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Multiperson Tracking by Online Learned Grouping
Model With Nonlinear Motion Context

Xiaojing Chen, Zhen Qin, Le An, and Bir Bhanu, Fellow, IEEE

Abstract— An online approach to learn elementary groups
containing only two targets, i.e., pedestrians, for inferring high-
level context is introduced to improve multiperson tracking.
In most existing data association-based tracking approaches, only
low-level information (e.g., time, appearance, and motion) is used
to build the affinity model, and each target is considered as
an independent agent. Unlike those previous methods, in this
paper, an online learned social grouping behavior model is used
to provide more robust tracklet affinities. A disjoint grouping
graph is used to encode social grouping behavior of pairwise
targets, where each node represents an elementary group of
two targets, and two nodes are connected if they share a common
target. Probabilities of the uncertain target in two connected
nodes being the same person are inferred from each edge of the
grouping graph. Relationships between elementary groups are
discovered by group tracking, and a nonlinear motion map is
used for explaining nonlinear motion pattern between elementary
groups. The proposed method is efficient, able to handle group
split and merge, and can be easily integrated into any basic
affinity model. The approach is evaluated on four data sets, and
it shows significant improvements compared with state-of-the-art
methods.

Index Terms— Data association, elementary grouping model,
multitarget tracking, social grouping behavior.

I. INTRODUCTION

AUTOMATIC tracking of multiple targets simultaneously
in real-world scenes has been an active research topic

in computer vision for many years, as it is crucial for many
industrial applications and high-level analysis, such as visual
surveillance, human–computer interaction, and anomaly detec-
tion. The goal of multitarget tracking is to recover trajectories
of all targets while maintaining consistent identity labels.
There are many challenges for this problem, such as illumina-
tion and appearance variation, occlusion, and sudden change
in motion [1], [2]. As great improvement has been achieved
in object detection, data association-based tracking (DAT) has
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Fig. 1. Examples in which grouping information is helpful under the
challenging conditions for tracking in a video. The same color indicates
the same target. Note that for both targets with bounding boxes, there are
significant appearance and motion changes due to occlusions and cluttered
background. Images are from CAVIAR data set [8].

become popular recently [3]–[7]. In the DAT framework, often
a prelearned detector is applied on each frame to produce
detection responses of all targets, and short-term tracking
results (i.e., tracklets) are generated by associating responses
from consecutive frames that have high probability to contain
the same target. These tracklets are further linked to pro-
duce long-term tracking results. An affinity model integrating
multiple visual cues (appearance and motion information) is
formulated to find the linking probability between tracklets,
and the global optimal solution is often obtained by solving
the maximum a posteriori problem using various optimization
algorithms.

Although much progress has been made in building more
discriminative appearance and motion models, problems such
as identity switch and track fragmentation still exist in cur-
rent association-based tracking approaches, especially under
challenging conditions where appearance or motion of the
target changes abruptly and drastically, as shown in Fig. 1.
The goal of association optimization is to find the best set
of associations with the highest probability for all targets,
which makes it not necessarily capable of linking each of
the difficult tracklet pairs. In this paper, we explore high-
level contextual information, i.e., social grouping behavior, for
associating tracklets that are very challenging using only lower
level features (time, appearance, and motion).

1051-8215 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Overview of the elementary grouping model.

When there are only a few interactions and occlusions
among targets, DAT achieves robust performance. Discrim-
inative descriptors of targets are usually generated using
appearance and motion information from tracklets. Appear-
ance model often uses global or part-based color histograms
to match tracklets, and a linear motion model that assumes
all targets maintain constant speed without motion direction
change is often adopted to constrain motion smoothness of two
tracklets. However, these low-level descriptors generally fail
to associate tracklet pairs with long time gap. This is because
the appearance of a target might change drastically due to
heavy occlusion, and the linear motion model is unreliable for
predicting location of a target after a large time interval.

Nevertheless, there is often other useful high-level contex-
tual information in the scene, which can be effectively used
to mitigate the aforementioned shortcomings. For instance,
sociologists have found that up to 70% of pedestrians tend
to walk in groups in a crowd, and people in the same group
are more likely to have a similar motion pattern and be
spatially close to each other for better group interaction [9].
Moreover, pedestrians in the crowd often either consciously
or unconsciously follow other individuals with a similar des-
tination to facilitate navigation [10]. It is also observed in
many real-world surveillance videos that if two people are
walking together at certain time, then it is very likely that these
two people will still walk together after a short time period.

Based on the above observations, we propose an elementary
grouping model with nonlinear motion context to compensate
for the errors caused using basic appearance model and linear
motion model. A grouping graph is constructed based on input
tracklets with high confidence, where each node represents a
pair of tracklets that form an elementary group (a group of two
targets) and each edge indicates that the connected two nodes
(two elementary groups) have at least one target in common.
The group trajectories of any two linked nodes are used to
estimate the probability of the other target in each group being
the same person. Neighboring tracklets that have time overlap
and a similar motion pattern are possible candidates for
elementary groups. Relationships between elementary groups
are further discovered with the help of group tracking, in
which a nonlinear motion map is used to explain a large time
gap between two elementary groups. The elementary grouping
model is summarized in Fig. 2.

The size of a group may change dynamically as people
join and leave the group, but a group of any size can always
be considered as a set of elementary groups. Therefore,
focusing on finding elementary groups instead of the complete
group makes our approach capable of modeling flexible group
evolution [11] in the real world. Note that the social group
in this paper refers to a number of individuals with correlated
movements and does not indicate a group of people who know
each other.

The rest of this paper is organized as follows. Section II
discusses related work and contributions of this paper, the pro-
posed elementary grouping model is described in Section III,
experiments are presented in Section IV, and Section V
concludes this paper.

II. RELATED WORK AND CONTRIBUTIONS

A. Related Work

Visual tracking has attracted extensive research efforts in
recent years, from individual tracker design [12], [13] to
multitracker fusion [14]. The method proposed in [14] was
the first work that can jointly exploit both the spatial and
the temporal correlation from multiple tracking results, lead-
ing to the state-of-the-art tracking performance. Specifically,
the temporal information helps to identify individual tracker
consistency, and the spatial information is used to establish
pairwise correlation among multiple trackers.

Traditional filtering-based multitarget tracking methods
process videos on a frame-by-frame basis, which are more
suitable for time-critical applications [12], [15]. However, such
greedy methods tend to get stuck at a local optimum, with
the possible solution space growing exponentially in the pres-
ence of observation gaps. Recently, the focus of multitarget
tracking has shifted to robust DAT schemes, due to their
global reasoning ability of the solution space. With a deferred
global inference, DAT is more robust against observation gaps
resulting from heavy interactions and occlusions [16].

Huang et al. [13] first propose to hierarchically associate
detection responses for multiperson tracking. Since then, most
follow-up works focus on designing features for more reli-
able association scores or developing effective optimization
schemes. In the first regime, affinity scores are generally
extracted from appearance information such as color his-
tograms and motion features such as motion smoothness.
Global appearance constraints are exploited to prevent iden-
tity switches in multitarget tracking [17]. Part-based appear-
ance models have been applied in multitarget tracking to
mitigate occlusions [18]. For optimization, bipartite matching
via the Hungarian algorithm is among the most popular and
simplest algorithms [7], [13]. A lot of other optimization
frameworks have been proposed, such as K -shortest path [19],
set-cover [20], linear programming [21], and quadratic
Boolean programming [22].

Most of the works consider only pairwise similarities,
without referring to high-level contextual information. Thus,
problems such as possible abrupt motion changes cannot be
properly accounted for. Yang and Nevatia [23] use a condi-
tional random field for tracking while modeling motion depen-
dencies among associated tracklet pairs. Butt and Collins [24]
carry out a Lagrangian relaxation to make higher order reason-
ing tractable in the min-cost flow framework. These methods
focus on higher order constraints such as constant velocity.
However, both of them [23], [24] concentrate on individuals
and may fail in real-world scenarios, in which individuals may
possess a lot of freedom.

In this paper, we focus on utilizing social grouping infor-
mation for more natural high-level contextual constraints.
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Fig. 3. Block diagram of our tracking system. After initial tracklets are generated by linking detection responses, confident tracklets are selected to form
elementary groups. The relationships between elementary groups are identified by group tracking with nonlinear motion context. Then a disjoint grouping
graph is constructed, from which high-level information (i.e., grouping behavior) is extracted. Finally, tracklet association is carried out based on the affinity
model that combines both high-level and low-level information. Tracklets with the same color contain the same target. For the legends, please see the box on
the upper right-hand side. Best viewed in color.

Social factors have attracted a lot of attention in multitarget
tracking recently, since they are complementary to unreli-
able visual features and are motivated by sociology research.
Pellegrini et al. [25] propose a more effective dynamic model
by leveraging nearby people’s positions. Brendel et al. [26]
also consider nearby tracks as contextual constraints.
Alahi et al. [27] study large-scale crowd destination fore-
casting with social context. Pellegrini et al. [28] improve
trajectory prediction accuracy by inferring pedestrian groups.
In the DAT context, Qin and Shelton [29] seek the consistency
of trajectories in both tracklet association space and tracklet
group assignment space based on visual and grouping cues.
They use gradient-based optimization and K -means cluster-
ing with multiple random initializations. Bazzani et al. [30]
consider joint individual group tracking, with a decentral-
ized particle filter sampling in both individual and group
spaces. Yan et al. [31] explicitly consider group structures
to improve tracking consistency across time. Compared with
these methods, our approach is deterministic with a closed-
form solution. Furthermore, the previous work assumes a
static group structure or a fixed number of groups, while our
grouping scheme is more flexible using elementary groups and
allows for more local refinements.

B. Contributions of This Paper

The contributions of this paper include the following.
1) An approach estimating elementary groups online is

proposed, which infers grouping information to adjust
the affinity model for DAT. This approach is independent
of detection methods, affinity models, and optimization
algorithms.

2) A motion model that takes advantage of nearby non-
linear motion patterns is integrated into group tracking.
It enables the proposed method to explain reasonable
nonlinear motions of targets.

3) The proposed approach based on elementary grouping is
simple and computationally efficient, while it is effective
and robust.

4) Four real-world surveillance data sets are used for
evaluation, and extensive experiments are carried out to
validate the effectiveness of the proposed method.

A preliminary version of this paper appeared in [32]. In this
paper, we have the following major changes and improvements
compared with [32].

1) We study the related work more extensively, and more
recent advances are discussed.

2) We improve our elementary grouping framework by
incorporating a modified motion model for group track-
ing to handle nonlinear motions of targets.

3) We include more details for better understanding of the
technical approach.

4) We conduct more in-depth experiments on more data
sets and provide more comparisons with the state-of-
the-art methods.

III. TECHNICAL APPROACH

In this section, we introduce how the elementary grouping
model is integrated into the basic tracking framework for
tracklet association. An overview of the proposed method is
presented in Fig. 3.

A. Tracking Framework With Grouping

Given a video sequence, a human detector is first applied
to each frame to obtain detection responses. Finding the
best set of detection associations with the maximum linking
probability is the aim of detection-based tracking. In an
ideal association, each disjoint string of detections should
correspond to the trajectory of a specific target in the ground
truth (GT). However, object detector is prone to errors, such as
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false alarms and inaccurate detections. Also, directly linking
detections incur a high computational cost. In order to generate
a set of reliable tracklets (trajectory fragments), therefore, it
is a common practice to prelink detection responses that have
high probability to contain the same person. Next, a global
optimization method is employed to associate tracklets accord-
ing to multiple cues. Finally, missed detections are inserted by
interpolation between the linked tracklets. Detections that do
not belong to any tracklet or tracklets that are too short are
considered as false alarms and removed from the final results.

A mathematical formulation of the tracking problem is given
as follows. Suppose a set of tracklets T = {T1, . . . , Tn} is
generated from a video sequence. A tracklet Ti is a consecutive
sequence of detection responses or interpolated responses that
contain the same target. The goal is to associate tracklets
that correspond to the same target, given certain spatial–
temporal constraints. Let association ai j define the hypothesis
that tracklets Ti and Tj contain the same target, assuming that
Ti occurs before Tj . A valid association matrix A is defined
as follows:

A = {ai j }, ai j =
{

1, if Ti is associated to Tj

0, otherwise

s.t.
n∑

i=1

ai j = 1 and
n∑

j=1

ai j = 1. (1)

The constraints for matrix A indicate that each tracklet should
be associated with and associated by only one other tracklet
(the initial and the terminating tracklets of a track are discussed
in Section IV-A).

We define Si j as the basic cost for linking tracklet
Ti and Tj based on low-level information (time, appearance,
and motion). It is computed as the negative log likelihood
of Ti and Tj being the same target (explained in detail in
Section IV-A). Note that Si j = ∞ if Ti and Tj have overlap
in time.

Let � be the set of all possible association matrices, and
the multitarget tracking can be formulated as the following
optimization problem:

A∗ = argmin
A∈�

∑
i j

ai j Si j . (2)

This assignment problem can be optimally solved by the
Hungarian algorithm in polynomial time. In order to reduce
computational cost, the video is segmented by a predefined
time sliding window, which is fixed to be 12-s long. Tracklet
association is carried out in each time sliding window. There
has to be a 50% overlap between two neighboring time
windows. To handle association conflicts in the overlapping
part of two windows, we use a method similar to [23].
More specifically, the overlapped part is evenly divided into
two parts. In the first half, the tracking results produced by the
previous time window are kept, while in the second half, the
original input tracklets are used despite the association results
from the previous time window.

As low-level information is not sufficient to distinguish
targets under challenging situations, we consider integrating
high-level information from social grouping behavior into

the cost matrix to regularize the solution. However, group
configuration is often not known a priori. Also, it is not
fixed for the entire video, as people might change groups.
Therefore, we propose elementary groups that are learned and
updated online, during the tracking process to provide useful
social grouping information while maintaining the flexibility
of the group structure. Two tracklets Ti and Tj are likely to
correspond to the same target if they satisfy the following
constraints.

1) Each of them forms an elementary group with the same
tracklet, namely, the same target.

2) The trajectory obtained by linking Ti and Tj has a small
distance to the group mean trajectory.

The first constraint is based on the observation that if
two people are walking together for a certain time, then there
is high probability that they will still walk together after a short
time period. The second constraint prevents us from linking
a wrong pair of tracklets. Let Pij be the inferred high-level
information for Ti and Tj , and the tracklet association problem
can be refined as

A∗ = argmin
A∈�

∑
i j

ai j (Si j − αPij ) (3)

where α is a weighting parameter. It is selected by coarse
binary search in only one time window and kept fixed for all
the others.

In the following, we introduce an online method for group
analysis and obtain Pij by making inferences from the
grouping graph.

B. Learning of Elementary Groups

In this section, we explain how the nodes (elementary
groups) of the grouping graph are created. A set of tracklets
is generated after low-level association, but only confident
tracklets are considered for grouping analysis, as there might
be false alarms, which may lead to incorrect associations in
the input tracklets. Based on the observation that inaccurate
tracklets are often the short ones, we define a tracklet as
confident if it is long enough (e.g., it exists for at least
ten frames).

Two tracklets Ti and Tj form an elementary group if they
have the following properties: 1) Ti and Tj have overlap in
time for more than l frames (l is set to 5 in our experiments);
2) they are spatially close to each other; and 3) they have
similar velocities. Mathematically, we use Gij to denote the
probability of Ti and Tj forming an elementary group

Gij = Pt (Ti , Tj ) · Pd (Ti , Tj ) · Pv (Ti , Tj ) (4)

where Pt (·), Pd (·), and Pv (·) are the grouping probabilities
based on overlap in time, distance, and velocity, respectively.
Their definitions are given in

Pt (Ti , Tj ) = Li j

Li j + l
(5)

Pd (Ti , Tj ) = 1

Li j

Li j∑
n=1

(
1− 2

π
arctan(distn)

)
(6)

Pv (Ti , Tj ) = cosθ + 1

2
(7)
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Fig. 4. Two examples (a) and (b) generating incorrect elementary groups if
the distances are not normalized.

where Li j is the length of overlapped frames for Ti and Tj ,
distn is the normalized center distance for Ti and Tj on the
nth overlapped frame, and θ is the angle between the average
velocities of the two tracklets during the overlapped frames.
In our experiments, distn is set as follows:

distn = ration · d/0.5(widthi + width j ) (8)

where ration is the size of the larger target over the size of
the smaller target, d is the Euclidean distance between the
two object centers, and 0.5(widthi + width j ) is the smallest
distance in the image space for two people that walk side by
side. The term ration prevents tracklets as shown in Fig. 4 to be
considered as a group, where the distance in the image space
is small, while the distance in the 3D space is quite large.

We create a node for each pair of tracklets that have
nonzero grouping probability G. Thus, each node contains
two tracklets/targets and is associated with a probability G;
its value indicates the similarity of motion patterns for these
two tracklets during their coexistence period.

Note that if two tracklets form an elementary group, their
group mean trajectory is obtained by computing the mean
position using only their overlapping parts, as the grouping is
meaningful only for the overlapped time period. For example,
if Ta and Tb are in the same elementary group, this indicates
that only Ta and Tb have similar motion patterns for the period
that they have time overlap. During the nonoverlapping period,
Ta may form elementary groups with other tracklets/targets
that are even in a different group than the group of Tb. Such a
property makes the elementary group flexible to handle group
split and merge.

C. Group Tracking

The relationship between two elementary groups is iden-
tified by group tracking. Inspired by association-based mul-
titarget tracking, we define our group tracking as a problem
of finding globally optimal associations between elementary
groups based on the three most commonly used features:
time, appearance, and motion. More specifically, given a set
of elementary groups, we compute the linking cost for any
two groups and obtain the association results by finding the
association set with the minimum total cost.

Let {T gi
1 , T gi

2 } denote the two tracklets in an elemen-
tary group gi . Given two elementary groups gi and g j ,
assuming that gi starts before g j , their linking cost is

Cg(gi , g j ) = Cg
t (gi , g j )+ Cg

appr(gi , g j )+ Cg
mt (gi , g j ), where

Cg
t (·), Cg

appr(·), and Cg
mt (·) are the linking costs based on time,

appearance, and motion, respectively. Similar to (2), let � be
the set of all possible group association matrices, then the
group tracking can be formulated as the following optimization
problem:

Ag∗ = argmin
Ag∈�

∑
i j

ai j Cg(gi , g j ). (9)

The Hungarian algorithm is used to solve this assignment
problem.

1) Time Model for Group Tracking: For the linking cost
based on time, we defined it as

Cg
t (gi , g j ) =

{
0, gi is not overlapped with g j

∞, otherwise
(10)

where the nonoverlapping constraint that means any tracklet
in gi has no time overlap with any tracklet in g j .

If gi and g j contain the same two targets, there are only
two matching possibilities.

1) T gi
1 and T

g j
1 are the same target, and T gi

2 and T
g j

2 are
the same target.

2) T gi
1 and T

g j
2 are the same target, and T gi

2 and T
g j

1 are
the same target.

We explain in detail matching option 1), note that the compu-
tation for matching option 2) is similar. For each matching
option, we compute the linking cost based on appearance
and motion, and use the one with the smaller sum for
Cg

appr(gi , g j ) + Cg
mt (gi , g j ). Also, the matching option is

recorded for each group association.
2) Appearance Model for Group Tracking: Let S(·) be the

appearance similarity for two tracklets, and the group linking
cost based on appearance is defined as

Cg
appr(gi , g j ) = − ln

(
0.5

(
S
(
T gi

1 , T
g j

1

)+ S
(
T gi

2 , T
g j

2

)))
. (11)

As there might be appearance variations in a single tracklet
due to occlusion and lighting changes, it is hard to gen-
erate features that can robustly represent the appearance of
a target. In order to more reliably compute the similarity
between two tracklets, we adopt the modified Hausdorff
metric [33], which is able to compute the similarity of
two sets of images. Given a tracklet Ti that has length mi , let
Ti = {di

1, di
2, . . . , di

mi
}, where di

x is the x th estimation of Ti ,
then S(·) is defined as

S(Ti , Tj ) = min

⎛
⎜⎝ 1

mi

∑
di

x∈Ti

s
(
di

x , Tj
)
,

1

m j

∑
d j

y∈Tj

s
(
d j

y , Ti
)⎞⎟⎠

(12)

where s(d, T ) = maxd ′∈T (scos(d, d ′)) is the Hausdorff simi-
larity between an estimation and a tracklet. A modified cosine
similarity measure [34] scos(·) is used to compute the similarity
between two estimations, which is defined as

scos(u, v) = |uT · v|
‖u‖‖v‖(‖u − v‖p + ε)

(13)

where u and v are the feature descriptors from two images,
‖ · ‖p is the l p norm (we set p = 2), and ε is a small positive
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Fig. 5. Example of estimating motion affinity using the nonlinear
motion map.

number to avoid dividing by zero. In our experiments, we use
the concatenation of HSV color histogram and HOG features
as the feature descriptors.

3) Motion Model for Group Tracking: We measure the
motion affinity of two elementary groups by the motion
smoothness between the group mean trajectories of the two
corresponding elementary groups. The motion cost for linking
two group mean trajectories is defined as the negative loga-
rithm of the motion affinity

Cg
mt (gi , g j ) = − ln

(
G

(
fpredict(gi ,+�t)− p

g j
head,	p

)
· G(

fpredict(g j ,−�t)− pgi
tail,	p

))
(14)

where G(·) is a zero-mean Gaussian distribution, �t is the
time gap between gi and g j , fpredict(gi ,±�t) gives the loca-
tion prediction for the group mean trajectory of gi after (+)
or before (−) �t , and phead and ptail are the head and tail
locations for a group mean trajectory.

In most previous tracking frameworks [2], [29], [35], tar-
gets are commonly assumed to maintain a linear motion
pattern. Thus, fpredict(gi ,+�t) = pgi

tail + v
gi
tail�t and

fpredict(g j ,−�t) = p
g j
head − v

g j
head�t . However, in real-world

scenarios, it is common to observe several nonlinear motion
patterns in the scene. In order to produce more robust motion
affinity for two elementary groups, we use the nonlinear
motion map [5] to explain large nonlinear time gaps between
group mean trajectories. Note that in [5], the nonlinear
motion map is directly used to estimate the motion affinity
of two tracklets, whereas we use it for explaining nonlinear
gap between two elementary groups.

The nonlinear motion map M is a set of all existing nonlin-
ear tracklets in current time sliding window, and the tracklets
are selected only from the confident ones. An example of
estimating motion affinity between ga and gb using a nonlinear
motion pattern Tx in the motion map is illustrated in Fig. 5.
The tracklet Tx ∈ M is a nonlinear motion pattern that has
coexisted in time with both ga and gb, and is a matched
tracklet for the group mean trajectories of ga and gb. Tx is
a matched tracklet that indicates that it is spatially close to
the elementary group and has a similar motion direction as
the elementary group. Then a quadratic curve that best fits
positions at the tail part of ga and the head part of gb is
estimated to fill the path between ga and gb. Therefore, each

group association has a specific quadratic function for its
nonlinear motion estimation. The estimated path is valid only
if Tx is a matched tracklet for it. The motion cost for linking
ga and gb based on nonlinear prediction of locations can be
computed according to (14).

For each pair of elementary groups, both linear and nonlin-
ear motion models are used, and the score with a lower cost is
selected. Note that when only a linear motion model is used,
any trajectory not following the pattern is penalized. With
the nonlinear motion model, we are able to explain nonlinear
motion in the scene without producing extra penalties for
individuals who do not follow a linear motion pattern.

D. Creation of Virtual Nodes

Our goal is to encode grouping structure of the tracklets
by the elementary grouping graph. With elementary groups as
nodes of the graph, we define an edge between two nodes
indicating the existence of at least one common target in
the corresponding two elementary groups. For simple cases
where two nodes have one tracklet in common, we link these
two nodes directly, such as nodes g1 and g2 and g4 and g5
shown in Fig. 3. For difficult cases where there are four
different tracklets in two nodes, we use the results of group
tracking to find their relationship.

Suppose that gi and g j are associated by group track-
ing, namely, these two elementary groups contain the same
two targets. We create two virtual nodes v p and vq , set their
grouping probability G to be the same as that of node g j , and
build edges between gi and the virtual nodes. Note that the
virtual nodes can also be added in the other way (i.e., set G to
be the same as gi and link the virtual nodes to g j ), but these
two options are exclusive to each other. Each virtual node also
contains two tracklets: 1) a virtual tracklet generated by linking
a pair of matched tracklets in gi and g j and 2) the tracklet
left in g j . An example of virtual node creation is presented
in Fig. 3. Based on the association of g2 and g3, two virtual
nodes v1 and v2 are created and connected to g2. Two virtual
nodes are used since there are two pairs of tracklets that need
inference (edge for g2 and v1 indicates inference for T2 and T8;
edge for g2 and v2 indicates inference for T3 and T7). In the
following, we show that using the virtual node inference can
be easily done.

E. Inference From Grouping Graph

In the grouping graph, each node is an elementary group and
each edge indicates that the two connected elementary groups
have one target in common. According to the observation that
two people walking together at certain time are likely to walk
together after a short period, given two directly connected
groups, we can infer the probability of the uncertain target
in each group to be the same.

Suppose that there is an edge between nodes gi and g j

in the grouping graph; assuming T i
1 = T j

1 = Tk , T i
2 = Tl ,

and T j
2 = Tm without loss of generality, the probability of

T i
2 and T j

2 containing the same target is defined as follows:
plm = 0.5(Gkl + Gkm)× T Simi(T{l,m}, G{k,l,m}) (15)
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Fig. 6. Inference for each edge in the grouping graph in Fig. 3. (a) Edge
between g1 and g2. (b) Edge between g2 and v1. (c) Edge between g2 and v2.
(d) Edge between g4 and g5 (see Fig. 3 for group annotations).
Black solid line: interpolation between the two tracklets that need inference.
Black dashed line: group mean trajectory. Colored dotted line: virtual tracklet.
Best viewed in color.

Fig. 7. Example of multiple inferences related to the same two tracklets.
According to the proposed elementary grouping model, a grouping graph
(shown on the right) is created based on the input tracklets (shown on the left).
Thus, inferences based on the edge between nodes g1 and g2 and the edge
between nodes g3 and g4 are all related to tracklets T2 and T3.

where T Simi(T{ l,m}, G{k,l,m}) is the trajectory similarity
between trajectory T{ l,m} (created by linking Tl and Tm ) and
the group mean trajectory G{k,l,m} (created by computing the
mean position of Tk and T{ l,m}). We define the trajectory
similarity as follows:

T Simi(T, G) = 1− 2

π
arctan(Dist) (16)

where Dist is the average Euclidean distance of trajectory T
and group mean trajectory G.

For edges connecting two normal nodes and edges connect-
ing to one virtual node, the same inference function can be
used. The only difference is that the latter uses one virtual
tracklet and two normal tracklets as input. Examples of making
inference for a grouping graph are shown in Fig. 6. Note that
there might be multiple inferences related to the same two
tracklets, as the same tracklet may be contained in multiple
elementary groups, as shown in Fig. 7. Therefore, Pij in (3)
is the sum of all inferences that relate to Ti and Tj

Pi j =
∑

pi j . (17)

A summary of the proposed elementary grouping model is
shown in Algorithm 1.

Algorithm 1 Learning Algorithm for Elementary Grouping
Model
Input: Tracklet set T = {T1, .., Tn}
Output: Inference matrix P , where Pij is the inference for

Ti and Tj

1: P← empty set, Nodes← ∅, Edges← ∅
2: for i = 1, . . . , n do
3: for j = i + 1, . . . , n do
4: if Ti and Tj are confident tracklets then
5: Gij = Pt (Ti , Tj )Pd (Ti , Tj )Pv (Ti , Tj )
6: if Gij > 0 then
7: Create node g = {Ti , Tj }
8: Nodes = Nodes ∪ {g}
9: for i = 1, . . . , si ze(Nodes) do

10: for j = i + 1, . . . , si ze(Nodes) do
11: if ∃T ∈ gi , T = T

g j
1 or T = T

g j
2 then

12: Create an edge e{gi ,g j } for gi and g j

13: Edges = Edges ∪ {e{gi ,g j }}
14: Update Nodes and Edges according to group tracking
15: for all e ∈ Edges do
16: Compute pxy for the corresponding tracklet pair

using Eq. (15)
17: Update P: Pxy = Pxy + pxy

IV. EXPERIMENTS

We evaluate our approach on four data sets: the CAVIAR
data set [8], the TownCentre data set [35], the PETS2009 data
set [36], and the UNIV data set [37]. The popular evaluation
metrics defined in [38] and the CLEAR MOT metrics defined
in [39] are used for performance comparison.

1) GT: the number of trajectories in the GT.
2) MT: the ratio of mostly tracked trajectories, which

are successfully tracked for more than 80% of the
time.

3) ML: the ratio of mostly lost trajectories, which are
successfully tracked for less than 20% of the time.

4) Frag Fragments: the number of times that a GT trajec-
tory is interrupted.

5) IDS—ID Switches: the number of times that a tracked
trajectory changes its matched id.

6) FP—False Positive: the number of tracker hypotheses
for which no real object exists.

7) FN—False Negative: the number of times that targets
have no matched hypothesis.

8) MOTA—Multiple Object Tracking Accuracy: a combined
measure that takes into account false positives, false
negatives, and identity switches.

9) MOTP—Multiple Object Tracking Precision: measures
the alignment of the tracking results with respect to GT.

The following tracking approaches are tested.
1) Our Model (Nonlinear): the proposed elementary group-

ing model with nonlinear motion context for group
tracking.

2) Our Model (Linear): the proposed elementary grouping
model with only linear motion model for group tracking.

3) Baseline Model 1: the basic affinity model.
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TABLE I

COMPARISON OF TRACKING RESULTS ON CAVIAR DATA SET. NUMBER OF TRAJECTORIES IN GT IS 75

4) Baseline Model 2: the proposed elementary grouping
model without group tracking.

5) SGB: the social grouping behavior model [29].
For a fair comparison, the same input tracklet set, GT, and

basic affinity model are used for all the methods. All the
results for the SGB model are kindly provided in [29]. Both
quantitative comparisons with the state-of-the-art methods and
the visual results of our approach are presented.

A. Implementation Details

1) Tracklets’ Generation: Two different ways of generating
tracklets are employed to demonstrate that the proposed group-
ing model can be easily integrated into any DAT-based tracking
system, regardless of the method used to extract the initial
tracklets. In the first method, targets on each frame are detected
using the discriminatively trained deformable part-based mod-
els [40]. We apply a nearest neighbor detection association
method similar to [7] to generate the initial tracklets. For
each unassociated detection, a Kalman filter-based tracker is
initialized with position and velocity states. A detection A is
associated with a detection B in the next frame if B has the
minimum distance to the predicted location and overlaps at
least 50% [measured as si ze(A∩B)/si ze(A∪B)] in size with
detection A. Then the corresponding Kalman filter is updated
with the newly associated detection. The tracker terminates if
no association is found for more than two consecutive frames,
or a detection is associated by multiple trackers.

In the second method, the popular HOG-based human
detector [41] is used. Tracklets are generated by connecting
detections in consecutive frames that have high similarity
in appearance and have large overlap in size. A simple
two-threshold strategy [13] is used to generate reliable
tracklets. In our experiments, two detections are connected
if and only if: 1) their affinity is higher than 90% and 2) their
affinity is at least 20% larger than the affinities of any other
alternatives.

2) Basic Affinity Model: In order to produce reasonable
basic affinity for a pair of tracklets, three commonly used
features are adopted: time, appearance, and motion. The basic
affinity Pbasic for two tracklets Ti and Tj is defined as

Pbasic(Ti , Tj ) = ft (Ti , Tj ) · fappr(Ti , Tj ) · fmt (Ti , Tj ). (18)

The time affinity model ft assigns zero affinity to tracklet pairs
whose time gap is greater than a predefined threshold GAP,
and it is defined as

ft (Ti , Tj ) =
{

0, if Gapi j > GAP

1, otherwise.
(19)

The appearance affinity model fappr is based on the
Bhattacharyya coefficient of two average HSV color
histograms. For the motion affinity model fmt , the same
method as shown in (14) with linear motion for fpredict is used
to measure the motion smoothness of two tracklets in both
forward and backward directions. Given Pbasic(Ti , Tj ), the
basic cost Si j in (2) is computed as Si j = − ln(Pbasic(Ti , Tj )).

3) Cost Matrix S: Due to the constraints in (1), the
traditional pairwise assignment algorithm is not able to find the
initial and the terminating tracklets. Therefore, instead of using
the cost matrix S (n× n) directly, we use the augmented matrix
(2n × 2n) proposed in [29] as the input for the Hungarian
algorithm. This enables us to set a threshold for association,
and a pair of tracklets can only be associated when their cost
is lower than the threshold. In our experiments, the threshold
is set to −ln 0.5 for all data sets.

B. Results on CAVIAR Data Set

The videos in the CAVIAR data set are acquired in
a shopping center where frequent interactions and occlu-
sions occur and people are more likely to walk in
groups. We select the same set of test videos as in [29],
which are the relatively challenging ones in the data set.
We generate input tracklets using the first method described
in Section IV-A. The comparative results are shown in Table I.
Our proposed models (both linear and nonlinear) achieve the
best overall tracking accuracy (MOTA) with the high track-
ing precision (MOTP) compared with the other alternatives.
It is observed that the basic affinity model (baseline model 1)
can produce reasonable tracking results, and the performance
is further improved by integrating high-level grouping infor-
mation [baseline model 2, our model (linear), and our model
(nonlinear)]. Both linear and nonlinear versions of our model
have comparable or better performances in most metrics
compared with the SGB model (e.g., better results in MT and
Frag, and the same results in ML and IDS), but with much
less computational time. The comparisons between baseline
model 2 and our model (both linear and nonlinear) demonstrate
the importance of group tracking, as they reveal more grouping
information. Since most pedestrians in the videos are walking
linearly along a corridor in this data set, there is barely
any nonlinear context in the scene. Therefore, the linear and
nonlinear versions of our model have the same performance
(except computational time) on this data set. The sample
tracking results are shown in Fig. 8.

C. Results on TownCentre Data Set

The TownCentre data set has one high-resolution video that
captures the scene of a busy street. There are 220 people in
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Fig. 8. Examples of tracking results of our approach on CAVIAR data set. The same color indicates the same target. Best viewed in color. (a) Track
targets (4, 5, 6) when appearances vary a lot due to occlusions. (b) Successfully tracking targets (11, 13) with long time gap. (c) Track targets (4, 5, 6) when
sudden motion change and occlusion happen.

TABLE II

COMPARISON OF TRACKING RESULTS ON TOWNCENTRE DATA SET. NUMBER OF TRAJECTORIES IN GT IS 220

total, with an average of 16 people visible per frame. We test
all models using the first 3 min of the video and generate input
tracklets using the second method described in Section IV-A.
The comparative results are shown in Table II. Similar
to the observations from Table I, Table II suggests that
the performance of our method is consistent on both data
sets. As there are some nonlinear motions in this data set,

the tracking performance is slightly improved by the incorpo-
ration of nonlinear context. The sample tracking results are
shown in Fig. 9.

D. Results on PETS2009 Data Set

We select sequence S2L2 in the PETS2009 data set to eval-
uate the performance of the proposed method. This sequence
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Fig. 9. Examples of tracking results of our approach on TownCentre data set. With grouping information, targets (199 and 201) pointed by arrows are
correctly tracked under frequent occlusions. The same color indicates the same target. Best viewed in color.

Fig. 10. Examples of tracking results of our approach on PETS2009 data set. Track targets (47, 51, 69) with nonlinear motion successfully. Best viewed
in color.

TABLE III

COMPARISON OF TRACKING RESULTS ON PETS2009 DATA SET. NUMBER OF TRAJECTORIES IN GT IS 74

TABLE IV

COMPARISON OF TRACKING RESULTS ON UNIV DATA SET. NUMBER OF TRAJECTORIES IN GT IS 40

captures the outdoor scene of a campus from an elevated view-
point. Unlike the widely used sequence S2L1, sequence S2L2
is more challenging as it has higher crowd density

(up to 33 targets per frame) and includes many nonlinear
motion patterns. A rectangular area is defined in the world
coordinates and used as the boundary of the tracking area
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Fig. 11. Examples of tracking results of our approach on UNIV data set. Using only the grouping model, we correctly tracked targets (1, 2, 3, 4) in situations
where the group split and merge occurs. The same color indicates the same target. Best viewed in color.

(as shown in Fig. 10), and trajectories outside the area are
excluded from our solution. The first method described in
Section IV-A is used to generate input tracklets. The com-
parative results are shown in Table III. We can see that when
many nonlinear walking patterns are present in the data set,
significant improvements are achieved by integrating nonlinear
motion context into the tracking system. Our model with
nonlinear context gives the best MOTA and has a higher
MT (33.8%) and a lower ML (35.1%) compared with the
SGB method (MT: 23% and ML: 41.9%) and our model
(linear) (MT: 28.4% and ML: 44.6%) that consider only linear
motion during grouping. Also the numbers of fragments and
ID switches are greatly reduced when social grouping and
nonlinear context are employed in the tracking system. The
sample tracking results of the proposed method with nonlinear
motion context are shown in Fig. 10. In the first row of
Fig. 12, we present tracking examples of our method with
linear motion model on the same sample sequence as shown
in Fig. 10.

E. Results on UNIV Data Set

To further evaluate the effectiveness of the proposed method
in handling dynamics of social groups (e.g., group merge and
split), four video sequences are collected from an elevated
viewpoint that allows the capture of rich group evolving
scenarios. Each video is about 30-s long with an average
of nine pedestrians visible in each frame, and some sample
frames are shown in Fig. 11. The input tracklets for this
data set are produced using the second method described in
Section IV-A. Multitarget tracking is carried out using only the
grouping information, namely, the linking costs for tracklet
pairs are based only on Pij in (3). The comparative results
are shown in Table IV. Our models with both linear and
nonlinear motion have the same performance, as this data set
contains little nonlinear motion pattern. Compared with the
SGB model that assumes a fixed number of groups in the
scene, our grouping model improves MT by 12.5%, reduces
the fragments by 31.5%, and also achieves higher MOTA
and MOTP. The results imply that our grouping model is better

at handling group dynamics in the scene, as it focuses on
analyzing elementary groups instead of the complete groups.
The sample tracking results of the proposed method are shown
in Fig. 11. In the second row of Fig. 12, we show tracking
examples of SGB model on the same sample sequence as
shown in Fig. 11.

F. Computational Time

The computational time is greatly affected by the number
of targets in a video and the length of the video. All methods
are implemented in MATLAB without code optimization or
parallelization and tested on a PC with 3.0-GHz CPU and
8-GB memory. The average computational times for all the
data sets are shown in the last columns in Tables I–IV. Note
that the computational times for object detection, tracklet
generation, and appearance and motion feature extraction are
not included in the above estimates of computational time. It is
clear that our models (both linear and nonlinear) improve the
computational efficiency by an order of magnitude compared
with the SGB model that also uses social grouping information
in tracking. For the relatively short videos (30–66 s) in
CAVIAR and UNIV data sets, our approach takes 292 frames/s
for the linear version and 235 frames/s for the nonlinear
version on average. For the video in TownCentre (3 min),
the computational time is 10 frames/s for the linear version
and 9 frames/s for the nonlinear version. When our approach
is applied on the high crowd density video in PETS2009,
the computational time is 0.9 frames/s for the linear version
and 0.7 frames/s for the nonlinear version. It is observed that
integrating nonlinear context into the motion model increases
the computational cost, but still our model is significantly more
efficient than the SGB model and produces better tracking
results.

From a theoretical perspective, the optimization of SGB is
a gradient-based iterative method. To compute the gradient,
an alternative approach involving the Hungarian algorithm
and K -means clustering is applied. K -means clustering needs
multiple initial starts to reach a reasonable local optimum,
which leads to high computational cost. Our solver, on the
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Fig. 12. Examples of tracking results from referenced models. First row: our model (linear) on PETS2009 data set. Targets (48, 72) cannot be correctly
tracked, as tracklet associations generating nonlinear motion pattern are penalized when only linear motion model is used. Second row: SGB model on
UNIV data set. Trajectories of targets (1, 2) cannot be fully recovered, because SGB model is not able to link tracklets that are not assigned to the same group.
Best viewed in color.

other hand, has a closed-form solution based only on the
deterministic Hungarian algorithm, and thus can be computed
much more efficiently.

V. CONCLUSION

In this paper, we have presented an online approach that
integrates high-level grouping information into the basic affin-
ity model for multitarget tracking. The grouping behavior is
modeled by a novel elementary grouping graph, which not
only encodes the grouping structure of tracklets but is also
flexible to cope with the evolution of a group (i.e., group
split and merge). We have used nonlinear motion context
explicitly for discovering relationships between elementary
groups. The experimental results on four challenging data
sets demonstrated the superior tracking performance by inte-
grating elementary grouping information. Compared with the
state-of-the-art social grouping model, our approach provides
better performance in a more computationally efficient manner.
However, if there is not much grouping or all the targets follow
a linear motion pattern in the input video, the integration of
the elementary grouping model will have limited improvement
on the tracking performance. Possible future work would
be extending the elementary grouping model to multiperson
tracking in multiple cameras.
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