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Unlike pathway and multiaccess keys, which use 
diagnostic morphological characters, NemaScope 
uses point-and-click visual matching that allows 
users to navigate through a collection of images 
until images similar to specimens under investiga-
tion are found. High-definition multifocal images 
of genera provide the basis for the initial photos 
and can be viewed when additional morphological 
information is needed. 
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Rapid advances in digital imaging technol-
ogy, the low cost of cameras, scanners, and 
storage devices, and the accessibility of the 

Web make it possible to collect, store, and access 
huge numbers of images. Advances in areas of 
digital instrumentation, bioinformatics, and cyber- 
infrastructure are impressive, but much more is yet 
to come (MacLeod 2007). The morphological data 
inherent in these images is enormous but largely 
unexplored by novel techniques. Overall, morpho-
logical data can be tedious to collect and is often 
qualitative rather than quantitative. Beyond tradi-
tional data collection, geometric morphometrics, 
based on Cartesian coordinates of anatomical land-
marks, is widely used in morphometric analyses, 
but these data are laborious to collect and analyze. 
For human-directed measurements, statistics-based 
toolkits have functioned well, but have drawbacks 
(Zelditch et al. 2004).

Automated Classification of Skippers based 
on Parts Representation

Bir Bhanu, Rui Li, John Heraty, and Elizabeth Murray

What if unidentified specimen images could be 
amassed in a database and then correctly classified 
through an automated system?   This technique 
could help biologists identify specimens and lead 
to searches with images instead of using key words 
as query items. These kinds of searches are part of 
available Automated Taxon Identification (ATI) 
systems such as SPecies IDentification, Automated 
(SPIDA), Automated Bee Identification System 
(ABIS), and Digital Automated Identification 
SYstem (DAISY), which are being improved in ac-
curacy, accessibility, scalability, and flexibility for 
image-based classification (reviewed in MacLeod 
2007). All systems have identification accuracy 
levels of 95% or higher for certain data sets. 

These ATI systems rely upon classical human 
recognition of taxonomic landmarks or features for 
accurate classification. Conversely, the automated 
classification system we describe relies on abstract 
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recognition to differentiate and classify images. 
Our goal is to develop a system that can recognize 
features important for grouping (recognition) and 
separating (phylogenetics and evolution) groups of 
organisms on the basis of a variety of images. 

For biological images, local patterns/features 
are critical for defining different species. We 
propose a patch-based system of analysis for the 
groups of interest (Fig. 1). Compared with classic 
pattern recognition approaches based on global 
features, we use information-rich local patches. 
This patch-based representation could be used to 
explore significant differences between images and 
may help to exploit more information on species 
classification and evolution.

Related Work and Contributions 
In different applications of pattern recognition, 

researchers use various features, which include raw 
pixel intensities, features obtained via global image 
transformations, and local features such as edge 
fragments, rectangle features, Gabor filter-based 
representations, and wavelet features. Object parts 
are extracted that are rich in information content 
and use part-based representation. As an example, 
Agarwal et al. (2004) extracted square patches 
around interest points. Intensity pixel values are used 
to represent the patches, and the sparse representa-
tion is used for describing the image. The method 
is shown to have a good performance in detecting 
motor vehicles (cars) in side view. Compared with 
this algorithm, our approach extracts patches of 
various shapes that contain more precise local infor-
mation. It also uses a more compact description for 
the whole class. This representation can help exploit 
the significant visual difference between classes. 

Technical Approach
Patch Extraction – Segmentation with Nor-

malized Cut. Different from classic interest-point 
search algorithms, our system uses segmentation to 

Fig. 1. System diagram.

extract information-rich patches. A normalized-cut 
algorithm, related to the graph theory of grouping, 
is used. The sets of points in an arbitrary feature 
space are represented as a weighted undirected 
graph G = (V, E), where the nodes of the graph 
(V) are the points in feature space and an edge (E) 
is formed between each pair of nodes. The weight 
on each edge, w(i, j) is a function of the similarity 
between nodes i and j. G can be partitioned into 
two disjoint sets, A, B, A ∪ B=V, A ∩ B=φ, by sim-
ply removing the edges connecting A and B. The 
degree of dissimilarity between these two pieces 
can be computed as a total weight of the edges that 
have been removed. In graph theory language, this 
is called the cut, so that cut(A,B)=Σu∈A,v∈B w(u,v). 

The optimal bipartitioning of a graph minimizes 
this cut value. However, this minimum cut criteria 
favors cutting small sets of isolated nodes in the 
graph. So Shi and Malik (2000) defined a new 
criterion called normalized cut (Ncut). Solving the 
minimized Ncut problem reduces to solving the 
generalized eigenvalue problem. The eigenvector 
corresponding to the second smallest eigenvalue 
is used to bipartition the graph. If the current 
partition should be subdivided, the algorithm is 
recursively run to make more segments.

Patch Classification—Unsupervised 
Learning of a Gaussian Mixture Model

After segmentation, the training set is parti-
tioned into patches and allocated to a patch data-
base. A feature vector of each patch is extracted, 
and the patches classified on the basis of these 
features. We assume that feature vectors X ={x1,…, 
xN} are samples of a Gaussian mixture model. x1,…, 
xN represent the outcome of a random variable 
X. X follows a C-component mixture model, as 
shown in equation given below, where θi is the set 
of parameters for the ith mixture component, and 
αi is the component weight. All αi must be posi-
tive and sum to 1. We assume that all components 
follow a Gaussian Mixture Model (GMM), where 
θi is the mean vector ui and covariance matrix Σi.	

p

When C is known, the classic Expectation 
Maximization (EM) algorithm could be used to 
estimate the parameters and classify the feature 
vectors. However, in most cases, C is unknown. 
Figueriedo and Jain (2002) proposed a variant of 
EM. This algorithm seamlessly integrates model 
selection (finding the number of clusters) and 
model estimation (Gaussian component parameter 
estimation) in the iterative process. It incorporates 
a Minimum Description Length (MDL) criterion 
for model selection and achieves the best estimation 
of the mixture parameters. 

This algorithm classifies the patches into several 
classes and learns a Bayesian patch classifier.

Training Model—Patch Histogram Model
Each patch in the patch database is labeled after 

the Bayesian patch classifier is found. We assume 
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K patch classes, and therefore a K-bin histogram 
can be built for each image. Patch histograms for 
all images in one class are averaged to form a patch 
histogram model.

Testing—Patch Histogram Matching
A test image is segmented into patches; each 

patch is labeled by the patch classifier, and then a 
patch histogram is built. The χ2 distance between 
this patch histogram and the patch histogram 
model is calculated for every class. Classification 
of the test image corresponds to the one with the 
shortest distance. 

Experimental Results Dataset 
We built an image dataset for six species (see 

Table 1 and Fig. 2) of Hesperiidae containing 138 
training images and 66 test images. Some images 
in the dataset have shadows and missing body 
parts.  

Patch Extraction
An Ncut algorithm is applied to each image, and 

40 segments are found for each image. An example 
is shown in Fig. 3: 3a is the original color image, 
and 3b is the segmentation result superimposed on 
the intensity image. In 3c, background segments 
are removed. Using 3c, the skipper is scaled to fill 
the image frame and resized to 150×150 pixels, 
as shown in 3d. We call this normalization. Ev-
ery training and testing image is segmented and 
normalized. All patches from the training dataset 
are gathered to form a patch database of 2,709 
patches.

Patch Classification
We extract six color features (means and vari-

ances for hue, saturation, value) for each patch. 
Thus, the patch database contains 2,709 6D feature 
vectors. The classification results for the 18 patch 
classes are shown in Fig. 4.

Build Training Model
We build a patch histogram for each image 

and average all the histograms in one class to 
form a patch histogram model. The six patch 
histogram models are shown in Fig. 5. Each has 
18 bins, corresponding to 18 patch classes. From 

Fig. 3. Image segmentation and normalization. 

Fig. 4. Classified patches.

Table 1. Skipper dataset.

	
No.

	
Subfamily

	
Species name

Training 	
sample no.

Testing 	
sample no.

1 Hesperiinae Perichares  philetes 15 5

2 Hesperiinae Vettius aurelius 18 14

3 Pyrginae Astraptes SENNOV 47 11

4 Pyrginae Entheus matho 13 5

5 Pyrginae Phocides pigmalion 13 5

6 Pyrginae Urbanus belli 32 26

 

Fig. 2. Sample image of each species.
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the histogram, we can recognize which features 
are most significant for each species. For example, 
for species 1, patches 2, 5, 7 and 16 appear most 
often, and for species 3, patches 3 and 10 are most 
common, so we could use these to differentiate the 
two classes (species).

Testing Results
We calculate the χ2 distance between the test 

image and each species histogram model. The 
classification precision is 81.8% (54 species out 
of 66 species are correctly classified) (Fig. 6). The 
taxa across the diagonal are correctly classified and 
those across the off-diagonal misclassified. 

Conclusions
Image data can help to understand species 

evolution from a new perspective. In this paper, 
we propose a parts-based (patch-based) represen-
tation for biological images. Experimental results 
show this compact model as efficient and effective 
for representing and classifying skipper images. 
The results can be further improved by exploiting 
symmetry of the shape and increasing the quality 
of image segmentation.

Fig. 7. Misclassified test images with their ground-truth labels (species label before arrow 
is the ground-truth label and after the arrow is the misclassification label assigned by the 
system).
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Fig. 5. Patch histogram model for each species.

Fig. 6. Confusion matrix for the test dataset.


