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a b s t r a c t

Manually collecting, identifying, archiving and retrieving specimen images is an expensive and time-
consuming work for entomologists. There is a clear need to introduce fast systems integrated with
modern image processing and analysis algorithms to accelerate the process. In this paper, we describe
the development of an automated moth species identification and retrieval system (SPIR) using com-
puter vision and pattern recognition techniques. The core of the system is a probabilistic model that
infers Semantically Related Visual (SRV) attributes from low-level visual features of moth images in the
training set, where moth wings are segmented into information-rich patches from which the local fea-
tures are extracted, and the SRV attributes are provided by human experts as ground-truth. For the large
amount of unlabeled test images in the database or added into the database later on, an automated
identification process is evoked to translate the detected salient regions of low-level visual features on
the moth wings into meaningful semantic SRV attributes. We further propose a novel network analysis
based approach to explore and utilize the co-occurrence patterns of SRV attributes as contextual cues to
improve individual attribute detection accuracy. Working with a small set of labeled training images, the
approach constructs a network with nodes representing the SRV attributes and weighted edges denoting
the co-occurrence correlation. A fast modularity maximization algorithm is proposed to detect the co-
occurrence patterns as communities in the network. A random walk process working on the discovered
co-occurrence patterns is applied to refine the individual attribute detection results. The effectiveness of
the proposed approach is evaluated in automated moth identification and attribute-based image
retrieval. In addition, a novel image descriptor called SRV attribute signature is introduced to record the
visual and semantic properties of an image and is used to compare image similarity. Experiments are
performed on an existing entomology database to illustrate the capabilities of our proposed system. We
observed that the system performance is improved by the SRV attribute representation and their co-
occurrence patterns.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Moths are important life forms on the planet with approxi-
mately 160,000 species discovered [1], compared to 17,500 species
of butterflies [1], which share the same insect order with Lepi-
doptera. Although most commonly seen moth species have dull
wings (e.g., the Tomato Hornworm moth, see Fig.1(a), there are a
great number of species that are known for their spectacular color
and texture patterns on the wings (e.g., the Giant Silkworm moth
and the Sunset moth, see Fig. 1b and c respectively). As a con-
sequence, much research on identifying the moth species from the
entomologist side has focused on manually analyzing the
u@cris.ucr.edu (B. Bhanu),
taxonomic attributes on the wings such as color patterns, texture
sizes, spot shapes, etc., in contrast with the counterpart biological
research that classifies species based on DNA differences.

As image acquisition technology advances and the cost of sto-
rage devices decreases, the number of specimen images in ento-
mology is growing at an extremely rapid rate both in private data
collections and over the web [2–4]. Many real world tasks such as
monitoring insects for agriculture and border control are very
important because they can contribute to the analysis of envir-
onmental and land security crisis including spread of pollution,
disease vector and area biodiversity change. These real world
applications involving insect species identification rely on manual
processing of images by entomologists and highly trained experts
which is a very time-consuming and error-prone process. The
demand for more automated methods to meet the requirements of
accuracy and speed is increasing. Given the lack of manually
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Fig. 1. Moth wings have color and texture patterns at different levels of complexity based on their species: (a) Tomato Hornworm, (b) Giant Silkworm and (c) Saliana Fusta.

Fig. 2. Sample moth wings illustrate the semantically related visual (SRV) attributes. (a) Four sets of SRV attributes on the dorsal fore wings: eye spot (top left), central white
band (top right), marginal cuticle (bottom left) and snowflake mosaic (bottom right). In each set, the right image is the enlarged version of the left image. (b) Four sets of SRV
attributes on the ventral hind wings. Note that it is harder to describe the images in a semantic way with simple texts compared to the images in group (a).
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annotated text descriptors to the images and the lack of consensus
on the annotations caused by the subjectivity of the human
experts, engines for archiving, searching and retrieving insect
images in the databases based on keywords and textual metadata
face great challenges.

The progress in computer vision and pattern recognition algo-
rithms provides an effective alternative for identifying the insect
species and many systems that incorporate these algorithms have
been developed in the past two decades [5–9]. In the image retrieval
domain, one of the common approaches introduced to complement
the difficulties in text-based retrieval relies on the use of Content-
Based Image Retrieval (CBIR) systems [10–12], where sample images
are used as queries and compared with the database images based on
visual content similarities [13,14] (color, texture, object shape, etc.). In
both the identification and retrieval scenarios, visual features that are
extracted to represent morphological and taxonomic information play
an important role in the final performance. Context information is
often used to help improve detection performance of the individual
visual features [15].

These intelligent systems provide a number of attractive func-
tions to entomologists, however, drawbacks have been revealed in
several aspects:

� First, most systems only extract visual features that do not contain
any semantic information. However, recent research [16] shows that
human users want to access images at the semantic level. For
example, users of a system are more likely to find all the moths
containing eye spots on the dorsal hind wings rather than to find all
the moth containing a dark blue region near the bottom of the image.
An intermediate layer of image semantic descriptors that can
reduce the gap between user information need and low-level visual
features is absent in most existing systems.

� Second, most systems involve no human interaction and feed-
back. For example, the insect classification system introduced
by Zhu et al. [17] works in an autonomous way on feature
selection and classification. The retrieval systems [13,14,18] for
butterfly images do no ask users to provide feedback and refine
the results on the fly. However, the need for user-in-the-loop
stems from the fact that intelligent systems are not smart
enough to interpret images in the same way as humans. For
example, two different species could be identified as the same
based on their visual similarity. Without human intervention,
the system will not be able to tune its parameters and correct
the mistakes.

� Third, the current systems for species identification overlook
the co-occurrence relationship among features. For example, in
[5,19–21], the co-occurrence of features as contextual cues was
not investigated to reduce or even remove the uncertainty in
species identification. Intuitively, such information is helpful to
better distinguish insect species. For example, in some species
of Lepidoptera, a border “eye spot” feature may often be
accompanied with a central “bands” feature on the wings, while
other species may not have this combination of wing features.
Such co-occurrence of features could be very useful to improve
the performance of species identification.

In this paper, we present a new system for automated moth
identification and retrieval based on the detection of visual attri-
butes on the wings. The objective of our method is to mimic
human behavior on differentiating species by looking at specific
visual contexts on the wings. More specifically, the notion of
“context” refers to discovering certain attribute relationships by
taking into account their co-occurrence frequencies. The main
motivation of our system relies on the conjecture that the attribute
co-occurrence patterns encoded on different species can provide
more information for refining the image descriptors. Unlike earlier
work, we attempt to address all the above mentioned problems,
and the contributions of this paper are summarized as follows:

1. We build image descriptors based on so-called Semantically
Related Visual (SRV) attributes, which are the striking and stable
physical traits on moth wings. Compared to a traditional visual
feature used in many systems, our SRV attributes have human-
designated names (e.g., blue preapical spot, white central bands,
yellow eye spot, etc.) which makes them valuable as semantic
cues. Some examples of SRV attributes are shown in Fig. 2. The
probabilistic existence of these attributes can be discovered
from images by trained detectors using computer vision and
pattern recognition techniques. Compared to traditional image
feature representations, which is usually a vector of numeric
values denoting the visual properties, such as the curvature of a
shape boundary, the color intensity of a region, etc., the SRV
attribute based image descriptor provides a semantically rich
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way which is much closer to the way that humans describe and
understand images.

2. Our system detects and learns SRV attributes in a supervised
way. The SRV-attributes are manually labeled by human experts
on a small subset of the image database that is used for training
the attribute detectors. The core of the detector is a probabilistic
model that can infer SRV-attribute scores from the unlabeled
test images. We characterize individual images by stacking the
probabilistic scores of the present SRV attributes into a so-called
SRV-attribute signature. The species identification and retrieval
tasks are performed by comparing the SRV-attribute signatures.
Specifically, in the image retrieval task, we incorporate a human
relevance feedback scheme (often collected via user click-and-
mark data) with the goal of retrieving more relevant images in
future search sessions. We also consider ranking results based
on the constraints of multi-attribute queries and the relative
strengths of individual attributes to improve the effectiveness of
attribute based image search.

3. We explicitly explore the co-occurrence relationship of SRV
attributes. The underlying idea is that the attributes that appear
together frequently across many images are likely to form a
certain pattern. Moths from the same species often exhibit
consistent patterns of SRV attributes on the wings. In this paper,
we propose a novel approach that utilizes the external knowl-
edge from human labeling in the training set to build a co-
occurrence network of SRV attributes and further uncover the
patterns of these attributes and use them as contextual cues to
improve the individual attribute detection performance.

Our experimental evaluation shows that the proposed SRV
attribute based image representation can improve moth species
identification accuracy and image retrieval precision on different
datasets. Experimental results also demonstrate that the proposed
system can outperform state-of-the-art systems in the literature
[14,22] in terms of effectiveness. We also evaluate other aspects of
the proposed system (such as the impact of parameters) in the
experiment section.

The remainder of this paper is organized as follows: Section 2
discusses related work. The technical approach is elaborated in
Section 2.1. Experimental results are given in Section 2.2 followed
by conclusions with future research directions in Section 2.3.
2. Related work

This section explains why automated systems are important for
entomological research and how computer vision and pattern
recognition techniques contribute to our understanding of images.
In the following, we review approaches that are most relevant to
our research along four directions: (i) Automated insect identifi-
cation systems, (ii) Insect image retrieval systems, (iii) Visual
words and attributes based image representations and (iv) Fusion
techniques for image understanding.

2.1. Automated insect identification systems

Insect species identification has recently received great atten-
tion due to the urgent need for systems that can help in biodi-
versity monitoring [23], agriculture and border control [24,25],
and conservation [26]. Likewise, identifying species is also the
prerequisite to conducting advanced biological research on species
evolution and developmental. However, the vast number of insect
species and specimen images is a challenge for manual insect
identification. The request for automated systems is only likely to
grow in the future.
Several attempts have been made in the last two decades to
design species identification systems for any type of available data.
There have been sophisticated applications to solve problems in
classifying orchard insects [5], recognizing the species-specific
patterns on insect wings [6] and identification of insect
morphologies on fossil images [7]. It has been recognized that
these systems can overcome the manual processing time and
errors caused by human subjectiveness.

Besides the above mentioned systems, there are other well-
known systems: the SPecies IDentification Automated (SPIDA)
system [9], the Digital Automated Identification SYstem (DAISY)
[27], the Automated Bee Identification System (ABIS) [8] and
DrawWing [28], a program for describing insect wings in a digital
way. The first two systems use machine learning techniques such
as neural network as the core of the classifier. SPIDA is designed
for recognizing 121 spider species in Australia. The system keeps
refining its learning accuracy as more user uploaded labeled
images are available. DAISY is used not only for moth identification
but also for any type of species identification, such as fish, pollen
and plants. ABIS uses an idea similar to this paper based on finding
attribute patterns from bee's wings to recognize their species. It
utilizes an SVM-based discriminative classifier and the average
performance reaches 95% in accuracy.

One common characteristic of these systems is that they all rely
on images taken from carefully positioned target under controlled
lighting conditions which reduces the difficulty of the task to some
extent. One interesting aspect of automated species identification
is that the data are not limited to images. For example, Ganchev
et al. [29] describe the acoustic monitoring of singing insects and
apply sound recognition technologies for insect identification
tasks. Meulemeester et al. [30] report on the recognition of bum-
ble bee species based on statistical analysis of the chemical scent
extracted from the cephalic secretions. A challenge competition on
multimedia life species identification [31] was recently held on
identifying plant, bird and fish species using image, audio and
video data.

The development of these systems have made great efforts in
incorporating machine learning techniques like principal compo-
nent analysis (PCA), linear discriminant analysis (LDA), artificial
neural networks (ANNs), support vector machines (SVMs) and
many other techniques.

2.2. Insect image retrieval systems

With the increase of insect images, there is a growing tendency
in the field of entomology to archive, organize and find images in
an efficient manner using image retrieval systems. Content-based
image retrieval [32] has been well studied and developed for many
years in the computer vision and information retrieval domains. It
examines the contents of the image itself by extracting certain
pictorial features and use them to compute similarity between a
pair of images based on a metric automatically. Significant efforts
have been made using content-based image retrieval techniques to
find the relevant images to a query based on the visual similarity.
The prototype systems for retrieving Lepidoptera images include
“butterfly family retrieval” [18], a web-based system “Butterfly
Ecology” [14] and a part based system [13]. Most of these systems
focus on extracting low-level features such as color, shape and
texture and the image representation allows these systems to
compare images based on these features.

These systems are attractive but still present a number of pro-
blems. For example, a powerful function of CBIR is the ability to
integrate user interaction where retrieval precision is adjusted
according to the user provided relevance feedback (RF) information
[33–36]. However, none of the existing systems has adopted the RF
scheme into the retrieval framework. Also, a common limitation of the
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available systems is that they only cope with a comparatively small
number of species or categories in the dataset.

2.3. Image representation: visual words vs. semantic attributes

A crucial step for identification or classification and retrieval is
to describe images by extracting a set of local feature descriptors,
encoding them into high-dimensional vectors and then fusing
them into image-level signatures. Many local descriptors are built
upon low-level visual features like HOG (Histogram of Oriented
Gradients) [37] and SIFT (Scale Invariant Feature Transforms) [38].
Recently, the computer vision community has found histograms of
local features, also known as “bag-of-visual-words” [39–43] to be a
powerful image representation [22,44–47]. The visual words
paradigm usually contains three steps [48]: automatically select-
ing regions-of-interest, extracting visual features locally (reviewed
in [48]), and vector-quantizing regional feature vectors into pro-
totypes and using the histogram of prototypes as the image-level
signature [39]. The prototypes or the visual words represent sta-
tistical information of repetitive image regions. A common
extension to the approach is to adopt weighting schemes [39,41]
on the visual words to distinguish their strengths.

The original visual words framework loses all the spatial relations
of the regions in an image. However, the region locations could bring
structural cues for classifying an image. Therefore, much recent work
[39,40,49,50] considers the spatial distribution of regions that could
possibly form or contain objects in an image. A further extension that
includes the geometric information is to partition the images into a
grid pattern. The image similarity is then computed from the sum of
all the corresponding grid similarities. Lazebnik et al. [51] generalized
this idea into spatial pyramid matching where the images are par-
titioned into a sequence of increasingly coarser grids and image
similarity is calculated as a weighted sum over the matched grids at
each level of resolution. Fisher vectors [52] were introduced as an
alternative to aggregate local descriptors into a single global
descriptor and this state-of-the-art vector has been demonstrated to
be more effective than the bag-of-features representation for the
same dimensionality [53].

Whereas the visual words model has been successfully used in
many image understanding tasks, it has two major drawbacks.
First, the performance of visual words model is highly dependent
on the selection of vocabulary size. A local feature descriptor could
have more than one neighboring visual word in a large vocabulary
due to the information redundancy which causes the visual word
“uncertainty” problem [43]. To overcome the visual vocabulary
redundancy and over-completeness problem, in [?] a visual word
pruning technique has been introduced to generate more mean-
ingful visual words. Also a feature descriptor could be assigned to a
visual word in a small vocabulary without a suitable candidate,
which is known as the visual word “plausibility” [43]. Second,
although the bag-of-visual-words model is analogous to the term-
frequency model of text documents, visual words have limited
semantic meanings. Therefore, it is hard for humans to contribute
domain knowledge into the image understanding process.

Attribute-based representations have become a very promising
direction in image classification [55,56] and visual recognition
[57,58] due to their intuitive way in interpreting images and the
cross-category generalization ability [59]. Unlike visual words,
semantic attributes are sharable discriminative visual properties
that are machine-detectable and human nameable (e.g., “square”
as a shape property, “silk” as a texture property, “has wing” as a
sub-component property, and “can fly” as a functionality prop-
erty). One of the unique advantage of semantic attributes are that
they naturally reduce the gap between low-level visual features
and high-level concepts. In other words, semantic attributes can
be used to answer not only “how” two images are similar in a
human interpretable way [60], but also “why” an image is iden-
tified to belong to a specific category [61].

Attributes are also used frequently in the multimedia retrieval
community as an intermediate level semantic description [62–64].
In our moth image retrieval system, the user's search intention
does not simply emphasize appearance similarity between the
query and the database images, but more the semantic closeness
(e.g., the species category). This implies that the retrieved images
should contain similar semantic attributes. In this paper, we
represent images by using the proposed SRV attribute signature
and compute the distance between images based on this new
image representation.

2.4. Fusion approaches for image understanding and analysis

Multimodal fusion has been used by many researchers for
various multimedia analysis tasks. Multimodal fusion refers to the
integration of multimedia, associated features and other inter-
mediate results to perform the decision making process in multi-
media analysis and understanding [65]. The fusion of these mul-
timodal data can provide extra knowledge of the multimedia
content and improve the accuracy of the overall system.

Many techniques have been introduced to effectively fuse
multimodal data, e.g., linear weighting, or using a weighted
strategy for evaluating feature scores [66]. Visual and semantic
information are fused in many approaches dealing with the Ima-
geCLEF dataset [67] and the results show that fusion based
approaches outperform the single modality approaches. An over-
view of the state-of-the-art fusion approaches is given by Atrey
et al. in [65]. In our system, we apply late fusion of the visual
feature vector and SRV attribute signature in a weighted manner,
and this provides more flexibility than fusion at an early stage.
3. Technical approach

3.1. Moth image dataset

The dataset used in this study is collected from an online
library of moth, butterfly and caterpillar specimen images created
by Dr. Dan Janzen [68] over a long-term and ongoing project
started in 1977 in northwestern Costa Rica. The goal of the
inventory is to have records for all the 12;500þ species in the
area. As of the end of 2009, the project had collected images of
4500 species of moths, butterflies and caterpillars. We use a subset
of the adult moth images from the 2009 collection with the per-
mission of Dr. Dan Janzen. The dataset is publicly available at
http://janzen.sas.upenn.edu.

The images are available for both the dorsal and ventral aspects
of the moths. Each image was resized into 600� 400 pixels in
resolution, and is in RGB colors. Our complete dataset contains
37,310 specimen images covering 1580 species of moth, but a
majority of the species have less than twenty samples. Because our
feature and attribute analysis are based on regions on the wings,
and some specimens show typical damage ranging from age-
dependent loss of wing scales (color distortion), missing parts of
wings (incomplete image), or uninformative orientation differ-
ences in the wings or antennae, this makes the number of quali-
fied samples even less, and we have carefully selected fifty species
across three family groups and six sub-family groups: Hesperiidae
(Hesperinae, Pyrginae), Notodontidae (Dioptinae, Nystaleinae) and
Noctuidae (Catolacinae, Heterocampinae [¼Rifargiriinae]) from the
original dataset. This new sub-collection has a total of 4530 spe-
cimens of good quality (see Table 1 for the distribution of the
species used in our work).

http://janzen.sas.upenn.edu


Table 1
Families, species and the number of samples in each species used in our work.

Sub-families Species Images Sub-families Species Images

Catolacinae Ceroctenaamynta 101 Nystaleinae Bardaximaperses 74
Catolacinae Eudocimamaterna 85 Nystaleinae Dasylophiabasitincta 78
Catolacinae Eulepidotisfolium 76 Nystaleinae Dasylophiamaxtla 98
Catolacinae Eulepidotisrectimargo 57 Nystaleinae Nystaleacollaris 85
Catolacinae Hemicephalisagenoria 121 Nystaleinae Tachudadiscreta 112
Catolacinae Thysaniazenobia 79 Pyrginae Atarnessallei 101
Dioptinae Chrysoglossanorburyi 75 Pyrginae Dyscophellusphraxanor 86
Dioptinae Erbessaalbilinea 98 Pyrginae Tithraustesnoctiluces 96
Dioptinae Erbessasalvini 117 Pyrginae Entheusmatho 99
Dioptinae Nebulosaerymas 69 Pyrginae Hyalothyrusneleus 82
Dioptinae Tithrausteslambertae 87 Pyrginae NascusBurns 94
Dioptinae Polypoetesharuspex 92 Pyrginae Phocidesnigrescens 104
Dioptinae Dioptislongipennis 92 Pyrginae Quadruscontubernalis 69
Hesperiinae Methionopsisina 122 Pyrginae Urbanusbelli 88
Hesperiinae Neoxeniadesluda 107 Pyrginae MelanopygeBurns 76
Hesperiinae SalianaBurns 70 Pyrginae Myscelusbelti 103
Hesperiinae Salianafusta 97 Pyrginae Mysoriaambigua 93
Hesperiinae TalidesBurns 70 Rifargiriinae Dicentriarustica 78
Hesperiinae Vettiusconka 96 Rifargiriinae Farigiasagana 84
Hesperiinae Aromaaroma 135 Rifargiriinae Hapigiodessigifredomarini 93
Hesperiinae Carystoidesescalantei 88 Rifargiriinae Malocampamatralis 100
Nystaleinae Lirimirisguatemalensis 95 Rifargiriinae MeragisaJanzen 65
Nystaleinae Isostylazetila 99 Rifargiriinae Naprepahoula 74
Nystaleinae Oriciadomina 101 Rifargiriinae Pseudodryaspistacina 83
Nystaleinae Scoturaleucophleps 117 Rifargiriinae Rifargiadissepta 69

    Saliana fusta      Nebulosa erymas     Nascus Burns         Entheus matho       Urbanus belli

  Erbessa albilinea          Talides Burns      Quadrus contubernalis   Hyalothyrus neleus      Melanopyge Burns

Phocides nigrescens   Vettius conka              Saliana Burns         Myscelus belti              Atarnes sallei

   Erbessa salvini      Thysania zenobia     Eulepidotis rectimargo    Eulepidotis folium  Eudocima materna
Fig. 3. Sample images for twenty moth species selected from all the species used in this work. We do not show all the species due to space limitations.
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We show sample images of twenty representative species out
of the fifty species used in our work in Fig. 3. The moth specimens
were photographed against an approximately uniform (usually
white or gray) background, but often with shadow artifacts. The
specimens are curated in a uniform way with the wings horizontal
and generally with the hind margin of the forewing roughly per-
pendicular to the longitudinal axis, which facilities the subsequent
image processing and feature extraction steps.



Fig. 4. The flowchart of the proposed moth species identification and retrieval
system. It consists of (1) information extraction, (2) SRV attribute detection,
(3) attribute co-occurrence pattern detection, (4) signature building and refine-
ment, and (5) moth identification and retrieval applications.
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3.2. System architecture

The flowchart of the proposed moth identification and retrieval
system is shown in Fig. 4. The system architecture contains five
major parts: (1) information extraction of moth images, (2) SRV
attribute detection on moth wings, (3) co-occurrence network
construction and co-occurrence pattern detection for the SRV
attributes, (4) image signature building and refinement based on
SRV attributes and their co-occurrence patterns, and finally
(5) applications in moth species identification and retrieval. We
give the details about each part in the following sections.

The information extraction module consists of several steps
including background and shadow removal, salient region detec-
tion by segmentation, SRV attribute labeling for the training set
and visual feature extraction.

In order to train the attribute detectors, we use a small subset
of the image collection as the training set. Each training image is
segmented manually into regions and the attributes labeled
manually to the corresponding regions. The SRV attribute detector
is learned from extracted local visual features and the SRV attri-
bute labels by modeling the joint probability of occurrence. After
the joint distribution is obtained, we infer the posterior prob-
abilities of attributes from the visual features of the test images
without attribute labeling. The output of the detectors is a pool of
the posterior probability scores of each attribute. These are com-
bined into the attribute signature representation of the images.

As the attribute detection relies on the effectiveness of the low-
level features to some extent, and in order to improve the detec-
tion accuracy by narrowing the semantic gap, we propose a novel
approach to explore the contextual information of the attributes.
Specifically, the co-occurrence pattern recognition module is
aimed at uncovering the explicit co-occurrence relationship
between attributes in images and utilizing it to further improve
the individual attribute detection performance. A random walk
process is integrated in this module to maximize the agreement on
appearance of individual attributes in an image with respect to co-
occurrence.

Relevance feedback is a crucial strategy in image retrieval
systems for retrieval result refinement. In our system, we provide
the application interface with functions like marking the relevance
decisions on the retrieved images. However, as the users of the
system may have different levels of professional knowledge, we
evaluate their expertise by requiring them to participate in a
sample species identification test and authorizing them different
levels of permissions to submit feedback based on their scores. The
following sections provide the implementation details of each part
shown in Fig. 4.

3.3. Feature extraction

3.3.1. Background removal
It is important to partition the images into “background” and

“foreground” because the background usually contains disturbing
visual information (such as shadows created by the lighting
device, bubbles and dirt on the specimen holder, etc.) that can
affect the performance of the detector. We adopted the image
reflection symmetry based approach [69] for background and
shadow removal. The moth image dataset used in this paper has
the high reflection symmetry property of moth wings (true for all
moths in general) (Fig. 5(a)). Because the shadows have the most
salient influence on the following processing steps, and they are
not symmetric in the images, we use symmetry as the key con-
straint to remove shadows.

The SIFT points of the image are detected (Fig. 5(b)) and sym-
metric pairs of the points are used to vote for a dominant axis of
symmetry (Fig. 5(c)). Based on the axis, a symmetry-integrated
region growing segmentation scheme is used to remove the white
background from the moth body and shadows (Fig. 5(d)), and the
same segmentation process is run with smaller thresholds to
partition the image into shadows and small local parts of the moth
body (Fig. 5(e)). Finally, symmetry is used again to separate the
shadows from the moth body by computing a symmetry affinity
matrix. Since the shadows are always asymmetric with the axis of
reflection, their symmetry affinity will have higher values than the
parts of moth body. This is used as the criterion to remove the
shadows (Fig. 5(f)).

3.3.2. SRV attribute labeling
A sub-region of the moth wing is considered an SRV attribute if:

(1) it repeatedly appears on moth wings across many images, (2) it
has salient and unique visual properties and (3) it can be described by
a set of textual words that are descriptive for the sub-region.

We scan the moth images and manually pick a group of SRV
attributes. Similar methods have been utilized for designing
“concepts” or “semantic attributes” in image classification and
object recognition tasks. An example is building nameable and
discriminative attributes with a human-in-the-loop [70,71].
However, as compared to their semantic attributes, our SRV
attributes cannot be described with concise semantic terms (e.g.,
“A region with scattered white dots on the margin of the hind
wing on the dorsal side”). Therefore, we propose to index the SRV
attributes by numbers, e.g., “attribute_1”, “attribute_2” and so
forth. We also explicitly incorporate the positions of the SRV
attributes into the attribute index. Each moth has two types of
wings: the forewing and the hindwing, and each type of wing has
two views: the ventral view and the dorsal view, the SRV attribute
index is finally defined in an unified format “attribute_No./
wing_type/view”, e.g., “attribute_1/forewing/dorsal”, “attribute_5/
hindwing/ventral”, etc. Furthermore, as the moths are symmetrical
to the center axis (axis of symmetry), we only label one side of the
moth with the index of SRV attributes.



Fig. 5. Steps for background and shadow removal. (a) Original image (with shadow), (b) detected SIFT points, (c) detected symmetry axis, (d) background removed image,
(e) segmentation for small parts, and (f) image after shadow removal.

Fig. 6. Results from salient region detection. (a) symmetry based segmentation, (b) segmentation without using symmetry. Two more results are shown in (c) and (d) by
using symmetry based segmentation.
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In order to acquire reliable attribute detectors, SRV attributes
are labeled by human experts to the regions in the training images.
The regions are represented by the minimum bounding rectangles
(MBRs) which are produced by using the on-line open source
image labeling tool “LabelMe” [72].

3.3.3. Salient region detection by segmentation
For the test images, we use the salient region detector to extract

small regions or patches of various shapes that could potentially
contain the interesting SRV attributes. A good region detector
should produce patches that capture salient discriminative visual
patterns in images. In this work, we apply a hierarchical seg-
mentation approach based on reflection symmetry introduced in
[69] to jointly segment the images and detect salient regions.
We apply symmetry axis detection on moth images to compute a
symmetry affinity matrix, which represents the correlation between
the original image and the symmetrically reflected image. Each pixel
has a continuous symmetry affinity value between 0 (perfectly
symmetric) and 1 (totally asymmetric), which is computed by the
Curvature of Gradient Vector Flow (CGVF) [73]. The symmetry affinity
matrix of each image is further used as the symmetry cue to improve
the region-growing segmentation. The original region-growing
approach considers aggregating pixels into regions by pixel homo-
geneity. In this paper, we modified the aggregation criterion to
integrate the symmetry cue. More details about the approach are
explained in [69].

Comparison between Figs. 6(a) and (b) indicates that by using
symmetry, more complete and coherent regions are partitioned.
The result in Fig. 6(b) is obtained by using the same region
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growing, but without symmetry, so it has many noisy and
incomplete regions. The improvements are obtained by using the
symmetry cue only. Two more results on salient region detection
by using symmetry based segmentation are shown in Figs. 6
(c) and (d).

3.3.4. Low-level feature extraction
We represent the above detected salient regions by the mini-

mum bounding rectangles (MBRs). The local features of each
bounding rectangle are extracted and pooled into numeric vector
descriptors. We have three different types of features used to
describe each region: (a) color feature, (b) texture feature, and
(c) SIFT keypoint feature.

(1) HSV (Hue-Saturation-Value) color feature: The color feature is
insensitive to changes of size and direction of regions. How-
ever, it suffers from the influence of illumination variations.
For the color feature extraction, the original RGB (Red-Green-
Blue) color image is first transformed into HSV (Hue-Satura-
tion-Value) space, and only the hue and saturation compo-
nents are used to reduce the impact from lighting conditions.
We then divide the interval of each component into 36 bins,
the image pixels inside the salient region are counted for each
bin, and the histogram of the 72 bins is concatenated and
normalized into the final color feature vector.

(2) Gray Level Co-occurrence Matrix (GLCM) based texture feature:
Texture features are useful to capture the regular patterns of
the spatial arrangement of pixels and the intrinsic visual
property of regions. We adopt the gray level co-occurrence
matrix (GLCM) proposed by Haralick in [74] to extract the
texture features. The GLCM is a pixel-based image processing
method.

The co-occurrence matrices in GLCM are calculated based on
second order statistics as described in [75]. Each element Pði; j; d;
φÞ in the matrix represents the frequency of co-occurrence of the
gray levels of the pixel pair (i, j) along a specific direction φ (e.g.,
horizontal, diagonal, vertical, etc.) at a distance d (e.g., one to six
pixels) between the pixels.

Let Iðx; yÞ denote a two-dimensional digital image of size M � N,
and suppose the maximum gray level is G, hence i; jA ½0;G�, an
element in the GLCM representing the co-occurrence value of two
pixels ðx1; y1Þ; ðx2; y2Þ in the image I at angle φ and distance d is
expressed in the following equation:

Pði; j; d;φÞ ¼
X
d;φ

Δ½ðx1; y1Þ; ðx2; y2Þ� ð1Þ

where Δ¼ 1, if ðx1; y1Þ ¼ i and ðx2; y2Þ ¼ j, else Δ¼ 0. In the original
approach, the author [74] computed 14 statistical features from
the matrix. We use 256 gray levels for quantization. The resulting
GLCMs can be sparse, and computing statistics looping through
each of the GLCMs can result in a very inefficient procedure since
many of the matrix entries are zeros. We use a subset of patches
containing the SRV attributes with ground-truth labels. The
14 GLCM features are extracted for each patch. We conduct a
classification task for each patch using each of the features. The
best features that have higher discriminative power and lower
computation time for all the patches are selected (by plotting the
error rate vs. computation time and selecting the optimum point
located within a certain radius range to the origin where the error
is low and the computation time is also low). This results in the
four most effective and efficient features listed below:
� Energy (Angular Second Moment):

ASM¼
X
i

X
j

Pði; jÞ2 ð2Þ

� Energy measures the image gray-level distribution and the
texture uniformity. ASM is relatively large when the distribution
of Pði; jÞ is more concentrated on the main diagonal.

� Entropy:

ENT ¼ �
X
i

X
j

Pði; jÞlog Pði; jÞ ð3Þ

� Entropy measures the disorder of an image. ENT is larger when
the value of Pði; jÞ is more dispersed and it achieves its largest
value when all the Pði; jÞ s are equal.

� Correlation:

COR¼
P

i
P

jðijÞPði; jÞ�μxμy

σxσy
ð4Þ

� Correlation measures the gray tone linear dependencies in an
image. μx;μy;σx;σy are the means and standard deviations of
PxðiÞ ¼

P
jPði; jÞ and PyðjÞ ¼

P
iPði; jÞ.� Homogeneity (Inverse Difference Moment):

IDM¼
X
i

X
j

1
1þðiþ jÞ2

Pði; jÞ ð5Þ

Homogeneity is inversely proportional to the image contrast
feature at constant energy. Smaller gray tone difference in pair
elements contribute to larger value of homogeneity.

By using only four components of the GLCM feature instead of
the entire fourteen components, the trained attribute detection
model achieved comparatively the same performance in image
identification while saved a lot of computation time. This has been
demonstrated on a subset of the training image patches for eva-
luation. We set the distance between the pair of pixels at 4 scales
(1, 2, 4, 8) and set the directions at 4 angles (01, 451, 901, 1351).
These scale and orientation parameters were examined as the
most appropriate setting by applying Chi-square test on the opti-
mal GLCM computed with the selected four features of the train-
ing patches. The final GLCM texture feature vector is of length 64
(4 feature types � 4 direction � 4 distances).

(3) SIFT (Scale Invariant Feature Transform) based keypoint
feature. SIFT [38], proposed by Lowe, is a very popular feature used
in computer vision and pattern analysis. SIFT features have the
advantage that they are invariant to changes in scale, rotation, and
intensity. The major issues related to extracting SIFT features
include selecting the keypoints and calculating the gradient his-
togram of pixels in a neighboring rectangular region. In this work,
we apply the Difference-of-Gaussians (DoG) operator to extract
the keypoints. For each keypoint, the 16� 16 pixels in its neigh-
borhood region are used. We divide a region into 16 4� 4 sub-
regions. For each pixel in a subregion, we calculate the direction
and magnitude of its gradient. We quantize the directions into
8 bins, and build a histogram of gradient directions for each sub-
region. The magnitude of the gradient is used to weight the con-
tribution of a pixel. Finally, the 8-dimensional feature vectors from
the eight-bin direction histogram of each subregion are combined
and weighted into a 128-dimensional vector to record local
information around the keypoint.
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3.4. SRV attribute detector learning module

In this module, the SRV attribute detector is trained by using a
generative approach based on probability theory. To illustrate the
basic idea, consider a scenario in which an image region depicted

by an N-dimensional low-level feature vector XN
�!

is to be assigned
into one of the K SRV attributes k¼ 1;…;K at a higher level of
semantics. From probability theory we know that the best solution
is to achieve the a posterior probabilities pðkjXÞ for a given X and
each attribute category k, and assign the attribute with the largest
probability score to the region. In the generative model, we model
the joint probability distribution pðk;XÞ of image region features
and attributes, and Bayes'theorem provides an alternative to
derive pðkjXÞ from pðk;XÞ:

pðkjXÞ ¼ pðk;XÞ
pðXÞ ¼ pðX jkÞpðkÞPK

i ¼ 1 pðX j iÞpðiÞ
ð6Þ

As the sum in the denominator takes the same value for all the
attribute categories, it can be viewed as a normalization factor
over all the attributes. Eq. (6) can be rewritten as

pðkjXÞppðk;XÞ ¼ pðX jkÞpðkÞ ð7Þ
which means we only need to estimate the attribute prior prob-
abilities p(k) and the likelihood pðX jkÞ separately. The generative
model has the advantage that it can augment the large amount of
unlabeled data in a dataset from a small portion of the
labeled data.

As defined earlier K denotes the pool of SRV attributes. Let ki be
the ith attribute in K. According to the previous section, ki is
assigned to a set of image regions Rki ¼ fri1; ri2;…; rinki

g along with

the corresponding feature vectors Xki ¼ fxi1; xi2;…; xinki
g, where n is

the number of regions in an image. We assume that the feature
vectors are sampled from an underlying multi-variate density
function pXð�jkiÞ. We use a non-parametric kernel-based density
estimate [76] for the distribution pX. Assuming region rt to be in
the test image with feature vector xt, we estimate pXðxt jkiÞ by
using a Gaussian kernel over the feature vectors Xki :

pXðxt jkiÞ ¼
1
n

Xn
j ¼ 1

expf�ðxt�xjÞTΣ �1ðxt�xjÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nπn jΣ j

p ð8Þ

Σ is the covariance matrix of the feature vectors in Xki .
pðkiÞ is estimated by using Bayes estimators with a prior beta

distribution, the probability distribution of pðkiÞ is given by

pðkiÞ ¼
μδki ;rþNki

μþNr
ð9Þ

where μ is the smoothing parameter estimated from the training
set, δki ;r ¼ 1 if attribute ki occurs in the training region r and
0 otherwise. Nki is the number of training regions that contain
attribute ki and Nr is the total number of training regions.

Finally, for each test region with feature vector xt, the posterior
probability of observing attribute ki in K given xt, pðki j xtÞ is given
by multiplying the estimates of the two distributions:

pðki jxtÞ ¼
1
n

Xn
j ¼ 1

expf�ðxt�xjÞTΣ �1ðxt�xjÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nπn jΣ j

p
0
@

1
A

� μδki ;rþNki

μþNr

� �
ð10Þ

For each salient region extracted from a test image I, the frequency
of each attribute in that region is inferred by (10). The probabilities
for all attributes are combined into a single vector which is called
region SRV attribute signature. For a test image with several salient
regions, we combine the region SRV attribute signature into a final
vector by choosing the max score for each attribute. We name this
vector as the image SRV attribute signature and it is used as the
semantic descriptor for an image.

3.5. SRV attribute co-occurrence pattern detection module

Attribute labels given by human experts as ground-truth
semantic descriptions across the entire training image set are
used to learn the contextual information based on the attribute
label co-occurrences. In this section, we devise a novel approach to
discover the co-occurrence patterns of the individual attributes
based on network analysis theories. More specifically, we con-
struct an attribute co-occurrence network to record all the pair-
wise co-occurrence between attributes. The patterns are detected
as the communities in a network structure. A similar concept is
used in social networks to describe a group of people that have
tightly established interpersonal relationships.

3.5.1. SRV attribute co-occurrence pattern detection
We first introduce the notion of community structure from the

network perspective. One way to understand and analyze the
correlations among individual items is to represent them in a
graphical network. The nodes in the network correspond to the
individual items (attributes in our case), the edges describe the
relationships (attribute co-occurrence in our case), and the edge
weights denote the relevant importance of the relationship (co-
occurrence frequency in our case).

A very common property of a complex network is known as the
community structure, i.e., groups of nodes may have tight internal
connections in terms of a large number of internal edges, while
they may have fewer edges connecting each other. These groups of
nodes constitute the communities in the network. The existence of
community structure reflects underlying dependencies among
elements in the target domain. If a group of individual attributes
always occurs together in the training image set, then an under-
lying co-occurrence pattern can be defined by these attributes, and
this pattern can be used as a priori knowledge in the attribute
detection for the test images.

The approach we adopted to detect the communities in the
network is modularity optimization [77]. Suppose attributes ai and
aj in A are represented as two nodes i and j, and suppose i belongs
to community Ci and j belongs to community Cj in a partition. The
modularity Q is defined as a qualitative measure of a particular
partition on the network in the form of

Q ¼ 1
2d

X
i;j

wij�
wiwj

2d

h i
δðCi;CjÞ ð11Þ

where d equals to half of the summation of all the edge weights in
the network, wij is the edge weight between i and j, wi(wj) equals
the summation of the edge weights attached to node i(j), δðCi;CjÞ
¼ 1 if Ci¼Cj and 0 otherwise.

We consider iteratively merging the nodes into communities
based on the criterion that the merge of nodes generates a positive
modularity gain at each iteration. The modularity gain of moving
an outside node i into a community C is evaluated by

ΔQ ¼ Σ inþki;C
2d

� Σoutþwi;C

2d

� �2
" #

� Σ in

2d
� Σout

2d

� �2

� wi;C

2d

� �2
" #

ð12Þ
where Σin represents the sum of edge weights inside C, wi;C equals
the sum of weights of edges that link i to C, d is the same as
defined in Eq. (20), Σout is the sum of weights of edges that link
outside nodes to nodes in C, wi is the sum of weights of the edges
incident to i. Based on modularity optimization, we propose the
following two phase algorithm, given as Algorithm 1 in the
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following, to detect the attribute co-occurrence patterns in the
network.

Algorithm 1. SRV attribute co-occurrence pattern detection
3.5.2. SRV attribute signature refinement with the co-occurrence
patterns

The co-occurrence patterns are utilized for refining the detec-
tion results on each individual SRV attribute by performing a
random walk process [78] over the patterns. We define the dis-
tance between two attributes ai and aj as

Dai ;aj ¼
2� # of CPfai; ajg

# of CPfaig þ# of CPfajg
ð13Þ

where # of CPfai; ajg is the number of co-occurrence patterns
containing both attribute ai and aj. Suppose initially the frequency
of attribute ai in the image attribute signature is sðaiÞ (given by the
generative model), then in the mth iteration the new value of the
probability is formulated by the following random walk process:

smðaiÞ ¼ α
X
j

sm�1ðajÞ � Dai ;aj þð1�αÞ � sðaiÞ ð14Þ

where α is a weight parameter that takes a value between ð0;1Þ.
The above formula can strengthen the occurrence probabilities of
the attributes in the same patterns and weaken the isolated ones.
The controlling parameter is determined by using the training sets.
3.6. Identification module

The attribute detector learned from the training data is used in
the identification module for the test images. The inputs to the
detector are the detected salient regions from the test images as
well as the extracted low-level visual features. The output of the
detector is the so-called “image SRV attribute signature”. The
species identification of test images is performed by comparing
test image signatures with the training image signatures. There-
fore, we also build the attribute signatures for the training images.
For a training image I, the attribute signature is Sj Aj with each
element sðaiÞAf0;1g and sðaiÞ ¼ 1 when image I has regions labeled
with attribute ai and ¼ 0 otherwise. We further divide the training
images into groups based on their scientific species designation.
The element values are averaged across the signatures within each
species group for each individual attribute and the obtained sig-
nature is called the species prototype signature.

The test image of a species is identified by comparing its image
attribute signature with the species prototype signatures of the
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fifty species. The distance between the two signatures is calculated
by the Euclidean distance. The test image is finally identified as the
species with the smallest distance value. If several species have
very similar distances to the test image, we assign all the species
labels to that image, and let the image retrieval system give the
final decision on the species based on the feedback from the users
who are experts.

3.7. Retrieval & relevance feedback module

We implement a query-by-example (QBE) paradigm for our
retrieval system. QBE is widely used in conventional content-
based image retrieval (CBIR) systems when the image meta-data,
such as captions, surrounding texts, etc. are not available for
keyword based retrieval.

3.7.1. Image retrieval using query-by-example
In the QBE mode, the user is required to submit a query in

terms of an example specimen image to the system. Finding an
appropriate query example, however, is still a challenging problem
in the research area of CBIR [35]. In our system, we provide an
image browsing function in the user interface, and the user is
allowed to browse all the images in the database and submit a
query. Images are compared by their content similarity. Each
image in the database is represented by a low-level visual feature
vector F and a high-level SRV attribute signature S, for a query
image Q and a database image Y. The distance between them is
calculated by fusing the Euclidean distance over the visual feature
vectors and the Earth Mover's distance [79] over the SRV attribute
signatures:

DistðQ ;YÞ ¼ ηDEucðFQ ; FY Þþð1�ηÞDEMDðSQ ; SY Þ ð15Þ
where η is the adjusting parameter between the two distance
measures and is determined by the long-term cross-session
retrieval history working on the subset of training images [36]. If
the precision for a particular query is increased when more
importance is put on the feature distance, then η is adjusted to a
larger value, otherwise it becomes smaller.

The Earth Mover's Distance (EMD) is used as a proper measure
for comparing signatures given the pre-defined ground distances
for pairs of attributes. The underlying idea of the Earth Mover's
distance is that given two signatures of attributes, one can be seen
as a mass of earth spread in the attribute space and the other as a
collection of holes in the same attribute space. EMD is defined as
the least amount of work needed to fill the holes with the earth.
The ground distance between a pile of earth (an attribute element
in the first signature) and a hole (an attribute element in the
second signature) corresponds to the amount of work needed to
move that pile of earth to the hole. The base metric is defined in
the attribute space and used to compute the distance between two
attributes. In our setting, the ground distance can be obtained by
taking the reciprocal of the edge weights between the two attri-
butes in the co-occurrence network which reflects the hardness
that two attributes occur together in the images. Let dðSQ ðaiÞ; SDð
ajÞÞ denote the ground distance between attribute ai in the query
signature and attribute aj in the database image signature. The
Earth Mover's Distance between their signatures is defined as

DEMDðSQ ; SDÞ ¼
Pm

i ¼ 1
Pn

j ¼ 1 f ijdðSQ ðaiÞ; SDðajÞÞPm
i ¼ 1

Pn
j ¼ 1 f ij

ð16Þ

where fij is called a flow that is transferred from one signature to
the other. The EMD is computed by solving all the fij using linear
programming [80]. The EMD can be viewed as a measure of the
least amount of work needed to transfer one signature into the
other, a unit of work in the process is evaluated by the ground
distance.
3.7.2. Relevance feedback
The Relevance feedback (RF) scheme has been verified as a

performance booster for our retrieval system. The reason is that RF
can capture more information about a user's search intention,
which can be used to refine the original image descriptors from
feature extraction and attribute detection [33].

Our RF approach follows the Query Point Movement (QPM)
paradigm as opposed to the Query Expansion (QEX) paradigm. We
move the query point in both the feature space and the attribute
space toward the center of the user's preference by using both the
relevant and irrelevant samples marked by the user at each
retrieval iteration. However, before the users’ decisions are used to
refine the descriptors, their expertise in identifying moth species
are evaluated by sample tests when they first enter the system. If a
user has 90% accuracy in identifying the species, and his/her
relevance feedback will take effect.

Suppose in each retrieval iteration the system returns N ima-
ges. Let F ¼ ff 1; f 2;…; f Ng denote the visual feature vectors and S
¼ fs1; s2;…; sNg denote the attribute signatures of the retrieved
images and let fQ and sQ represents the query descriptors accord-
ingly. The refinement of the descriptors is equivalent to learning
projection matrix Wf that transforms ff 1; f 2;…; f N ; f Q g into
ff 01; f 02;…; f 0N ; f

0
Q g, as well as Ws that transforms fs1; s2;…; sN ; sQ g

into fs01; s02;…; s0N ; s
0
Q g, by which the query and the relevant images

resemble as much as possible in the feature and attribute spaces
and deviate from the irrelevant ones.

Let P and N denote the sets of positive and negative results.
We build a pairwise relevant descriptor set Λf ;Λs and pairwise
irrelevant descriptor set Ωf ;Ωs in the following way:

Λf ¼ fðf Q ; f iÞj f iAPf g [ fðf i; f jÞj f i; f jAPf g
Λs ¼ fðsQ ; siÞj siAPsg [ fðsi; sjÞj si; sjAPsg
Ωf ¼ fðf Q ; f iÞj f iAN f g [ fðf i; f jÞj ðf iAPf \ f jAN f Þ [ ðf iAN f \ f jAPf Þg
Ωs ¼ fðsQ ; siÞj siAN sg [ fðsi; sjÞj ðsiAPs \ sjAN sÞ [ ðsiAN s \ sjAPsÞg

8>>>><
>>>>:

ð17Þ
After the transformation Wf , the sum of the squared distances of
the visual feature pairs in Λf is comupted asX
ðf i ;f jÞAΛf

ðWT
f f i�WT

f f jÞT ðWT
f f i�WT

f f jÞ

¼
X

ðf i ;f jÞAΛf

Tr½WT
f ðf i� f jÞðf i� f jÞTWf �

¼ TrðWT
f XΛf

Wf Þ; ð18Þ

where XΛf
¼P

ðf i ;f jÞAΛf
ðf i� f jÞðf i� f jÞT and Tr is the trace of the

matrix. Similarly, we have TrðWT
s XΛs

WsÞ, TrðWT
f XΩf

Wf Þ and
TrðWT

s XΩs
WsÞ. We would like to have the sum of distances from Λ

as small as possible and the sum of distances from Ω as large as
possible, so have the following objective functions:

min
WT

f Wf ¼ I
TrðWT

f XΛf
Wf Þ; max

WT
f W ¼ I

TrðWT
f XΩf

Wf Þ

min
WT

s Ws ¼ I
TrðWT

s XΛs
WsÞ; max

WT
s W ¼ I

TrðWT
s XΩs

WsÞ

8>><
>>: ð19Þ

where I is the identity matrix, the purpose of having the con-
straints WT

f Wf ¼ I;WT
sWs ¼ I is to prevent arbitrary scaling of the

projection. The minimization and maximization problems in (19)
is usually formulated as a trace ratio optimization problem [81]:

max
WT

f Wf ¼ I

TrðWT
f XΩf

Wf Þ
TrðWT

f XΛf
Wf Þ

max
WT

s Ws ¼ I

TrðWT
s XΩs

WsÞ
TrðWT

s XΛs
WsÞ

8>>>>><
>>>>>:

ð20Þ

Wang et al. [81] proposed an iterative algorithm to conduct trace
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ratio optimization, which is adopted in our work to solve the
problem in (20) and is summarized in Algorithm 2.

Algorithm 2. Trace ratio optimization [81]
4. Experimental results

We implemented the system on a Microsoft Windows platform
using C# ṅet with the Windows Presentation Foundation appli-
cation development framework. The image database with relevant
features and attributes are deployed on MySQL server. The data-
base is set up by importing .txt files with numeric values of the
attributes and features, and textual information describing the
image properties of the moth images. We show the screenshot of
the application in Fig. 7. We report here the results in two appli-
cation scenarios: (i) moth species identification based on SRV
attributes; (ii) Moth image retrieval with relevance feedback based
on visual features and SRV attributes.

4.1. Image source and system parameters

Examination of the moth image collection used in this study is
introduced in Section 5. All 4530 specimen images used in our
experiments were manually labeled with SRV attributes with
MBRs by using the tool introduced in Section 3.3.2. The species
labels are provided by human experts (Dr. Janzen and his collea-
gues). The labels of the training images are used in the training
process. The labels of the test images are used as ground-truth for
validation.

4.2. Species identification results

We randomly divided the images into training and testing sets,
which contain 80% and 20% of the entire data seperately. We then
sampled the training set into 10 subsets, one subset was held out
for validation and the remaining subsets were used for training
the model. This process was repeated ten times for tunning the
parameters. The final results on the testing set is reported in
Table 3 and the tuned parameters based on the cross-validation in
the training process are summarized in Table 2.
4.2.1. Evaluation criteria
The performance of the automated species identification is

evaluated by the accuracy measure. A test image is assigned to the
species category for which prototype signature has the smallest
distance to the image's SRV attribute signature. The accuracy
measure is defined for each species as the number of correctly
identified individuals divided by the total number of specimens of
that species in the testing set. A testing image is considered as a
correct identification if the species label generated by the program
matches with the ground-truth label.

4.2.2. Baseline approaches
To demonstrate the effectiveness of our proposed framework

for the moth species identification application, we compare with
the following approaches as baselines:

� Baseline-I: The most basic model that only uses the visual fea-
tures extracted from Section 3.3.4. No SRV attributes and the
signature representation were used. The images are identified
purely based on the visual feature vector similarity calculated
by using the Euclidean distance.

� Baseline-II: Our generative model for individual attribute
detection unified with the attribute signature representation
serves as the Baseline-II model. However, this model does not
include attribute co-occurrence pattern detection and random
walk refinement on the SRV attribute signatures.

� VW-MSI: We implemented a visual words based model based
on the work by Lazebnik et al. [51] and name it as “Visual Words
based Moth Species Identification” (VW-MSI). This technique
works by partitioning the image into increasingly fine sub-



Fig. 7. The screen shot of the system. The images can be browsed in the display window and selected as queries. The “Submit Relevance Feedback” button is used for manual
submissions and the “Autorun” button is used for automated queries. The species labels are shown in the text area. The user can click to mark the images as relevant, and the
rest are used as irrelevant samples automatically. We can show up to 60 retrieved images in dorsal and ventral views.
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regions and compare image similarity based on the histogram of
local features.

� SRV-MSI: Our proposed approach integrated with co-occurrence
pattern detection and SRV attribute signature refinement. We name
it as “SRV attribute based Moth Species Identification” (SRV-MSI).

We compared the species identification results of the proposed
approach with the other three approaches in Table 3. The best
performance as well as the worst performance are bold in the
table. The mean and standard deviation of the accuracy are shown
for the fifty species. As we can observe from Table 3, our system
performs the best for almost all the fifty species except that VW-
MSI outperforms ours in five species: Neoxeniades luda, Isostyla
zetila, Atarnes sallei, Nascus Burns and Mysoria ambigua. This
demonstrates the effectiveness of SRV attributes and the co-
occurrence patterns used for signature refinement.

The range of the mean identification accuracy of our system on
the fifty species is between 0.3455 and 0.7764. The identification
accuracy of some of the species is relatively low (e.g. Hemicephalis
agenoria, Neoxeniades luda, Dasylophia basitincta, Dasylophia max-
tla and Nascus Burns). When we visually examined the samples
from these species, we found that the moth has less discriminative
visual patterns or SRV attributes on the wings. This phenomenon
reflects that our system may lose the power in identifying moth
species with dull wings. Specifically, our system achieved low
performance in two species categories: Dasylophia basitincta and
Dasylophia maxtla, which have very similar visual appearances.
The confusion matrix (we do not show it in the paper for the
reason of space limitation) shows that our system mis-identifies
the samples from one species into the other species. However, we
observe that VW-MSI and other baselines also lose the effective-
ness when dealing with moth images with very similar physical
appearances. Based on the values of the standard deviation, our
system still gives the most stable results across all the species
categories compared to the other three approaches. The total
number of SRV attributes manually given to the images by the
human experts is 450. As a result, the maximum length of the SRV
attribute signature for the images is 450.

4.3. Image retrieval results

To test the performance of our SRV attribute based approach for
image retrieval with the proposed relevance feedback scheme, like
for species identification in Section 4.2, we divided the entire
image dataset into 10 folds. The parameters are determined using
the same scheme as described in Section 4.2.1. We set the number
of attributes to 300. In order to reduce the amount of work of
submitting relevance feedback that are required to be given by
users, we propose to simulate the user interaction by launching
queries and submitting feedback automatically by the system. The
launching of automated queries works in the following way: the
system compares the ground-truth species labels of the retrieved
images with the query image, if the species label matches the label
of the query image, the system will mark the image as relevant,
otherwise, the image is marked as irrelevant. By doing this, we
assume the relevance feedback provided by the users will always
be correct and complete (i.e., users will only mark the relevant
images as those from the same species category as the query and
all the relevant images will be marked). The reason we have this
automated query process is because we want to use each image in
the database as a query image and collect the relevance feedback.
However, considering the large number of images in the database,
manually launching queries and providing relevance feedback by
clicking through the images will take a great amount of time.
Therefore, we simulate the whole process by launching automated
queries behind the scene. In this way, we are simulating expert
users who will always provide correct and complete answers to
the system. Note that the ground-truth is only used by the system
to judge the relevance of the retrieved images. It is not involved in
comparing image similarity in the retrieval procedure. For each
query, we request the users or the system to provide five iterations
of relevance feedback. We have half of the queries in each species



Table 3
Identification accuracy for the fifty species. The performance of SRV-MSI is better than all other approaches except for Neoxeniades luda, Isostyla zetila, Atarnes sallei and
Nascus Burns.

Baseline I Baseline II VW-MSI SRV-MSI

Species Mean Std Mean Std Mean Std Mean Std

Ceroctena amynta 0.2965 0.0321 0.4176 0.0169 0.4347 0.0184 0.4582 0.0174
Eudocima materna 0.4968 0.0257 0.5483 0.0275 0.5772 0.0279 0.5944 0.0209
Eulepidotis folium 0.3910 0.0279 0.4141 0.0264 0.4241 0.0213 0.4482 0.0371
Eulepidotis rectimargo 0.5561 0.0246 0.5875 0.0236 0.5982 0.0211 0.6134 0.0163
Hemicephalis agenoria 0.3314 0.0268 0.3349 0.0302 0.3764 0.0315 0.3931 0.0236
Thysania zenobia 0.4102 0.0327 0.4329 0.0236 0.4675 0.0218 0.4971 0.0356
Chrysoglossa norburyi 0.5472 0.0225 0.5553 0.0253 0.5693 0.0214 0.5752 0.0205
Erbessa albilinea 0.6048 0.0365 0.6324 0.0336 0.6564 0.0112 0.6755 0.0174
Erbessa salvini 0.3562 0.0468 0.3634 0.0425 0.3894 0.0313 0.4143 0.0345
Nebulosa erymas 0.5432 0.0312 0.5647 0.0291 0.5722 0.0219 0.5935 0.0225
Tithraustes noctiluces 0.5438 0.0214 0.5624 0.0331 0.5948 0.0215 0.6086 0.0251
Polypoetes haruspex 0.5247 0.0216 0.5369 0.0234 0.5699 0.0226 0.5906 0.0202
Dioptis longipennis 0.5621 0.0281 0.5746 0.0212 0.6013 0.0124 0.6154 0.0175
Methionopsis ina 0.4721 0.0375 0.4835 0.0367 0.5056 0.0317 0.5102 0.0425
Neoxeniades luda 0.3742 0.0374 0.3852 0.0432 0.4183 0.0345 0.3975 0.0457
Saliana Burns 0.5042 0.0364 0.5356 0.0256 0.5523 0.0227 0.5731 0.0234
Saliana fusta 0.6480 0.0247 0.6597 0.0275 0.6993 0.0205 0.7346 0.0134
Talides Burns 0.5437 0.0256 0.5572 0.0247 0.5872 0.0158 0.6352 0.0176
Vettius conka 0.6417 0.0334 0.6782 0.0148 0.7364 0.0153 0.7544 0.0169
Aroma aroma 0.5437 0.0273 0.6035 0.0245 0.6244 0.0144 0.6461 0.0211
Carystoides escalantei 0.5326 0.0324 0.5487 0.0264 0.5873 0.0212 0.6033 0.0254
Lirimiris guatemalensis 0.3975 0.0421 0.4129 0.0256 0.4635 0.0216 0.4930 0.0249
Isostyla zetila 0.5248 0.0363 0.5392 0.0365 0.5482 0.0231 0.5364 0.0357
Oricia domina 0.4964 0.0368 0.5175 0.0316 0.5391 0.0376 0.5632 0.0195
Scotura leucophleps 0.5014 0.0378 0.5246 0.0217 0.5574 0.0238 0.5757 0.0221
Bardaxima perses 0.4764 0.0371 0.4954 0.0314 0.5337 0.0276 0.5551 0.0307
Dasylophia basitincta 0.3842 0.0457 0.3976 0.0351 0.4031 0.0216 0.4344 0.0275
Dasylophia maxtla 0.3683 0.0416 0.3754 0.0363 0.3948 0.0314 0.4113 0.0278
Nystalea collaris 0.4173 0.0285 0.4326 0.0291 0.4861 0.0243 0.5021 0.0274
Tachuda discreta 0.3647 0.0321 0.4056 0.0249 0.4314 0.0327 0.4512 0.0269
Atarnes sallei 0.6084 0.0372 0.6396 0.0278 0.7072 0.0127 0.7059 0.0187
Dyscophellus phraxanor 0.5483 0.0364 0.5731 0.0381 0.6295 0.0331 0.6494 0.0362
Tithraustes lambertae 0.6053 0.0271 0.6056 0.0374 0.6314 0.0249 0.6713 0.0285
Entheus matho 0.6153 0.0490 0.6273 0.0411 0.6319 0.0263 0.6534 0.0279
Hyalothyrus neleus 0.6472 0.0394 0.6717 0.0285 0.6961 0.0184 0.7106 0.0168
Nascus Burns 0.3258 0.0173 0.3394 0.0314 0.3549 0.0387 0.3455 0.0372
Phocides nigrescens 0.6138 0.0442 0.6359 0.0321 0.6789 0.0174 0.6797 0.0171
Quadrus contubernalis 0.6432 0.0316 0.6572 0.0257 0.6942 0.0268 0.7096 0.0263
Urbanus belli 0.5276 0.0164 0.5713 0.0268 0.5953 0.0182 0.6132 0.0254
Melanopyge Burns 0.6261 0.0255 0.6527 0.0275 0.6799 0.0134 0.6930 0.0214
Myscelus belti 0.6438 0.0354 0.6765 0.0241 0.7564 0.0182 0.7764 0.0158
Mysoria ambigua 0.5537 0.0341 0.5864 0.0213 0.6141 0.0275 0.6247 0.0218
Dicentria rustica 0.3497 0.0354 0.3764 0.0252 0.4431 0.0309 0.4546 0.0277
Farigia sagana 0.3647 0.0387 0.4145 0.0262 0.4744 0.0265 0.4854 0.0254
Hapigiodes sigifredomarini 0.4126 0.0264 0.4352 0.0225 0.4553 0.0321 0.4894 0.0196
Malocampa matralis 0.4832 0.0346 0.5167 0.0374 0.5382 0.0314 0.5893 0.0217
Meragisa Janzen 0.5654 0.0246 0.5987 0.0320 0.6187 0.0211 0.6375 0.0212
Naprepa houla 0.4264 0.0257 0.4583 0.0315 0.4832 0.0247 0.5126 0.0276
Pseudodryas pistacina 0.4126 0.0354 0.4323 0.0267 0.4654 0.0209 0.4879 0.0219
Rifargia dissepta 0.5836 0.0321 0.5917 0.0289 0.6283 0.0217 0.6412 0.0365

Table 2
The system parameters for the experiments.

Parameter Description Section Setup

Q The threshold for determining whether a community is a good par-
tition in the network.

Section 3.5.1 The value is in the range of ½�1;1�, we set to 0.3 based on 10 cross-
fold validation.

α The weighting parameter in the random walk process. Section 3.5.2 The value is in the range of ½0;1�, we set the value to 0.6 based on 10
cross-fold validation.

η The adjusting parameter between two image distance measures. Section 3.7.1 The value is in the range of [0,1], the value is set 0.5 based on 10 cross-
fold validation.
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category launched by the users and the other half simulated by the
system. The results are computed based on the combination of the
two methods.
4.3.1. Evaluation criteria
In each iteration, the retrieval precision is evaluated by the rank

of the relevant images. Further statistical evaluation of the



Table 4
Comparison of the retrieval performance for the fifty species.

Geometric mean average precision
Species BL-I BL-II SRV-IR Species BL-I BL-II SRV-IR

Ceroctenaamynta 0.4032 0.3856 0.4533 Bardaximaperses 0.2819 0.3047 0.3218
Eudocimamaterna 0.4511 0.4142 0.4738 Dasylophiabasitincta 0.3517 0.4102 0.4619
Eulepidotisfolium 0.3794 0.4105 0.4743 Dasylophiamaxtla 0.3598 0.3692 0.4107
Eulepidotisrectimargo 0.5563 0.5051 0.6117 Nystaleacollaris 0.3408 0.3726 0.3819
Hemicephalisagenoria 0.4132 0.3947 0.4693 Tachudadiscreta 0.2872 0.2935 0.3084
Thysaniazenobia 0.4104 0.3933 0.4705 Atarnessallei 0.5832 0.6224 0.6778
Chrysoglossanorburyi 0.5856 0.5710 0.6786 Dyscophellusphraxanor 0.5324 0.5799 0.6128
Erbessaalbilinea 0.6045 0.5972 0.7153 Tithrausteslambertae 0.4846 0.4472 0.5315
Erbessasalvini 0.4529 0.4297 0.5428 Entheusmatho 0.4748 0.4876 0.5432
Nebulosaerymas 0.5219 0.5346 0.5857 Hyalothyrusneleus 0.6042 0.6584 0.6971
Tithraustesnoctiluces 0.5486 0.5148 0.5749 NascusBurns 0.2396 0.2846 0.3167
Polypoetesharuspex 0.5745 0.5237 0.5964 Phocidesnigrescens 0.5755 0.5942 0.6398
Dioptislongipennis 0.4816 0.4754 0.5048 Quadruscontubernalis 0.6492 0.7047 0.7168
Methionopsisina 0.3581 0.3847 0.3994 Urbanusbelli 0.5693 0.5480 0.5724
Neoxeniadesluda 0.3625 0.3827 0.4117 MelanopygeBurns 0.6454 0.6845 0.6992
SalianaBurns 0.5298 0.5446 0.5829 Myscelusbelti 0.6894 0.7008 0.7631
Salianafusta 0.6046 0.5917 0.6459 Mysoriaambigua 0.4917 0.4802 0.5746
TalidesBurns 0.5154 0.5308 0.5742 Dicentriarustica 0.3969 0.4105 0.4453
Vettiusconka 0.6296 0.6115 0.7135 Farigiasagana 0.2946 0.3072 0.3418
Aromaaroma 0.4537 0.4425 0.5289 Hapigiodessigifredoma 0.3634 0.3728 0.4051
Carystoidesescalantei 0.5046 0.4672 0.5274 Malocampamatralis 0.4746 0.4869 0.5537
Lirimirisguatemalensis 0.3234 0.3456 0.3753 MeragisaJanzen 0.5643 0.5756 0.6683
Isostylazetila 0.5924 0.5483 0.6175 Naprepahoula 0.3748 0.4245 0.4886
Oriciadomina 0.4641 0.4547 0.5044 Pseudodryaspistacina 0.2975 0.3174 0.3531
Scoturaleucophleps 0.5179 0.5357 0.5678 Rifargiadissepta 0.5648 0.5247 0.6190

Overall Mean ð50speciesÞ 0.4743 0.4771 0.5312
Overall Std ð50speciesÞ 0.1088 0.1072 0.1143
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averaged precision for each species relies on standard image
retrieval measure: Mean average precision of top D retrieved images
over all the query images from a specific species category. Let D be
the number of retrieved images and R be the relevant ones with
size jRj . Given a query Q, the average precision is defined as
APðQ Þ ¼ 1=jRj Pj Rj

i ¼ 1 i=RankðRiÞ, and the geometric mean average

precision (GMAP) which is defined as GMAP ¼ jQ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏j Q j

i ¼ 1AP
q

is the
measure for the system performance over all the species.

4.3.2. Baseline approaches
To demonstrate the effectiveness of our proposed retrieval

framework, we use the following approaches as the baselines to
compare the results:

� Baseline-I: The proposed image retrieval framework without
relevance feedback scheme.

� Baseline-II: We reimplemented an insect image identification
approach [14] and integrated it into our retrieval framework
with five iterations of relevance feedback process. The features
used are a combination of color, shape and texture features and
there are no higher level image descriptors like our SRV
attributes.

� SRV-IR: Our proposed retrieval framework with relevance
feedback scheme based on the SRV attributes.

We show the top twelve retrieved images in the application
interface. However, the application can be adjusted to show more
images upon request. Table 4 summarizes the geometric mean average
precision from the three approaches for all the fifty species. As we can
observe, when the RF scheme is applied (Baseline-II and SRV-IR), the
geometric mean averaged precision is increased compared to the
retrieval without RF (Baseline-I), which demonstrates the effect of
human interaction in improving the retrieval performance. When
more retrieval iterations (with relevance feedback) are involved in the
search process, the system can find more relevant images matching
the user's search intention. In the two approaches that adopt a rele-
vance feedback scheme, our approach which uses SRV attribute based
image descriptors outperforms Baseline-II for all the species categories.
The system response time for each individual query for a database of
1000 images is approximately 150 ms. For a database of 4000 images
the response time for each individual query is approximately 500ms.
5. Conclusions

This paper describes a novel insect species identification and
retrieval system based on wing attributes of moth images. The
purpose of the research is to design adn develop computer vision
and pattern recognition system for conducting automated image
analysis that can be used by the entomologists for insect studies.
We demonstrated the effectiveness of our system in species
identification and image retrieval for fifty moth species.

There are two major processes for species identification and
retrieval: preprocessing images for attribute extraction and
learning the co-occurrence relationships of the attributes. Current
systems try to make the first process automatic while overlooking
the importance of the second process which could bring much
contextual information. Our identification and retrieval system
based on CBIR architecture is fully automatic. For example, many
current systems require manual separation of foreground and
background in the preprocessing step while in our systemwe have
automated segmentation of moth from the background with
shadow removal.

The dataset that we used contains 4530 images which could be
easily extended to larger sizes in the future to test the scalability of
the system. Overall, our system achieves a better performance
compared to the baseline approaches in identification and retrie-
val. The identification accuracy reaches 70% for some species in the
image collection while the majority of the species has the identi-
fication accuracy between 40% and 60%. The lowest accuracy
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comes from species Nascus Burns and it is approximately 34%. The
mean average precision for the image retrieval task also reaches
70% for some of the species, and the majority of the species has the
GMAP above 40%. Eight species have the retrieval precision lower
than 40%. By examining the images, we found that the differences
in performance for different species are caused by the different
level of visual properties. Some of the species have easily distin-
guishable visual attributes on the wings while others may not
have them. This demonstrates that using our co-occurrence pat-
tern based attribute learning and detection can achieve a better
performance by bringing the relationship of attributes into con-
sideration. However, it is still confined by the visual properties of
images and it is a challenge for all the approaches.

A significant difference between our work and similar work in
insect identification is that we provide an intermediate-level fea-
ture, namely, the SRV attributes, which function to narrow the
semantic gap between machine understanding and human inter-
pretation of images. We are excited to see that SRV attributes
successfully capture the visual patterns on the wings of moth at a
higher semantic level and generate better results consequently.

However, the discriminative power of our system drops when the
moth species contain highly similar visual properties. This could cause
reduction in both identification and retrieval once more images are
included in the dataset that belong to different species categories but
share strong visual patterns on the wings. These cases would be dif-
ficult for humans as well. Also, our research belongs to the category
that generates human-designated attributes and learn the relationship
between these attributes and image samples. All the approaches that
belong to this category suffer from scalability problems especially for
applications that are deal with images from general domains such as
natural scenes, outdoor/indoor scenes, etc. In our case, we are working
in the specific domain of moth images where the SRV attributes may
not increase significantly even for a different and larger dataset.
Therefore, compared to applications in other general domains, our
system and approach could mitigate the issues associated with
scalability.

Our future research includes investigations on more effective
features and attributes [82], including deep learning based fea-
tures [83] which could address both the scalability and dis-
crimination issues.
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