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Abstract. The focus of this paper is recognizing articulated vehicles and
actual vehicle configuration variants in real synthetic aperture radar
(SAR) images. Using SAR scattering-center locations and magnitudes
as features, the invariance of these features is shown with articulation
(e.g., rotation of a tank turret), with configuration variants, and with a
small change in depression angle. This scatterer-location and magnitude
quasiinvariance is used as a basis for development of a SAR recognition
system that successfully identifies real articulated and nonstandard-
configuration vehicles based on nonarticulated, standard recognition
models. Identification performance results are presented as vote-space
scatterplots and receiver operating characteristic curves for configuration
variants, for articufated objects, and for a small change in depression
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1 Introduction

In this paper we address the target recognition problem,
starting with chips of military target vehicles from real syn-
thetic aperture radar (SAR) images at 1-ft resolution and
ending with vehicle identification. The specific challenges
for the recognition system are the need for automated rec-
ognition of vehicles with articulated parts (like the turret of
a tank) or that have significant external configuration vari-
ants (fuel barrels, searchlights, etc.) or that are at a small
change in depression angle.

Table 1 compares the recognition results based on dif-
ferent approachs, all using real SAR images from the
MSTAR public data.! This is an active area of current re-
search, new approaches are evolving, and this companson
should be viewed as a snapshot in time. The results are
presented in terms of probability of correct identification
(PCI) for cases with target articulation, depression-angle
change, and target configuration variants. Many of the re-
sults are for forced recognition, where the automatic target
recognition (ATR) system is forced to make a target deci-
sion (i.e., there is no “‘unknown’’ class). Other results with
an “‘anknown’’ or ‘‘reject”” class are presented at a given
probability of false alarm (Pfa) or probability of miss
{Pmiss). The MSTAR predict a.pproach2 uses CAD object
models as the basis to generate synthetic SAR signature
model predictions that are matched to the real SAR data; all
the other approaches build models from real SAR images.
The template-matching r«.lpproachesm‘S use (scaled) inten-
sity values of the target chip as features, but require either
an accurate estimate of the target pose or an exhaustive
search of a large database of model templates. Others®7 use
the Radon transform as a way to reduce the number of
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models required to handle the SAR signature variations
with target azimuth rotation. None of these approaches is
specifically designed to accommodate articulated objects,
and the one attempt to recognize articulated objects® con-
firms that the template-matching approach is not well suited
for such objects. Qur previous work in this area® * was
specifically designed for articulated objects; it primarily
used the location invariance of SAR scattering centers and
was largely based on simulated SAR data.

The approach in this paper is based on using SAR
scattering-center locations and magnitudes as features that
are quasiinvariant with articulation, a small change in de-
pression angle, or target configuration variants. Our recog-
nition system uses standard nonarticulated models of the
objects (at 1-deg azimuth increments) to recognize the
same objects in nonstandard and articulated configurations.
The recognition process is an efficient search for positive
evidence, via table lookups based on information in the test
image, that generates votes for the appropriate object (and
azimuth). The key contributions of this paper are that it:

1. quantifies the azimuthal variance of scattering-center
locations in real SAR data

2. demonstrates that quasiinvariant scattering-center lo-
cations exist and that their magnitudes and shape fac-
tor are also quasiinvariant for (a) articulation, (b)
configuration variants, and (¢} a small depression-
angle change for actual vehicles in real SAR data

3. develops a new recognition system based on scatter-
ing center location, magnitude, and shape factor that
achieves significant vehicle recognition performance
for articulation, configuration variants, and small
depression-angle changes with real SAR data.
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Table 1 Comparison with related work on target recognition using real MSTAR SAR data.

Prob. of correct id.

Approach Ref. Art. Depr. Config. Remarks
MSTAR predict models, 2 — 0.74-0.78  Forced, avg. of 11 T72s;
mean-squared-error matching estimates
Template matching, 4 — 0.99 0.93* Forced; *{config. and depr.)
correlation and 3 — 0.40-0.75 11 T72s at 0.10 Pfa
mean squared error 5 035 083 0.73 Forced recognition

1 — 0.79 At 0,10 Pmiss
Radon transform, neural net 7 — 0.93 — Forced recognition
Radon transform, & — 0.94 — Forced recognition
hidden Markov models
This paper 1.00 0.99 0.95 Forced recognition
0.97 082 067-085 At0.10Pfa

2 Invariances of SAR Scattering Centers

The typical detailed edge and straight-line features of man-
made objects in the visual world do not have good coun-
terparts in SAR images for subcomponents of vehicle-sized
objects at 1-ft resolution; however, there is a wealth of
peaks corresponding to scattering centers. The relative lo-
cations of SAR scattering centers, determined from local
peaks in the radar return, are related to the aspect and
physical geometry of the object, are independent of trans-
lation, and serve as distinguishing features. Target regions
of interest (ROIs) are found in the MSTAR SAR chips by
reducing speckle noise using the Crimmins algorithm in
Khoros,!! thresholding at the mean plus two standard de-
viations, dilating to fill small gaps among regions, eroding
to have one large ROI and small regions, discarding the
small regions with a size filter, and dilating to expand the
extracted ROI. The scattering centers are extracted from the
SAR magnitude data (within the boundary contour of the
ROI) by finding local eight-neighbor maxima. An example
photograph, SAR target chip image, and ROI (with
scattering-center locations shown as black dots) are given
in Fig. 1 for T72 tank (serial number) #a64. The parameters
used in extracting ROIs are held constant for all the results

reported. In addition to the scatterer locations, the magni-
tudes and shapes of the peaks are also features that we use
in this paper.

2.1 Azimuthal Variance of Scatterer Locations

The typical rigid-body rotational transformations for view-
ing objects in the visual world do not apply much for the
specular radar reflections of SAR images. This is because a
significant number of features do not typically persist over
a few degrees of rotation. Since the radar depression angle
is generally known, the significant unknown target rotation
is (360 deg) in azimuth. Azimuth persistence or invariance
can be expressed in terms of the percentage of scattering-
center locations that are unchanged over a certain span of
azimuth angles. It can be measured (for some base azimuth
#p) by rotating the pixel locations of the scattering centers
from an image at azimuth §, by an angle A# and compar-
ing the resulting range and cross-range locations with the
scatterer locations from an image of the same object at
azimuth f,+ A #. More precisely, because the images are
in the radar slant plane, we actually project from the slant
plane to the ground plane, rotate in the ground plane, and

(a)

(b) {©

Fig. 1 Example (a) photograph, (b) SAR image, and {c) ROI (with peaks) for T72 tank #a64 (photo-

graph not to scale).

Optical Engineering, Vol. 38 No. 3, March 2000 713



Bhanu and Jones IlI: Recognizing target variants and articulations

100 » T T T T T T T T T
i withir 1 pixel <
80 exact match +
within 1 pixel, persists ~=-
80 exact match, persists -— 1
E‘ 70
E- &0 ° ® - o . . o
2 50 .
§ 4
8
£ 30
20 et + + i
10| e
_
0 - P S 9 . "
3 4 &5 6 7 8 9 10
Azimuth span (degress)

Fig. 2 Scatterer location persistence, T72 #132.

project back to the slant plane. Since the objects in the
chips are not registered, we calculate the azimuth invari-
ance as the maximum number of corresponding scattering
centers (whose locations match within a given tolerance)
for the optimum integer pixel translation. This method of
registration by finding the translation that yields the maxi-
mum number of correspondences has the limitation that for
very small or no actual invariance it may find some false
correspondences and report a slightly higher invariance
than in fact exists. To determine scattering-center locations
that persist over a span of angles, there is an additional
constraint that for a matching scattering center to persist at
the k’th span A8, , it must have been a persistent scattering
center at all smaller spans A #; where 0=<j<k. Averaging
the results of these persistent-scattering-center locations
over 360 base azimuths gives the mean azimuth invariance
of the object.

Figure 2 shows an example of the mean scatterer-
location invariance (for the 40 strongest scatterers) as a
function of azimuth angle span using T72 tank #132, with
various definitions of persistence. In the ‘‘exact match’’
cases the center of the rotated scatterer pixel from the im-
age at Oy azimuth is within the pixel boundaries of a cor-
responding scatterer in the image at 6)--rAf. In the
“‘within 1 pixel’’ cases the scatterer location is allowed to
move into one of the eight adjacent pixel locations. Note
that for a 1-deg azimuth span, while only 20% of the scat-
terer locations are invariant for an ‘‘exact match,”” 65% of
the scatterer locations are invariant ‘‘within 1 pixel.”” The
cases labeled ‘‘persists” in Fig. 2 enforce the constraint
that the scatterer exist for the entire span of angles; in prac-
tice, very few scatterers continuously persist for even 5
deg. In the upper two cases (not labeled “‘persists’’) scin-
tillation is allowed and the location invariance declines
slowly with azimuth span. The ‘‘within 1 pixel” results
(that allow scintillation) are consistent with the 1-ft ISAR
results of Dudgeon et al.,'> whose definition of persistence
allowed scintillation. Because of the higher scatterer-
location invariance with 1-deg azimuth span, in this re-
search we use azimuth models at 1-deg increments for each
target, in contrast to others who have used 5-deg,’?
10-deg,’* and 12-deg models."
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2.2 Scatterer-Location Invariance

Many of the scatterer locations are invariant to target con-
ditions such as articulation or configuration variants or to a
small change in depression angle. Because the object and
ROI are not registered, we express the scattering-center lo-
cation invariance with respect to articulation, configuration
differences, or depression-angle changes as the maximum
number of corresponding scattering centers (whose loca-
tions match within a stated tolerance) for the optimum in-
teger pixel translation.

Given an original version of a SAR target image with n
scattering centers, represented by points at pixel locations
P,=(x;,y,) for 1=<<i=n and a translated, distorted version
Pi=(x/,y;)(1<j<n) at a translation £=(1,,t,), We de-
fine a match between points P; and P; as

1 if |xj—¢ —x|=! and ly|—t,—y|<I,
M,-j(:)=[ e e

0 otherwise,

where =0 for an “‘exact”’ match and /=1 for a match
“‘within one pixel.”’ The scatterer location invariance, L, ,
of n scatterers, expressed as a percentage of maiching
points, is given by

100 < *
L,,=max—2 min(E Mu(t),l),
¢ 1 i=1

j:

where each point P Jf is restricied to at most one match.

Figure 3 shows the location invariance, Ly, of the
strongest 40 scattering centers with articulation for
MSTAR T72 tank #a64 and ZSU 23/4 antiaircraft gun #d08
(at a 30-deg depression angle) as a function of the hull
azimuth. The combined average invariance for both ve-
hicles is 16.5% for an exact match of scattering centers and
56.5% for a location match within one pixel (3 X3 neigh-
borhood) tolerance. Similarly, Fig. 4 shows the percentage
of the strongest 40 scattering-center locations that are in-
variant for configuration variants, T72 #812 versus #132
and BMP2 vehicle #C21 versus #9563, at a 15-deg depres-
sion angle. Figure 5 shows the percentage of scattering-
center location invariance for T72 #132 and BMP2 #C21 at
17- versus 15-deg depression angles. Note that the mean
scatterer-location invariance for T72 tank #132 with a
2-deg change in depression angle shown in Fig. 5(a), 17.8%
for exact match and 61.6% within 1 pixel, is similar to the
results with the identical tank shown in Fig. 2 for a 2-deg
azimuth span (for the appropriate cases where scintillation
is allowed). The mean and standard deviation for percent-
age of location invariance (for 40 scatterers and depression
angle ¢) are shown in Table 2 for articulated versions of
the T72 and ZSU23/4, for configuration variants of the T72
and BMP2, and for depression-angle changes with the T72
and BMP2.

2.3 Scatterer Magnitude Invariance

Using a scaled scatterer amplitude (S), expressed as a radar
cross section in square meters, given by S=100
+10 loglo(i2+q2), where { and g.are the components of
the complex radar return, we define a percentage amplitude
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Fig. 3 Scatterer location invariance with articutation: (a) T72 tank, (b) Z8U 23/4.
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Fig. 4 Scatterer location invariance with configuration: (a) T72 tank, (b) BMP2.
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Fig. 5 Scatterer location invariance with depression angle: (a) T72 tank, (b) BMPZ2.
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Table 2 Scatterer percentage location invariance for MSTAR targets with articulation, cenfiguration

variants, and depression-angle changes.

"Exact match” “Within 1 pixel”
Depression invariance invariance
angle
Change in {deg) Mean S.d. Mean Sd.
Articulation:
T72 #ab4 30 17.17 1.47 57.83 2.23
ZSU #d08 30 15.69 0.91 55,05 1.72
Average 16.45 56.47
Configuration variants:
T72: #812vs #1132 15 15.34 0.89 55.34 1.91
#s7 vs #132 15 15.40 0.83 56.68 1.95
BMP2: #9563 vs #c21 15 16.34 0.84 58.52 1.97
#9566 vs #c21 15 16.17 0.99 57.93 1.97
Average 15.83 57.15
Depression angle:
T72 #132 17-15 17.76 1.52 61.55 2,05
BMP2 #c21 17-15 17.19 1.23 61.31 211
Average 17.47 61.43

change Aj; as A= 100(5;—S;)/S;. (This form allows a
larger variation for the stronger signal returns.) A location-
and-magnitude match Q;,(#) is given by

0 otherwise,

ij(t)=[

where [, is the percentage amplitude-change tolerance. The
scatterer magnitude-and-location invariance I, expressed
as a percentage of » scatterers, is given by

100 v [ <
P (=3 | j=1

Figure 6 shows the probability mass functions (PMFs)

015 articulated T72 tank #a64 (40 scattering centers)
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for percentage amplitude change for the strongest 40 articu-
lated versus nonarticulated scattering centers of T72 tank
#a64 and ZSU 23/4 gun #d08. Curves are shown both for
the cases where the scattering-center locations correspond
within one pixel tolerance and for all the combinations of
scatterers whose locations do not match. Similarly, Fig. 7
shows the PMFs for percentage amplitude change for the
strongest 40 scattering centers with configuration variants,
T72 #812 versus #132 and BMP2 #c21 versus #0563, at a
15-deg depression angle. In addition, Fig. 8 shows this for
17- versus 15-deg depression angles for T72 #132 and
BMP2 #c21. The mean and standard deviation for these
matching and nonmatching scatterers and the crossover
points for the PMFs are given in Table 3. Table 4 shows the
mean and standard deviation for the percentage location
and magnitude invariance (within a 1-pixel location toler-

015 articulated ZSU 23/4 gun #d08 (40 scattering centers)
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Fig. 6 Scatterer magnitude invariance with articulation: (a) T72 tank, (b) Z8U 23/4.
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0.14 match within 1 pixel —— -
013 | no match -+-- J

Probability mass function
[
o
-3

Percent amplitude change

(a)

Probability mass function

50 40 -30 20 10 0 10 20 30 40 50

BMP2 vehicles #C21 and #9563 (40 scattering centsrs)

014 | match within 1 pixel ~— 4
013 | no match -+ |
012 ]
011 | R
a1+ :
0.09 1
0.08
0.07 |
0.06
0.05 |
0.04
0.03 t .
0.02

0.01 | ;”"M -

i

0 : . . y
S0 40 30 -20 <10 0 10 20 30 40 50
Percent amplitude change

(b)

Fig. 7 Scatterar magnitude invariance with configuration: {(a) T72 tank, (b) ZSU 23/4.

ance and an amplitude-change tolerance of {,) of the stron-
gest 40 scatterers for these same articulation, configuration-
difference, and depression-angle change cases.

2.4 Pesak Shape Factor

A shape factor is used as a measure of the sharpness of the
local peak in the radar return associated with a scattering
center. We define the shape factor F=5,/5%_,S,, where
Sy is the amplitude of the peak and the S;’s are the ampli-
tudes of the eight neighbors. Figure 9 shows the PMFs for
percentage shape-factor change for the strongest 40 scatter-
ing centers of T72 #812 versus #132 (at 15-deg depression
angle}. Curves are shown both for cases where the
scattering-center locations correspond within one pixel tol-
erance and for all the combinations of scatterers whose lo-
cations do not match. For the cases with locations that
match within one pixel, the mean and standard deviation of
the percentage shape-factor change are 1.3 and 15.7, while
for the nonmatching cases they are 5.3 and 31.3, respsc-
tively.

0 T72 tank #132, 17 vs 15 degreses (40 scattering centers)
0.14 | match within 1 pixel —-— A
013 | no match -+

Probability mass function
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o
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0 I kil

Percent amplitude change
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3 Invariant-Based SAR Recognition System

Our invariant-based recognition system uses standard non-
articulated models of the objects (at 1-deg azitnuth incre-
ments) to recognize the same objects in nonstandard and
articulated configurations. Using a technique like geometric
hashing,! the relative positions of the scattering centers in
the range and cross-range directions are indices to a lookup
table of labels that give the associated target type and pose.
This is an efficient search for positive evidence that gener-
ates votes for the appropriate object (and azimuth). The
models and recognition system have evolved from the ear-
lier 2-D version,®* ' using only the relative distances and
the ‘“‘exact’” scatterer locations, to the current 6-D and 8-D
versions that use more local features and accommodate a
“‘within 1 pixel”* scatterer location uncertainty. In contrast
to many model-based approaches,’” we are not searching
all the models; instead we are doing table lookups based on
relative distances between the strongest scatterers in the test
image. We use a local coordinate system where the origin
is the scatterer used as the basis for computing the relative

015 BMF2 #C21, 17 vs 15 degrees (40 scattering centers)

0.14 - " match within 1 pixel ——
013 | no match -+
0.12 | .
011 ]
01 r ;
0.09
0.08
0.07 |
0.06 |
0.05
0.04
0.03 |
0.02 |

u.o; - S : . )

-5C 40 -30 20 G 0 10 20 30 40 50
Parcent ampiitude change

(b}

Fig. 8 Scatterer magnitude invariance with depression angle: (a) T72 tank, (b) BMP2,
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Table 3 Scatterer percent amplitude change.

Within 1 pixel Ne match
Cross-
Change in Mean S.d. Mean Sd. over
Articulation:
T72 #ab4 0.51 5.91 0.75 1044 —5/+86
Z3U #d08 006 7.44 0.08 11.37 +9

Configuration variants:
T72: #812vs#132 Q15 7.29 -038 11.12 +8
#57 vs #132 048 6.69 220 11156 +9
BMP2: #8563 vs #c21 035 5.72 094 1088 -—g8/+9
#9566 vs #c21 048 6.20 056 10.68 —7/+8

Depression angle:
T72 #132 043 466 0.84 1045 —7/+8
BMP2 #¢21 037 465 153 1091 —-7/+8

locations of the other scatterers. For ideal data one could
use the strongest scatterer as the origin; however, any given
scatterer could actually be spurious or missing due to the
effects of noise, articulation, occlusion, or nonstandard con-
figurations. Thus, we model and use all the scattering-
center locations in turn as the origin, so the size of the
lookup-table models and the number of nominal relative
distances considered in a test image are each n(n—1)/2,
where n is the number of the strongest scattering centers
used.

The off-line model construction algorithm extracts these
relative distances of the scattering centers from sets of
training-data target chips at 1-deg azimuth increments for
each target type. The relative distances are the indices to a
lookup table, and in the 2-D version each entry in the table
is a list of labels that give the appropriate object type and
azimuth. In the 6-D version the model lookup table labels
contain four additional features: the range and cross-range

Table 4 Scatterer percentage location and magnitude invariance
(for locations within one pixel and amplitude tolerance /,).

14 Mean S.d.
Articulation:
T72 #a64 +9 53.47 2.63
ZSU #d08 +9 47.98 222
Average 50.78
Configuration variants:
T72: #812 vs #132 +9 48.40 2.42
#s7 vs #132 +9 50.69 2.44
BMP2: #9563 vs #c21 +g 54.38 2.34
#9566 vs #c21 +9 53.00 2.51
Average 51.68
Depression angle:
T72 #132 *7 56.15 2.38
BMPZ #c21 *7 55.66 2.53
Average 55.91

718 Opiical Engineering, Vol. 39 No. 3, March 2000
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Fig. 9 Shape-factor change with configuration.

position of the origin, and the magnitudes of the two scat-
terers. The 8-D version adds the shape factors of the two
scatterers.

Similarly, the on-line recognition algorithm extracts
these relative distances of the scattering centers from the
test-data target chips and uses the relative distances as in-
dices to access the lookup table. In the 2-D version of the
recognition algorithm each query of the lookup table may
directly generate votes for one or more potential candidate
solutions. The 2-D version accumulates votes in a 2-D
object-azimuth space. The process is repeated with differ-
ent scattering centers as the origin, providing multiple
““looks’’ at the model database to handle spurious scatterers
that arise from articulation, configuration differences, or
noise.

The 6-D and 8-D versions of the recognition algorithm
are extensions of the basic 2-D algorithm that add addi-
tional features as constraints, accommodate a “‘within 1
pixel’’ scatterer location uncertainty, and weight the votes
for the more uncommon longer distances. In the 6-D ver-
sion, the comparison of the test data pair of scatterers with
the model lookup table result(s) also provides information
on the range and cross-range translation and on the percent-
age magnitude changes for the two scatterers, and the 8-D
system provides additional information on the percentage
change in the shape factor of the two scatterers. Limits on
allowable values for translations, magnitude, and shape-
factor changes are used as constraints to reduce the number
of false maiches. (The number of scattering centers used
and the varions constraint limits are design parameters that
are optimized, based on experiments, to produce the best
recognition results.) Votes are accumulated in a 4-D space:
object, azimuth, range, and cross-range translation. A {city-
block) weighted voting method is used to reduce the influ-
ence of the more common small relative distances. To ac-
commodate some uncertainty in the scattering-center
locations, the eight neighbors of each nominal range and
cross-range relative location are also probed, and the trans-
lation results are accumulated for a 3 X3 neighborhood in
the translation subspace.

To handle identification with *‘unknown’’ objects, we
introduce a criterion for the quality of the recognition result
(e.g., the votes for the potential winning object exceed
some threshold v,;,). By varying the decision-rule param-
eter we obtain a form of receiver operating characteristic
(ROC) curve of probability of correct identification (PCI)
versus probability of false alarm (Pfa).
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Table 5 Forced-recognition confusion matrix for MSTAR configura-
tion variants (36 scatterers, £9% amplitude tolerance).

ldentification results
MSTAR {public) {configuration modeled)

test targets

[serial number] BMP2 [#c21] 172 [#132]
BMP2 [#9563] 106 {98.1%) 2
[#9566] 107 (97.2%) 3

T72 [#812] 11 92 (89.3%)

[#87] 6 88 (93.6%)

4 Recognition Resulis

4.1 Configuration Experiments

In the configuration-variant experiments a single configu-
ration of the T72 (#132) and one of the BMP2 (#C21)
vehicle were used as the models, and the test data were two
other variants of each vehicle type (T72 #812,#s7 and
BMP2 #9563, #9566) and different ‘‘unkpnown’’ confuser
test vehicles (all at 15-deg depression angle). Although
more extensive T72 configuration variant data are avail-
able, only two configurations were used so that the numbers
of test data for the T72 and BMP2 were comparable and the
results were not artificially biased toward recognizing the
T72. The forced-recognition confusion matrix for these
configuration variants is shown in Table 5, with an overall
recognition rate of 94.7%. (This 94.7% rate with the 6-D
recognition system is directly comparable with the 68.4%
rate for the prior 2-D version of the recognition system
given in Ref. 9.) These results were obtained with the 6-D
system using 36 scattering centers, a translation limit of
45 pixels, and a percentage magnitude change of less than
*+0%. These parameter settings were optimum for the
configuration-variant experiments (the most difficult case),
and the same settings were also used with the 6-D system
in the results on articulation and depression-angle change
given in subsequent sections. The effect on the forced-
recognition PCI of the number of scattering centers used is
shown in Fig. 10, and Fig. 11 shows the effect of varying

(9 percant amplitude change limit)
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Fig. 10 Effect of number of scattering centers used on recognition
of MSTAR configuration differences.

{36 scattering centers)
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Fig. 11 Effect of amplitude-change tolerance on recognition of
MSTAR configuration differences.

the amplitude change limit.

Figures 12{a)—12(d) show scatterplot recognition results
in BMP2~T72 vote space for configuration variants of the
BMP2 and T72 and for various confusers: BTR70 #c71,
ZSU 23/4 #d08, and BRDM?2 #¢71. The 45-deg line in Fig.
12 represents the decision boundary of the simplest deci-
sion rule: ““The object with the most votes wins.”” In this
forced-recognition case, Fig. 12(a), the overall recognition
rate is 94.7%, where 2.3% of the BMP2s and 9.4% of the
T72s are on the wrong side of the boundary and are misi-
dentified. In Figs. 12(b)—12(d) the BTR is the most difficuit
confuser, the BRDM is somewhat less difficult, and the
ZSU is easy. For example, Fig. 12(b) shows that 99.6% of
the BTR70 confuser false alarms could be eliminated with
a 3000-vote threshold, but Fig. 12(a) shows that a 3000-
vote threshold would eliminate more than half of the BMP2
and T72 identifications. In contrast, Fig. 12(d) shows that
almost all of the ZSU confuser false alarms could be elimi-
nated with a 1000-vote threshold without any reduction in
the BMP2 and T72 identifications.

4.2 Articulation Experiments

In the articulation experiments, the models are nonarticu-
lated versions of T72 #a64 and ZSU23/4 #d08, and the test
data are the articulated versions of these same-serial-
number objects and BRDM2 #¢e71 as a confuser vehicle (all
at 30-deg depression angle). The articulated-object recog-
nition results are shown in Table 6 using the 6-D system
with a 2100-common-vote decision criterion for an overall -
0.927 PCI at a 0.039 Pfa. (The overall forced-recognition
rate is 100% over a range from 14 to 40 scattering centers.)
Figures 13(a) and 13(b) show 6-D system scatterplot results
in ZSU-T'72 vote space for articulation of the ZSU 23/4 and
T72 tank and for the BRDM2 confuser. Here the results for
the Z8U 23/4 and T72 are widely separated, giving 100%
forced-recognition results. Figure 13(b) shows that while
the BRDM2 is always classified as a T72, a unique thresh-
old of 2000 to 2500 T72 votes will eliminate most if not all
of the false alarms at the cost of only a few T72s moved to
the ““unknown’’ classification. A common threshold ap-
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BMP2 and T72 configurations (36 scatterers, 9 percent)
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Fig. 12 Scatterplots for 8-D system results with configuration variants: (a) BMP versus T72, (b) BTR

confuser, (c) BRDM confuser, {d) Z5U confuser.

plied to votes for either the T72 or the ZSU has a higher
cost, because many ZSUs are moved to “‘unknown,’”’ as
shown in Table 6.

4.3 Depression-Angle Experiments

In the depression-angle experiments the models are T72
#132 and BMP2 #c21 at a 15-deg depression angle, and the
test data are the same-serial-number objects and the BTR70
#c71 confuser at 17 deg. The confusion matrix, shown in
Table 7, for the depression-angle results has an overall

Table 6 Example MSTAR articulated-object confusion matrix (36
scatterers, 9% amplitude tolerance, 2100-vote threshold).

|dentification
MSTAR {public}) results
ariculated
test targets T72 Z3uU Unknown
172 (315-deqg turret) 94 0 4
23U (315-deg turret) 0 84 10
BRDM2 (confuser) 10 0 248
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0.822 PCI at 0.10 Pfa, obtained with the 6-D system and a
2800-vote threshold. Figures 14(a) and 14(b) show scatter-
plot recognition results in BMP2-T72 vote space for the
depression-angle experiments. These results show better
separation than the configuration-variant results of Fig.
12(a) with a 99.3% forced-recognition rate. The vote counts
for depression-angle change in Fig. 14(a) are typically
higher (more away from the origin and away from the de-
cision boundary) than in Fig. 12(a) for configuration vari-
ants, while the BTR confuser plots are generally similar.
Thus, a common vote threshold for the depression-angle
cases eliminates false alarms at a lower cost than for the
configuration-variant cases.

4.4 ROC-Curve Results

ROC curves can be generated from the scatterplot data in
Figs. 12—14 by varying the vote threshold (typically from
1000 to 4000 in 50-vote increments). Figure 15 shows the
significant effect on the configuration-variant recognition
ROC curves of using the different ZSU, BRDM, and BTR
confusers whose scatterplot results were given in Fig. 12.
Excellent results are obtained with the ZSU 23/4 confuser,
while the BTR70 is a difficult case. Figure 16 shows the
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ZSU and T72 articulations (36 scatterers, 9 percent)
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Fig. 13 Scatterplots for 6-D system results with articulation: (a) ZSU versus T72, (b) BRDM confuser.

ROC-curve recognition results for the articulation,
depression-angle change, and configuration-variants cases,
all with the 6-D system using the same operating param-
eters. The ROC curves in Fig. 16 show that the differences
in configuration of an object type are a more difficult chal-
lenge for the recognition system than small depression-
angle changes, since both were generated using the BTR
confuser. The excellent resuits for the articulation case are
basically due to the dissimilarity of the ZSU, T72, and
BRDM as seen in Fig. 13.

Figure 17 shows ROC curves for the same MSTAR T72
and BMP2 configuration variants with the BTR confuser
using the 2-D, 6-D, and 8-D recognition systems. Each of
the systems was optimized for the forced-recognition
configuration-variant case: the 2-D system at 20 scatterers;
the 6-D system at 36 scatterers; the 8-D system at 50 scat-
terers (with a +30% shape-factor change limit). Both the
6-D and 8-D system results are a substantial improvement
over the earlier 2-D system results. While Fig. 17 shows
that the 8-D system gave worse results than the 6-D system
in the region below 0.1 Pfa, reoptimizing the operating pa-
rameters (e.g., using 45 scatterers) gives the 8-D system
better results in the region below 0.1 Pfa at the cost of a
slightly reduced forced-recognition rate.

The ROC curves in Figs. 15-17 were based on simple
vote thresholds and did not utilize any knowledge about the
characteristics of the confusers shown in Figs. 12(b)-
12(d), 13(b), and 14(b). Figure 18 shows the effect of vari-

Table 7 Example confusion matrix for MSTAR depression-angle

changes (36 scatierers, +9% amplitude tolerance, 2800-vote
threshold).

|dentification resuits
MSTAR {public) (15-deg models)

depression-angle

17-deg test targets BMP2 T72 Unknown
BMP2 [#c21] 110 ¢ 28
T72 [#132] 0 117 21
BTR70 {confuser) 15 8 207

ous decision rules on the ROC curves for recognition of
configuration variants with the 8-D system and the BTR
confuser. The lower curve in Fig. 18 is the original simple
vote-threshold case (the same as in Fig. 17 for the 8-D
system). The upper curve, with almost perfect results, is an
upper bound using the tightest decision-rule boundary that
can be drawn around the BTR confuser results in BMP-T72
vote space. The middle curve is an example decision-rule
boundary based on a stepwise continuous envelope around
the confuser results. Thus, Fig. 18 illustrates the potential
benefits available from utilizing knowledge of the confuser
characteristics in optimizing decision rules for improved
performance.

5 Conclusions

While less than 20% of the SAR scattering-center locations
exactly maich under object articulation, configuration dif-
ferences, and small depression-angle changes, a significant
percentage (56.4% to 61.4%) of these locations are quasi-
invariant within a 3 X3 pixel tolerance. The magnitudes of
these quasiinvariant scatterers (expressed as a radar cross-
section) typically change by less than *10%. The posi-
tions and magnitudes of pairs of these quasiinvariant scat-
terers (and the peak shape factors) can be used in an
efficient recognition system to achieve good recognition re-
sults with real SAR data for object articulation, configura-
tion differences, and small depression-angle changes,
While these three problems arc similar, the differences
among configurations of an object type are a more signifi-
cant challenge for recognition than articulation and
depression-angle changes (where the model and test data
are the same physical object under different conditions).
The confuser vehicle used has a significant effect on the
ROC curve results; however, knowledge about the charac-
teristics of confuser vehicles can be used to optimize deci-
sion rules for improved performance. These recognition re-
sults with real SAR data are a substantial improvement
over the performance of the earlier recognition approach™!®
that required an exact match of scatterer locations and only
used the relative distance information. Future work to ex-
plicitly incorporate additional information on the unique-
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BMP2 and T72 depression angle (36 scatterers, 9 percent)
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Fig. 14 Scatterplots for 6-D system results with depression-angle change: (a) BMP versus T72, (b)

BTR confuser.
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ness and persistence of these features as well as additional
features should lead to further performance improvements
and accommodate combined cases such as configuration-
angle variants along with depression-angle changes. In ad-
dition, it is possible to optimize the parameters of the SAR
recognition system using learning techniques.'®
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