (both of them form an elementary group with target 30) and appearance consistency (they are visually very similar). Bounding box with the same

color indicates the same target. Best viewed in color.

in Dataset4 and achieves the highest MCTA on this subdata set.
For Datasetl and Dataset2, where there is less grouping infor-
mation as compared with Dataset4, our proposed model has
the second highest MCTA compared with the state of the art.

Due to the narrow view point for cameras in Dataset3
(see Fig. 10), each target enters and exits the scene in a
very short time. It is difficult to detect elementary groups,
as two targets can form an elementary group only if they
co-exist for at least 2 s in our experiments. In Dataset3, the
median length of all tracks is 3.9 s, while in other subdata
sets the median length is at least 5.5 s. Therefore, among
all the four subdata sets, the proposed method has the lowest
MCTA on this data set. Although current setting of parameters
for elementary group learning may not be the best choice for
all subdata sets, it has been shown to be reasonable, as the
tracking performance of the proposed method has better or

comparable performance on all subdata sets compared with
the state of the art. In order to learn a set of better parameters,
more prior knowledge about the scene and the traffic would
be necessary. This could be an interesting future direction for
this paper.

Furthermore, to validate the robustness of the proposed
method against imperfect input, estimated single camera
tracking results are used for track association across cameras.
Some previous work handles tracking using a species-based
particle swarm optimization algorithm [48]. In this paper,
the multitarget tracking model in [8] is employed to generate
single camera tracks for our method. In this single camera
tracking, occlusion is handled through tracklet association.
Given a video sequence, a human detector is, first, applied
to each frame to produce detection responses. For video
frames where occlusion among targets exists, the occluded

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 18,2020 at 20:08:42 UTC from IEEE Xplore. Restrictions apply.



CHEN AND BHANU: INTEGRATING SOCIAL GROUPING FOR MULTITARGET TRACKING ACROSS CAMERAS IN A CRF MODEL 2393
TABLE IV
COMPARISON OF CROSS-CAMERA TRACKING RESULTS ON THE NLPR_MCT DATA SET WITH
ESTIMATED SINGLE CAMERA TRACKING RESULTS AS INPUT
Method Datasetl Dataset2 Dataset3 Datasetd
mme® [ mme€ [ MCTA | mme?® [ mme° [ MCTA | mme? [ mme€ [ MCTA | mme?® [ mme° [ MCTA
This paper 101 61 0.8162 177 92 0.7730 149 133 0.1240 103 137 0.4637
USC-Vision [24] 63 35 0.8831 61 59 0.8397 93 111 0.2427 70 141 0.4357
Hfutdspmct [45] 77 84 0.7477 109 140 0.6561 105 121 0.2028 97 188 0.2650
CRIPAC-MCT [45] 135 103 0.6903 230 153 0.6234 147 139 0.0848 140 209 0.1830

targets have missed detections. Then, detection responses in
consecutive frames that have a high probability to contain
the same person are associated with form tracklets (trajectory
fragments). Association of detections is based on visual
similarity and overlap between the detection bounding
boxes. Afterward, a global optimization method is employed
to associate tracklets according to multiple cues, such as
appearance, time, motion, and social grouping behavior.
Finally, the missed detections are inserted by interpolation
between linked tracklets.

Experimental results of our proposed model and the state-
of-the-art approaches with estimated single camera tracking
results as input are shown in Table IV. Note that different
single camera tracking methods are used for the cross-camera
tracking models compared in Table IV. Comparing the results
from Tables III and IV, it is obvious that the quality of input
tracks has a great impact on the performance of multicamera
tracking. In general, the tracking performance of all tested
methods degrade when imperfect single camera tracks are used
as input. According to the results in Table IV, the proposed
method still achieves better or comparable performance on all
subdata sets when compared with the state of the art, which
proves the robustness of our model against noise input.

V. CONCLUSION

In this paper, we presented a novel CRF model-based frame-
work for multitarget tracking across a network of nonoverlap-
ping cameras. The proposed model is able to systematically
integrate social grouping behavior as the high-level contextual
information for reducing ambiguities in track association.
Experiments on four challenging real-world data sequences
validated the effectiveness of our model. When there is rich
grouping information in the scene, the tracking performance is
significantly improved with the learned high-level contextual
information. Possible future work would be to learn more
discriminative representations for the targets.

APPENDIX

It has been shown in [44] that a CRF model is exactly
solvable by graph cut in polynomial time, if the CRF model
only contains potentials of up to two variables and the energy
function satisfies submodularity. Submodularity is maintained

if for each pairwise term B%/, the following condition holds:
BY(1,0) 4+ BY(0,1) > BY(1,1) + BY(0,0).  (16)

Since there might exist conflicting edges in our proposed
CRF model, we do not allow assignment (1, 1) for such edges.

In other words, for a conflicting edge, its corresponding edge
cost of B(1,1) = oo. Therefore, (16) cannot hold for all
pairwise terms in our energy function, and graph cut is not
applicable.
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