
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 2, FEBRUARY 1998 139

Closed-Loop Object Recognition Using
Reinforcement Learning

Jing Peng and Bir Bhanu, Fellow, IEEE

Abstract —Current computer vision systems whose basic methodology is open-loop or filter type typically use image segmentation
followed by object recognition algorithms. These systems are not robust for most real-world applications. In contrast, the system
presented here achieves robust performance by using reinforcement learning to induce a mapping from input images to
corresponding segmentation parameters. This is accomplished by using the confidence level of model matching as a reinforcement
signal for a team of learning automata to search for segmentation parameters during training. The use of the recognition algorithm
as part of the evaluation function for image segmentation gives rise to significant improvement of the system performance by
automatic generation of recognition strategies. The system is verified through experiments on sequences of indoor and outdoor
color images with varying external conditions.

Index Terms —Adaptive color image segmentation, function optimization, generalized learning automata, learning in computer
vision, model-based object recognition, multiscenario recognition, parameter learning, recognition feedback, segmentation
evaluation.

—————————— ✦ ——————————

1 INTRODUCTION

MAGE segmentation, feature extraction, and model
matching are the key building blocks of a computer

vision system for model-based object recognition [8], [23].
The tasks performed by these building blocks are charac-
terized as the low (segmentation), intermediate (feature
extraction), and high (model matching) levels of com-
puter vision. The goal of image segmentation is to extract
meaningful objects from an image. It is essentially a
pixel-based processing. Model matching uses a represen-
tation such as shape features obtained at the intermediate
level for recognition. It requires explicit shape models of
the object to be recognized. There is an abstraction of im-
age information as we move from low to high levels and
the processing becomes more knowledge-based or goal-
directed.

Although there is an abundance of proposed computer
vision algorithms for object recognition, there have been
few systems that achieve good performance for practical
applications, for most such systems do not adapt to chang-
ing environments [2]. The main difficulties, typically asso-
ciated with systems that are mostly open-loop or filter type,
can be characterized as follows.

1) The fixed set of parameters used in various vision al-
gorithms often leads to ungraceful degradation in
performance.

2) The image segmentation, feature extraction, and se-
lection are generally carried out as preprocessing
steps to object recognition algorithms for model
matching. These steps totally ignore the effects of the

earlier results (image segmentation and feature ex-
traction) on the future performance of the recognition
algorithm.

3) Generally, the criteria used for segmentation and
feature extraction require elaborate human designs.
When the conditions for which they are designed are
changed slightly, these algorithms fail. Furthermore,
the criteria themselves can be a subject of debate [3].

4) Object recognition is a process of making sequences of
decisions, i.e., applying various image analysis algo-
rithms. Often the usefulness of a decision or the re-
sults of an individual algorithm can only be deter-
mined by the final outcome (e.g., matching confi-
dence) of the recognition process. This is also known
as “vision-complete” problem [7], i.e., one cannot
really assign labels to the image without the knowl-
edge of which parts of the image correspond to what
objects.

This paper presents a learning-based vision framework
in which the above problems can be adequately ad-
dressed. The underlying theory is that any recognition
system whose decision criteria for image segmentation
and feature extraction, etc., are developed autonomously
from the outcome of the final recognition might transcend
all these problems. A direct result of the theory is that the
low- and high-level components of a vision system must
interact to achieve robust performance under changing
environmental conditions. Our system accomplishes this
by incorporating a reinforcement learning mechanism to
control the interactions of different levels within it. Spe-
cifically, the system takes the output of the recognition
algorithm and uses it as a feedback to influence the per-
formance of the segmentation process. As a result, the
recognition performance can be significantly improved
over time with this method.

0162-8828/98/$10.00 © 1998 IEEE

¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

• The authors are with the College of Engineering, University of California,
Riverside, CA 92521. E-mail: {jp, bhanu}@vislab.ucr.edu.

Manuscript received 11 Apr. 1996; revised 1 Dec. 1997. Recommended for accep-
tance by L. Shapiro.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 106038.

I

140 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 2, FEBRUARY 1998

One attractive feature of the approach is that it includes
the matching or recognition component as part of the
evaluation function for image segmentation in a systematic
way. An additional strength is that the system develops its
independent decision criteria (segmentation parameters) to
best serve the underlying recognition task. It should be em-
phasized that our interest is not in a simple mixture of
learning and computer vision, but rather in the principled
integration of the two fields at the algorithmic level. Note
that the goal here is to seek a general mapping from images
to parameter settings of various algorithms based on recog-
nition results. To our knowledge, however, no such approach
exists in the computer vision field. Also, there is no work in
the neural network field (e.g., application of Neocognition
[10]) for parameter adaptation of segmentation algorithms [3].

This work is most closely related to the work by Bhanu et al.
[3], [5], [6], where they describe a system that uses genetic
and hybrid algorithms for learning segmentation parameters.
However, the recognition algorithm is not part of the evalua-
tion function for segmentation in their system. The genetic or
hybrid algorithms simply search for a set of parameters that
optimizes a prespecified evaluation function (based on global
and local segmentation evaluation) that may not best serve
the overall goal of robust object recognition. Furthermore, the
papers assume that the location of the object in the image is
known for specific photointerpretation application. In our
work, we do not make such an assumption. We use explicit
geometric model of an object, represented by its polygonal
approximation, to recognize it in the image.

In addition, Wang and Binford [24] and Ramesh [21]
have investigated statistical methods for performance
evaluation and tuning free parameters of an algorithm.
Wang and Binford [24] presented a theoretical analysis for
edge estimation and showed how one can select the gradi-
ent threshold (tuning parameter) for edge detection.
Ramesh [21] has developed a methodology for the analysis
of computer vision algorithms and systems using system
engineering principles. To characterize the performance of
an algorithm he developed statistical models for ideal im-
age features (such as edges and corners) and random per-
turbations at input/output of an algorithm. Additionally,
prior distributions for image features are also obtained.
Using these models and a criterion function, he can char-
acterize the performance of a given algorithm as a function
of tuning parameters and determine these parameters
automatically. Our approach presented in this paper differs
significantly from Ramesh’s [21] approach.

1) Ramesh’s approach is open loop, while our approach is
closed loop. In our approach, recognition results de-
termine how the segmentation parameters should be
changed.

2) Ramesh is tuning the parameters of an individual al-
gorithm—it is known that the optimization of indi-
vidual components does not necessarily give the op-
timal results for the system. We are working with a
complete recognition system (segmentation, feature
extraction, and model matching components) and
improving the performance of the complete system.

3) Ramesh builds elaborate statistical models (using
the training data) that require complex processes of

annotation and approximating the measured distribu-
tions with mathematical functions to be used later. Our
learning approach does not build explicit statistical
models. It uses geometrical models during model
matching.

4) It is relatively easier to build statistical models for al-
gorithms like edge and corner detection. For complex
algorithms like Phoenix, it is difficult to model the
“perfect” algorithm behavior analytically, since the per-
formance of segmentation depends nonlinearly with
the changes in parameter values, and there are some
heuristics used in the algorithm. Considering the above
factors, our approach is more general for the problem
that we are trying to solve. We have developed a
learning-based approach presented in this paper.

Section 2 describes a general framework for reinforcement
learning-based adaptive image segmentation. Section 3 de-
scribes the reinforcement learning paradigm and the par-
ticular reinforcement learning algorithm employed in our
system. Section 4 presents the experimental results evalu-
ating the system, and Section 5 concludes the paper. Two
appendices describe the basic segmentation and model
matching algorithms used to perform experiments for
closed-loop object recognition using reinforcement learning.

2 REINFORCEMENT LEARNING SYSTEM FOR
SEGMENTATION PARAMETER ESTIMATION

2.1 The Problem
Consider the problem of recognizing an object in an input
image, assuming that the model of the object is given, and
that the precise location of the object in the image is un-
known. The conventional method for the recognition prob-
lem, shown in Fig. 1, is to first segment the input image,
then extract and select appropriate features from the seg-
mented image, and finally perform model matching using
these features. If we assume that the matching algorithm
produces a real valued output indicating the degree of suc-
cess upon its completion, then it is natural to use this real
valued output as feedback to influence the performance of
segmentation and feature extraction, so as to bring about
system’s earlier decisions favorable for more accurate
model matching. The rest of the paper describes a rein-
forcement learning-based vision system to achieve just that.

Fig. 1. Conventional multilevel system for object recognition.

PENG AND BHANU: CLOSED-LOOP OBJECT RECOGNITION USING REINFORCEMENT LEARNING 141

2.2 Learning to Segment Images
Our current investigation into reinforcement learning-based
vision systems is focused on the problem of learning to
segment images. An important characteristic of our ap-
proach is that the segmentation process takes into account
the biases of the recognition algorithm to develop its own
decision strategies. A consequence of this is that the effec-
tive search space of segmentation parameters can be dra-
matically reduced. As a result, more accurate and efficient
segmentation and recognition performance can be expected.

2.2.1 Image Segmentation
We begin with image segmentation [13], because it is an
extremely important and difficult low-level task. All subse-
quent interpretation tasks including object detection, fea-
ture extraction, object recognition, and classification rely
heavily on the quality of the segmentation process. The dif-
ficulty arises for image segmentation when only local image
properties are used to define the region-of-interest for each
individual object. It is known [2], [9] that correct localiza-
tion may not always be possible. Thus, a good image seg-
mentation cannot be done by grouping parts with similar
image properties in a purely bottom-up fashion. Difficulties
also arise when segmentation performance needs to be
adapted to the changes in image quality, which is affected
by variations in environmental conditions, imaging devices,
lighting, etc. The following are the key characteristics [3] of
the image segmentation problem:

1) When presented with a new image, selecting the ap-
propriate set of algorithm parameters is the key to ef-
fectively segmenting the image.

2) The parameters within most segmentation algorithms
typically interact in a complex, nonlinear fashion,
which makes it difficult to model the parameters’ be-
havior analytically.

3) The variations between images cause changes in the
segmentation results, the objective function that rep-
resents segmentation quality varies from image to
image. Also, there may not be a consensus on seg-
mentation quality measures.

2.2.2 Our Approach
Each combination of segmentation parameters produces,
for a given input, a unique segmentation image from
which a confidence level of model matching can be com-
puted. The simplest way to acquire high payoff parameter
combinations is through trial and error. That is, generate a
combination of parameters, compute the matching confi-
dence, generate another combination of parameters, and
so on, until the confidence level has exceeded a given
threshold. Better yet, if a well-defined evaluation function
over the segmentation parameter space is available, then
local gradient methods, such as hill-climbers, suffice.
While the trial-and-error methods suffer from excessive
demand for computational resources, such as time and
space, the gradient methods suffer from the unrealistic
requirement for an evaluation function. In contrast, rein-
forcement learning performs trials and errors, yet does not
demand excessive computational resources; it performs hill-
climbing in a statistical sense, yet does not require an

evaluation function. In addition, it can generalize over
unseen images as we shall see later. Furthermore, it can be
easily adapted to multilevel computer vision systems. It is
also feasible to construct fast, parallel devices to imple-
ment this technique for real-time applications. It thus fits
our goal nicely here.

Fig. 2 depicts the conceptual diagram of our reinforce-
ment learning-based object recognition system that ad-
dresses the parameter selection problem encountered in
the image segmentation task by using the recognition al-
gorithm itself as part of the evaluation function for image
segmentation. Note that the reinforcement learning com-
ponent employs a particular reinforcement learning algo-
rithm that will be described in the next section. Fig. 3
shows the main steps of the algorithm we use, where the
algorithm terminates when either the number of itera-
tions reaches a prespecified value (N) or the average
matching confidence over entire training data (denoted
by rr) has exceeded a given threshold, called Rth . Note
that n denotes the number of images in the training set. In
the event that the number of iterations has exceeded N,
we will say that the object is not present in the image.
Also, for simplicity, we assume that only one instance of
the model is present in the image. Multiple instances of
the model can be recognized by slight modification of the
algorithm.

Fig. 2. Reinforcement learning-based multilevel system for object
recognition.

• LOOP:
1. rr = 0 (rr: average matching confidence)
2. For each image i in the training set do
(a) Segment image i using current segmentation

parameters
(b) Perform noise clean up
(c) Get segmented regions (also called blobs or con-

nected components)
(d) Perform feature extraction for each blob to obtain

token sets
(e) Compute the matching of each token set against

stored model and return the highest confidence
level, r

(f) rr = rr + r
(g) Obtain new parameters for the segmentation algo-

rithm using r as reinforcement for the reinforcement
learning algorithm

• UNTIL number of iterations is equal to N or rr n Rth≥

Fig. 3. Main steps of the reinforcement learning-based object recogni-
tion algorithm.

142 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 2, FEBRUARY 1998

3 REINFORCEMENT LEARNING

In this section, we begin with a brief overview of the rein-
forcement learning technique. We then describe reinforce-
ment learning algorithms applicable to our task and the
modifications of these algorithms to effectively solve the
problem identified in Section 2.1.

Reinforcement learning is an important machine learn-
ing paradigm. It is a framework for learning to make se-
quences of decisions in an environment [1]. It is distinct
from supervised learning, like the popular backpropagation
algorithm, in that feedback it receives is evaluative instead
of instructive. That is, for supervised learning, the system is
presented with the correct output for each input instance,
while for reinforcement learning, the system produces a
response that is then evaluated using a scalar indicating the
appropriateness of the response. As an example, a chess
playing computer program that uses the outcome of a game
to improve its performance is a reinforcement learning
system. Knowledge about an outcome is useful for evalu-
ating the total system’s performance, but it says nothing
about which actions were instrumental for the ultimate win
or loss. In general, reinforcement learning is more widely
applicable than supervised learning, since any supervised
learning problem can be treated as a reinforcement learning
problem.

In the reinforcement learning framework, a learning
system is given, at each time step, inputs describing its en-
vironment. The system then makes a decision based on
these inputs, thereby causing the environment to deliver to
the system a reinforcement. The value of this reinforcement
depends on the environmental state, the system’s decision,
and possibly random disturbances. In general, reinforce-
ment measuring the consequences of a decision can emerge
at a multitude of times after a decision is made. A distinc-
tion can be made between associative and nonassociative
reinforcement learning. In the nonassociative paradigm,
reinforcement is the only information the system receives
from its environment. Whereas, in the associative para-
digm, the system receives input information that indicates
the state of its environment as well as reinforcement. In
such learning systems, a “state” is a unique representation
of all previous inputs to a system. In computer vision, this

state information corresponds to current input image. Our
object recognition applications require us to take into ac-
count the changes appearing in the input images. The ob-
jective of the system is to select sequences of decisions to
maximize the sum of future reinforcement (possibly dis-
counted) over time. It is interesting to note that, for a given
state, an associative reinforcement learning problem be-
comes a nonassociative learning problem.

As noted above, a complication to reinforcement learn-
ing is the timing of reinforcement. In simple tasks, the sys-
tem receives, after each decision, reinforcement indicating
the goodness of that decision. Immediate reinforcement
occurs commonly in function optimization problems. In
more complex tasks, however, reinforcement is often tem-
porally delayed, occurring only after the execution of a se-
quence of decisions. Delayed reinforcement learning is im-
portant because, in many problem domains, immediate
reinforcement regarding the value of a decision may not
always be available. For example, in object recognition, the
goodness of segmentation is not known until the recogni-
tion decision has been made. Delayed reinforcement learn-
ing is attractive and can play an important role in computer
vision [20]. Because delayed reinforcement learning does
not concern us here, we do not discuss this subject further.

In this paper, we instead concentrate on the immediate
reinforcement learning paradigm, for it provides a simple,
yet principled framework within which the main problems
identified above can be properly addressed. It also serves as
a stepping stone for better understanding of the issues in-
volved in computer vision that need to be addressed by
delayed reinforcement learning [20]. A well-understood
method in immediate reinforcement learning is the REIN-
FORCE algorithm [25], a class of connectionist reinforce-
ment learning algorithms, that performs stochastic hill-
climbing, and which is the subject of our paper.

3.1 Connectionist Reinforcement Learning
The particular class of reinforcement learning algorithms
employed in our object recognition system is the connec-
tionist REINFORCE algorithm [25], where units in such a
network (depicted in Fig. 4a) are Bernoulli quasilinear units,
in that the output of such a unit is either 0 or 1, determined

 (a) (b)

Fig. 4. (a) Connectionist reinforcement learning system. (b) Bernoulli quasilinear unit.

PENG AND BHANU: CLOSED-LOOP OBJECT RECOGNITION USING REINFORCEMENT LEARNING 143

stochastically using the Bernoulli distribution with parameter
p = f(s), where f is the logistic function,

f(s) = 1/(1 + exp(-s)) (1)

and s w xi ii
= Â is the usual weighted summation of input

values to that unit. For such a unit, p represents its prob-
ability of choosing one as its output value. Fig. 4b depicts
the ith unit.

In the general reinforcement learning paradigm, the
network generates an output pattern and the environment
responds by providing the reinforcement r as its evalua-
tion of that output pattern, which is then used to drive
the weight changes according to the particular reinforce-
ment learning algorithm being used by the network. For
the Bernoulli quasilinear units used in this research, the
REINFORCE algorithm prescribes weight increments
equal to

Dw r b y p xij i i j= - -a1 62 7 (2)

where a is a positive learning rate, b serves as a reinforce-
ment baseline, xj is the input to each Bernoulli unit, yi is the

output of the ith Bernoulli unit, and pi is an internal pa-
rameter to a Bernoulli random number generator (see (1)).
Note that i takes values from one to n and j from one to m,
where n and m are the number of the units in the network
and the number of input features, respectively.

It can be shown [25] that, regardless of how b is com-
puted, whenever it does not depend on the immediately
received reinforcement value r, and when r is sent to all the
units in the network, such an algorithm satisfies

E E rDW W WW= B = B= —a (3)

where E denotes the expectation operator, W represents the
weight matrix (n ¥ (m + 1), m + 1 because of m inputs plus a
bias) of the network, and DW is the change of the weight
matrix. A reinforcement learning algorithm satisfying (3)
has the property that the algorithm statistically climbs the
gradient of expected reinforcement in weight space. That is,
the algorithm is guaranteed to converge to a local optimum.

For adapting parameters of the segmentation algorithm, it
means that the segmentation parameters change in the di-
rection along which the expected matching confidence in-
creases. The next two subsections describe the particular
network and the algorithm used in this paper.

3.2 The Team Architecture
We use a form of trial generating network in which all of the
units are output units and there are no interconnections be-
tween them. This degenerate class of network corresponds to
what is called a team of automata in the literature on stochas-
tic learning automata [18]. We, therefore, call these networks
as teams of Bernoulli quasilinear units. The main thrust of the
architecture is its simplicity and its generality as a function
approximator. Fig. 5 depicts the team network used here,
which corresponds directly to the reinforcement learning
component in Fig. 2. Each segmentation parameter is repre-
sented by a set of Bernoulli quasilinear units, and the output
of each unit is binary as we have described earlier.

For any Bernoulli quasilinear unit, the probability that it
produces a 1 on any particular trial given the value of the
weight matrix W is

Pr y p f s
ei i i si

= = = =
+ -1

1

1
W< A 2 7

where s w xi ij jj
= Â . Because all units pick their outputs

independently, it follows that, for such a team of Bernoulli
quasilinear units, the probability of any particular output
vector y(t), corresponding to an instance of segmentation
parameters, conditioned on the current value of the weight
matrix W is given by

Pr y W= B 2 7
; @

= -
Œ

-’ p pi
y

i n
i

yi i

1

1
1

, ,�

. (4)

The weights wij are adjusted according to the particular
learning algorithm used. We note that when si = 0 and, hence,
pi = 0.5, the unit is equally likely to pick yi either 0 or 1, while
increasing si makes a 1 more likely. Adjusting the weights in
a team of Bernoulli quasilinear units is thus tantamount to
adjusting the probabilities (pis) for individual units.

Fig. 5. Team of Bernoulli units for learning segmentation parameters.

144 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 2, FEBRUARY 1998

Note that, except bias terms, there are no input connec-
tions in the team networks experimented in [26]. In con-
trast, the team network used in this paper does have input
weights that play the role of long-term memory in associa-
tive learning tasks.

3.3 The Team Algorithm
The specific algorithm we used with the team architecture
has the following form: At the tth time step, after generat-
ing output y(t) and receiving reinforcement r(t), i.e., the
confidence level indicating the matching result, increment
each weight wij by

Dw t r t r t y t y t x w tij i i j ij0 5 0 5 0 52 7 0 5 0 52 7 0 5= - - - - -a d1 1 (5)

where a, the learning rate, and d, the weight decay rate, are
parameters of the algorithm. The term r t r t0 5 0 52 7- - 1 is

called the reinforcement factor and y t y ti i0 5 0 52 7- - 1 the eligi-

bility of the weight wij [25]. Generally, the eligibility of a
weight indicates the extent to which the activity at the input
of the weight was connected in the past with unit output
activity. Note that this algorithm is a variant of the one de-
scribed in (2), where b is replaced by r and pi by yi .

r t0 5 is the exponentially weighted average, or trace, of
prior reinforcement values

r t r t r t1 6 1 6 1 6 1 6= - + -g g1 1 (6)

with r (0) = 0. The trace parameter g was set equal to 0.9
for all the experiments reported here. Similarly, y ti0 5 is an
average of past values of yi computed by the same expo-
nential weighting scheme used for r . That is,

y t y t y ti i i1 6 1 6 1 6 1 6= - + -g g1 1 . (7)

Note that (3) does not depend on the eligibility. However,
empirical study shows superior performance with this form
of eligibility for function optimization [26].

The use of weight decay is chosen as a simple heuristic
method to force sustained exploration of the weight space
since it was found that REINFORCE algorithms without
weight decay always seemed to converge prematurely. It is
argued in [26] that having weight decay (the second term
dwij(t) in (5)) is very closely related to having a nonzero
mutation rate at a particular allele (feature value) in a ge-
netic algorithm [11]. The size of the weight decay rate d was
chosen to be 0.01 in all our experiments. Note that there are
other ways to force sustained exploration. One possibility is
to maximize a linear combination of system’s entropy and
reinforcement. We omit here the detailed analysis of the
method except commenting that such a strategy seeks not
only a particular region of the space having high reinforce-
ment values, but also a variety of such high value regions.

3.4 Implementation of the Algorithm
A different training strategy from that described in Fig. 3
was used in the experiments reported here. Instead of
looping through every image in the training set, the train-
ing procedure samples images proportional to the level of
matching confidence the current system achieves. That is,
the lower the matching confidence the system gets on an
image, the more likely the image will be sampled. In this

way training is focused on those images having the lowest
matching confidence, and thus faster performance im-
provement can be achieved. Fig. 6 shows the main steps of
the proportional training algorithm, where MAXCONFID
(= 1 in this paper) is the maximum confidence level the
system can achieve, i.e., when a perfect matching occurs, n
is the number of images in the training set, and N and Rth
are input parameters to the algorithm.

4 EXPERIMENTAL RESULTS

This section describes experimental results evaluating the
performance of our system on a variety of data, including a
set of synthetic images, two sets of color images, one of
which is indoor and the other is outdoor, and a large set of
simulated data. The system has been implemented on a
SUN Ultra-1 workstation. For the real images the segmen-
tation algorithm takes about one quarter of per iteration
time. Programming optimizations can reduce the expense
per iteration further.

4.1 Evaluation on Synthetic Images
In order to give insights into our approach this section uses
synthetic images with controlled statistics to demonstrate
that the proposed technique is indeed capable of learning
correct segmentation parameters. An 80 ¥ 80 image con-
sisting of a target region against a background is generated.
The size of the target is 40 ¥ 40 pixels. Both the background
and the target are generated by two Gaussian distributions
with mb = 130 and mt = 145, and standard deviations sb = st
= s = 2, respectively. In this case, it is possible to analyti-
cally compute a theoretical threshold [12] that minimizes a
total pixel misclassification error according to

T
P
Pth

b t

b t

t

b
=

+
+ -

m m s
m m2

2

ln , (8)

where Pb and Pt are the a priori probabilities of background
and target pixels, respectively. For this image, Tth = 138. To

• LOOP:
1. For each image i in the training set do
(a) Compute matching confidence for image i: CONFIDi
(b) ni = MAXCONFID - CONFIDi
(c) If niiÂ is 0, then terminate.

(d) proportion
n

ni
i

ii
=

Â
2. rr = 0 (rr: average matching confidence)
3. For k = 1 to n do
(a) Sample image i according to proportioni
(b) Segment image i using current segmentation pa-

rameters
(c) Perform noise clean up
(d) Get segmented regions (also called blobs or connected

components)
(e) Perform feature extraction for each blob to obtain to-

ken sets
(f) Compute the matching of each token set against stored

model and return the highest confidence level, r
(g) Obtain new parameters for the segmentation algo-

rithm using r as reinforcement for the team REIN-
FORCE algorithm

(h) rr = rr + r
• UNTIL number of iterations is equal to N or rr/n ≥ Rth

Fig. 6. Main steps of the proportional training algorithm.

PENG AND BHANU: CLOSED-LOOP OBJECT RECOGNITION USING REINFORCEMENT LEARNING 145

complicate the matter, however, Gaussian random noise
N(0, sn) with a signal-to-noise ratio (SNR = ((ms - mb)/sn)2)
10 is generated and added to this image. Pixel values are
then linearly scaled from 0 to 255. The goal is to recognize
the target. Fig. 7a shows the image and Fig. 7d its histogram.

The segmentation algorithm used in this experiment has
one parameter T Œ 0 255, and does the following to an
input image: For each pixel, if its value is greater than or
equal to T, it is set to 1, otherwise to 0. It is the parameter T
that has to be learned by the system. The “recognition algo-
rithm” we use in this subsection computes a confidence
value according to

r
n I n G n G R n R n R G

n I
=

- - + -1 6 1 6 1 63 8 1 6 1 63 84 9
1 6

� �
 (9)

where G is the region of the ground truth (target), R the re-
gion of pixels having a value of 1, and I is the input image.
Function n ◊0 5 returns the number of pixels of its argument. r is
then used as reinforcement to drive learning. Note that (9)
happens to be one (pixel classification) of possible criteria
for image segmentation [3]. Fig. 7e plots r (9) against the
threshold. A local maximum is added to make the problem
more interesting.

Eight Bernoulli units are used to encode the threshold
(Tl) to be learned. It took on average (over 50 runs) fewer
than 100 iterations (alpha = 0.2) to learn a threshold (152)
that achieves the optimal recognition confidence of 0.92.
Fig. 7b shows the segmentation result and Fig. 7f the aver-
age r value received over time. As a comparison, Fig. 7c

shows the segmentation using the theoretical threshold
(138) that achieves a confidence value of 0.87, which is far
from the optimal one. It is important to note that optimal-
ity is determined by (9), i.e., the pixel classification. When
the Gaussian random noise is removed, the learned
threshold and the theoretical one are identical for the im-
age in Fig. 7a.

To further evaluate our technique, 50 images were gen-
erated as training data having the following statistics: mt
varied uniformly from 145 to 155, the size of the square target
varied from 25 ¥ 25 to 35 ¥ 35 and the SNR from 10 to 15. An
additional set of 500 images was generated independently
as testing data, whose statistics are as follows. mt varied
from 140 to 160 uniformly, the size of the target from 20 ¥ 20
to 40 ¥ 40, and the SNR from three to 20. The best achievable
average r value (experimentally determined) on the training
data is 0.971, whereas this value is 0.941 on the testing data.

Each unit in the team network has a total of four input
weights, each of which takes an average pixel value of input
on a 40 ¥ 40 quadrant on the input image plane. Learning
consists of repeated sweeps through the training set until the
average value of r has reached 0.95 (approximately 100
sweeps). The network is then applied to the testing data. The
result shows that the system achieved the nearly optimal
average r value of 0.939 over the testing data. In contrast, the
theoretical threshold1 achieved an average r value of 0.924,
which is worse than that using the learned threshold.

1. Note that known statistics from each testing image is used to compute
the threshold based on (8). The learning system, however, does not have
access to such knowledge.

 (a) (b) (c)

 (d) (e) (f)

Fig. 7. (a) A noisy synthetic image (SNR = 10). (b) Learned segmentation. (c) Theoretical segmentation. (d) Histogram of image in (a). (e) Recog-
nition confidence as a function of threshold. (f) Recognition confidence received over time.

146 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 2, FEBRUARY 1998

These results show convincingly that the system can in-
deed learn correct segmentation parameters and that when
images are far from being ideal the learning system can
actually outperform the theoretical method, at least for
those images presented here.

4.2 Evaluation on Real Images
For the color images the Phoenix algorithm [15] was chosen
as the image segmentation component in our system be-
cause it is a well-known method for the segmentation of
color images with a number of adjustable parameters. It has
been the subject of several PhD theses [19], [22]. Phoenix
works by splitting regions using histogram for color fea-
tures. Appendix A provides a brief overview of the algo-
rithm. Note that any segmentation algorithm with adjust-
able parameters can be used in our approach.

The Phoenix algorithm has a total of fourteen adjustable
parameters. The four most critical ones that affect the over-
all results of the segmentation process are used in learning.
These parameters are Hsmooth, Maxmin, Splitmin, and
Height. Hsmooth is the width of the histogram smoothing
window, where smoothing is performed with a uniformly
weighted moving average. Maxmin defines the peak-to-
valley height ratio threshold. Any interval whose peak
height to higher shoulder ratio is less than this threshold is
merged with the neighbor on the side of the higher shoul-
der. Splitmin defines the minimum size for a region to be
automatically considered for splitting. This is an absolute
value, not a percentage of the image area. Height is the
minimum acceptable peak height as a percentage of the
second highest peak. The team algorithm searches for a
combination of these parameters that will give rise to a
segmentation from which the best recognition can be
achieved. The ranges for each of these parameters are the
same as those used in [3]. Table 1 shows sample ranges for
each of these parameters. The resulting search space is
about one million sample points.

Each of the Phoenix parameters is represented using five-
bit Gray code that has the advantage over simple binary
code in that only one bit changes between representations
of two consecutive numbers. One reason for using the bi-
nary representation is its usefulness as a model of certain
types of distributed adaptive decision-making [25]. Another
reason is that it offers a combinatorially advantageous way
of approaching learning problems having a large search
space. While the same task could be learned in the original
parameter space, for many types of problems, including
image segmentation, the binary representation can be ex-
pected to learn much faster. Since there are four parame-
ters, we have a total of 20 Bernoulli quasilinear units and
each parameter corresponds to the outputs of five units.

The feature extraction consists of finding polygon ap-
proximation tokens for each of the regions obtained after
image segmentation. The polygon approximation is ob-
tained using a split and merge technique [4] that has a fixed
set of parameters.

Object recognition employs a cluster-structure matching
algorithm [4] that is based on the clustering of translational
and rotational transformations between the object and the
model for recognizing 2D and 3D objects. A brief descrip-

tion of the algorithm is given in Appendix B. The algorithm
takes as input two sets of tokens, one of which represents
the stored model and the other represents the input region
to be recognized. It then performs topological matching
between the two token sets and computes a real number
that indicates the confidence level of the matching process.
This confidence level is then used as a reinforcement signal
to drive the team algorithm.

It is important to note that, in the current implementa-
tion of the system, the cluster-structure matching algorithm
does not have the knowledge of actual object location in the
image. It simply attempts to match the stored model
against the polygonal approximation of each blob in the
segmented image whose size is at least 80 percent of the
size of the model, and at the same time does not exceed it
by more than 20 percent. The confidence level returned is
the highest value ever obtained during matching.

It is worth pointing out that, during learning, the weights
are updated after each presentation of an input image. This
is in direct analogy to the typical weight update procedure
in connectionist networks where weights are updated ac-
cording to the stochastic gradient or incremental procedure
instead of the total gradient rule [16]. That is, updates take
place after each presentation of a single exampler without
averaging over the whole training set. Both empirical and
theoretical studies show that the stochastic gradient rule
converges significantly faster than the total gradient rule,
especially when training set contains redundant information.

Parameters (a, g, and d) used in reinforcement learning
are determined empirically, and they are kept constant for
all images. It is interesting to note that in theory the con-
vergence of the algorithm to a local optimum does not de-
pend on g and d. In practice, however, these learning pa-
rameters do affect the speed of convergence, as shown by
various empirical studies conducted by several researchers
[25], [26], including us. Likewise, a has to be chosen suffi-
ciently small to prevent oscillation and ensure convergence.
The experimental tests performed by us showed that once
the algorithm has achieved convergence many of these pa-
rameter values give rise to good segmentation performance,
as verified by us visually. The initial parameter values for
the Phoenix algorithm are chosen at random. We expect,
however, that the good starting values of the segmentation
parameters affect the convergence rate. Finally, as a com-
parison, the segmentation results with the Phoenix algo-
rithm using default parameters [15] are also obtained for
feature extraction and recognition on the same tasks.

TABLE 1
SAMPLE RANGES FOR SELECTED PHOENIX PARAMETERS

Parameter Sampling Formula Test
Range

Hsmooth hsmooth = 1 + 2 * hsindex 1 - 63
hsindex Œ [0 : 31]

Maxmin: ep = ln(100) + 0.05 * mmindex 100 - 471
mmindex Œ [0 : 31] maxmin = exp(ep) + 0.5

Splitmin: splitmin=9 + 2 * smindex 9 - 71
smindex Œ [0 : 31]

Height: height=1 + 2 * htindex 1 - 63
htindex Œ [0 : 31]

PENG AND BHANU: CLOSED-LOOP OBJECT RECOGNITION USING REINFORCEMENT LEARNING 147

4.2.1 Results on Indoor Images
The first segmentation task whose experimental results we
report here is a sequence of indoor color images (160 ¥ 120
pixels) having simple geometric objects with varying light-
ing and motion conditions. These images are (shown in
Fig. 8) divided into four groups, where images a, b, and c
are in the first group, and images d, e, and f are in the sec-
ond group, and so on. Within each group, images are
moving away from the camera, and from group 1 to group
4 lighting conditions deteriorate. The training set consists of
the images c, h, k, and l (randomly selected), whereas the
testing data come from the rest of the images (eight im-
ages). The objective of the task is to find a set of Phoenix’s
parameters that give rise to a segmentation of the input
image that, after appropriate feature extraction, will result in
the recognition of the triangular object. The model of the tri-
angular object is represented by a polygonal approximation
of its shape. The threshold for matching confidence in this
case was set to 0.8. The learning rate parameter a was set to
0.008 in all the experiments. Note that, unlike previous
work on image segmentation, the criteria measuring image
segmentation quality here are completely determined by
the matching algorithm itself.

Each unit in the team network has a total of eight input
weights, which is also the total number of effective weights
of the entire network, since units in the network are inde-
pendent. In the first experiment each of the input weights

takes an average gray value of input on a 60 ¥ 40 neighbor-
hood on the input image plane of 120 ¥ 160 pixels. This in-
put image is the luminance image of the corresponding
color image. Note that, in this experiment, the average is
normalized to lie between -1 and 1. For weights that are
adjacent in a unit, their receptive fields are at least 40 pixels
apart in the input image. Thus, the input image is under-
sampled, which, in turn, greatly reduces the number of
weights in the network. The motivation is that variations in
lighting need not be adapted with high resolution.

In the second experiment, each input image is projected
onto the subspace spanned by the eight eigenvectors corre-
sponding to eight largest eigenvalues of the original
(luminance) image vector space (120 ¥ 160 pixels). More spe-
cifically, the sample mean vector, m, is computed as

m =
=Â1

1
n

i

n
2 7 xi , where n is the number of sample vectors

(in this paper n equals 12) and x denotes m ¥ 1 column vec-
tors of input images. Note that here m equals 19,200. A cen-
tered input matrix X is constructed according to X = (x1 - m,

x2 - m, …, x2 - m).
Then the sample covariance matrix is obtained

C XX= -
1

1n
t and its eigensystem is computed, yielding ei-

genvalues li, i = 1, 2, … , m, of C in descending order so that

lj ≥ lj+1 for j = 1, 2, … , m - 1. Let A be a 8 ¥ m matrix

 (a) (b) (c) (d)

 (e) (f) (g) (h)

 (i) (j) (k) (l)

Fig. 8. Twelve color images having simple geometric objects.

148 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 2, FEBRUARY 1998

whose rows are formed from the eigenvectors of C, ordered
so that the first row of A is the eigenvector corresponding
to the largest eigenvalue, and the last row is the eigenvector
corresponding to the eighth largest eigenvalue. Then new
inputs are computed according to z = Ax where z denotes 8
¥ 1 column vectors. These inputs are normalized to lie be-
tween -1 and 1. Our goal is to see which experiment can
offer better performance. It turns out that the second ex-
periment performed slightly better than the first one, as can
be seen below (Figs. 9 and 10). Note that, unless stated oth-
erwise, all the figures in this section are obtained under the
condition that the system takes inputs from the subspace
spanned by the first eight eigenvectors (major axes) corre-
sponding to the eight largest eigenvalues of C.

Fig. 9 shows the segmentation performance (both train-
ing and testing) of the Phoenix algorithm with learned pa-
rameters on the images shown in Fig. 8. The training results
in Fig. 9 are obtained after a mean value (over five runs) of
250 passes through the training data. Fig. 10 shows the av-
erage confidence (over five runs) received by the two ex-
periments (eigen input and mean input) over time during
training (hillclimber results are explained below under
Computational Efficiency in Section 4.4). Each run consists
of a sequence of trials until the average confidence level has
exceeded 0.8. The threshold (0.8) serves our purpose well
here since it is sufficient to demonstrate the effect of learn-
ing for object recognition.

Fig. 11 shows the trajectory of each of the four Hsmooth,
Maxmin, Splitmin, and Height parameters during training in
a typical run on a particular image (in this case it is the im-
age of Fig. 8c). Note that no attempt was made to determine
if the set of parameters giving rise to the final recognition is
unique.

 (a) (b) (c) (d)

 (e) (f) (g) (h)

 (i) (j) (k) (l)

Fig. 9. Segmentation performance of the Phoenix algorithm with learned parameters.

Fig. 10. Average confidence received by the three methods (mean
input, eigeninput, and hill climber) over time during training.

PENG AND BHANU: CLOSED-LOOP OBJECT RECOGNITION USING REINFORCEMENT LEARNING 149

When the segmentation parameters obtained after
training were applied to the images in the testing set, rec-
ognition results for all the images, but Fig. 8e, are accept-
able. However, if we include image Fig. 8e in the training
set and allow learning to continue, experiments have been
performed that show that successful recognition can be
achieved for all testing images in much reduced time (less
than 50 percent) compared to the time taken for training on
the original training data.

In comparison, the Phoenix algorithm with default pa-
rameter setting was also run on the same images. Fig. 12
shows the samples of the segmentation performance of

the Phoenix algorithm with default parameters on the im-
ages in Figs. 8a, 8b, and 8c. These default parameters were
obtained after extensive tests [15]. This default parameter
setting resulted in a total matching failure.

4.2.2 Results on Outdoor Images
The second segmentation task involves a sequence of 10 out-
door color images obtained under varying environmental
conditions, two of which are shown in Figs. 13a and b. These
images are collected approximately every 15 minutes over
approximately a 2 and 1/2 hour period [3]. The images ex-
hibit varying shadow and reflection on the car as the position

 (a) (b) (c) (d)

Fig. 11. Trajectories for a particular run for each of the four parameters Hsmooth, Maxmin, Splitmin, and Height during training on a particular
image (Fig. 8g).

 (a) (b) (c)

Fig. 12. Samples of segmentation performance of the Phoenix algorithm with default parameters on indoor color images (Figs. 8a, 8b, and 8c,
respectively).

 (a) (b) (c)

Fig. 13. (a) and (b) Samples of outdoor color images with varying environmental conditions. (c) Polygon approximation of the car used in the
matching algorithm.

150 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 2, FEBRUARY 1998

of the sun changed and clouds came in and out the field of
view of the camera that had auto iris adjustment turned on.
The overall goal is to recognize the car in the image. The
original images are digitized at 480 ¥ 480 pixels in size and
are then subsampled to produce 120 ¥ 120 pixel images. Five
of these odd-numbered images are used as training data and
five even-numbered images as testing data.

Similar to the team network for the indoor images, each
unit here has a total of nine input weights, each of which
takes an average gray value of input on a 40 ¥ 40 neighbor-
hood on the input image plane of 120 ¥ 120 pixels. These
averages are normalized to lie between -1 and 1. Polygonal
approximation of the car shown in Fig. 13c is used as the
model in the cluster-structure matching algorithm. It was
extracted manually in an interactive session from the first
frame in the sequence.

Fig. 14 shows a sequence of segmentations for frame 1
with Phoenix’s parameters sampled at iterations 20, 30, 40,
50, 60, and 74 in a particular run during training, and corre-
sponding parameter values at each of these intervals are
shown in Table 2. Note that Fig. 14f shows the final seg-
mentation result when the highest confidence matching has
been achieved. The threshold for acceptable matching con-
fidence is set at 80 percent.

Figs. 15a and b show the Phoenix segmentation perform-
ance on two testing images (frames 2 and 4) with learned
parameters obtained after training on frames 1, 3, 5, 7, and
9. For frame 2, the matching is acceptable. However, for
frame 4, the result is not acceptable, and learning is to be
performed similar to the indoor examples for the adapta-
tion of parameters.

Finally, Figs. 15c and d show the samples of perform-
ance of Phoenix with default parameters on the outdoor
color images shown in Fig. 13. Note that these segmentation
results are totally unacceptable.

4.3 Evaluation on a Large Simulated Data Set
The simulated data experiment allows us to examine how
the system will behave with a large data set. We assume the
function, F, representing segmentation, feature extraction
and model matching components shown in Fig. 2, is given by

F Fk

k
p px x0 5 0 5=

=
Â

0

3

, (10)

and

F n x pk
i i

i kn

k n

p x1 6 4 9
1 6

= - -
= +

+

’2 5 1
4 1

1 4

. . (11)

where p Œ {0, 1}n is a constant. F is a mapping from the n-
dimensional hypercube {0, 1}n into the real numbers, where
n = 20. Each point x in its domain is an n-dimensional bit
vector.

TABLE 2
CHANGES OF PARAMETER VALUES DURING TRAINING

Iteration Hsmooth Maxmin Splitmin Height
 20 53 135 55 58

 30 17 142 39 42

 40 21 105 43 24

 50 1 165 51 42

 60 1 135 19 62

 74 1 300 55 64

 (a) (b) (c)

 (d) (e) (f)

Fig. 14. Sequence of segmentations of the first frame during training.

PENG AND BHANU: CLOSED-LOOP OBJECT RECOGNITION USING REINFORCEMENT LEARNING 151

The function Fp(x) is computed as follows: Divide the 20
bits into four equal-sized groups. For each group, compute
a score which is 2.5 n if all the bits in that group are the
same as those in p and is 0 otherwise. Then Fp(x) is the sum
of these four scores. This function has a global maximum of
200 at p. It also has very large plateaus over which the
function is constant. These plateaus will confound any my-
opic hillclimber.

In terms of the vision system described in the paper, x
corresponds to the encoding of segmentation parameters
and Fp represents in abstract terms the matching confidence
resulting from applying Phoenix with x to a given input
image p.

Note that since the precise nature of the function (10) to be
optimized is known, we can more reliably predict the
strengths and limitations of the system. In this experiment, p
is randomly generated uniformly from {0, 1}n. Then, 2,000
data points whose Hamming distance to p is at most four
are randomly generated from a distribution such that 80
percent of the data points are produced by perturbing the
first 10 bits of p, 10 percent by the first 15 bits, and the re-
maining 10 percent by the entire 20 bits. Conceptually, each
of these data points may be viewed to simulate the seg-
mentation parameter values for an image that will give rise
to the best possible recognition result for the image.

Out of these 2,000 data points, 500 are randomly selected
as training data. The remaining 1,500 data points as testing
data. As in the real data experiments described above
(Section 4.2), 15 normalized eigenfeatures are computed to
represent these data. Thus, there are 20 Bernoulli units,
each of which has 15 input lines that encode a particular
pattern to be searched for.

Training consists of repeated sweeps through the train-
ing set until the average value of F has reached 190, which
is about 95 percent of the optimal value of 200 (see (10)). An
added benefit is that it prevents the system from overfitting
the data, resulting in better generalization. The result shows
that after about 5,000 sweeps through the training data, the
system achieved an average value of 180 over 90 percent of
the testing data and an average value of 170 over the entire
testing data. Further examination revealed that the majority
of those testing data whose value is less than 180 come
from 20 bit perturbation to p. These data were least repre-
sented, and, therefore, resulted in relatively not-so-good
performance. This generalization characteristic is typical in
connectionist networks. These results demonstrate that the

algorithm can be expected to perform reasonably well on
large data sets in large problem domains.

4.4 Computational Efficiency
The computational efficiency of the system should be
evaluated against other systems having similar operating
characteristics. Currently there is no similar system in the
computer vision field that directly uses recognition result as
a feedback to drive learning for image segmentation. Thus,
as a comparison we applied a stochastic hillclimber to the
same indoor images used for the experiments described in
the above (Section 4.2). We first applied the K-Means algo-
rithm [17] to the eigenfeatures to determine K centers,
where K = 4 in this experiment. Then four images that are
closest to the four centers are used as training data. There
are, therefore, four sets of Phoenix parameters, each of
which is associated with a particular center. Again, 20 bits
are used to encode these Phoenix parameters. For a given
image, generalization is made by searching for the nearest
cluster center and then applying the set of Phoenix parame-
ters associated with the cluster.

In the beginning, the hillclimber occasionally moves
along directions that are not very promising. However, as
search continues the probability of downhill movement is
reduced. The annealing schedule (a schedule that reduces
the probability of downhill movement) used in this experi-
ment is an inverse function of the number of iterations. It is
important to note that if each dimension of the 20 dimen-
sion input space at every iteration has to be examined to
estimate the gradient, the amount of computation required
would be prohibitive. Instead, we randomly perturb three
dimensions (where each dimension is equally likely to be
selected) for each parameter set to move up the gradient.
Thus, the amount of computation is three times of that re-
quired by the reinforcement learning system at each itera-
tion. The decision of where to look next critically influences
the computational efficiency of the optimization process.
Like the reinforcement learning method, however, a priori
gradient information is not available. It has to be estimated
by sampling the search space. The average results (labeled
as “hill-climber”) are shown in Fig. 10. A comparison of
these results (Fig. 10) clearly demonstrates that the rein-
forcement learning system performed significantly better
than the stochastic hillclimber, despite the fact that it took
more computation time at every iteration.

 (a) (b) (c) (d)

Fig. 15. (a) and (b) Segmentation performance of the Phoenix algorithm on two testing images (frames 2 and 4) with learned parameters. (c) and
(d) Samples of segmentation performance of the Phoenix algorithm with default parameters on the two images shown in Fig. 13.

152 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 2, FEBRUARY 1998

5 CONCLUSIONS

Our choice of the team architecture is motivated by its sim-
plicity and its generality as a representation scheme. What
kind of problems an architecture can represent is to be de-
termined experimentally and theoretically. In particular,
one explanation for the successful results from the archi-
tecture presented in this paper is that the images used ex-
hibit well-behaved smoothness, that is, similar images in
feature space require similar parameters for segmentation.
We believe that this is true in general. In addition, deter-
mining how close an architecture can approximate an un-
known mapping is a classical problem, and many criteria
have been proposed, such as the Probably Approximately
Correct (PAC) learning theory and the Minimum Descrip-
tion Length (MDL) measure. It is in general an ill-posed
problem. In practice, however, it is often determined ex-
perimentally through cross-validation. The architecture
presented in this paper seemed to approximate the un-
known mappings sufficiently well, for nearly optimal per-
formance has been achieved. These results shed light on the
large potential of the proposed architecture, and present a
basis for additional experiments to determine the scope of
applicability of the architecture beyond the current problem
reported in this paper.

The key contribution of the paper is the general frame-
work for the usage of reinforcement learning in a model-
based object recognition system. Our investigation into re-
inforcement learning-based object recognition shows con-
vincingly that a robust and adaptive system can be devel-
oped that autonomously determines the criteria for seg-
mentation of the input images and selects useful features
that result in a system with high recognition accuracy when
applied to unseen images. Note that the performance of any
learning-based computer vision system depends on the
vision algorithms that are used, e.g., the Phoenix algorithm
used in this paper for the segmentation of color images.
Future research will address extensions for enlarging the
scope of the approach to encompass closed-loop 3D object
recognition and problems in active vision where reinforce-
ment learning could be extremely useful. Furthermore, in-
corporation of “delayed” reinforcement learning could
adequately address the inherent multilevel nature of vision
systems [20].

APPENDIX A: THE PHOENIX SEGMENTATION
ALGORITHM

The Phoenix image segmentation algorithm is based on a
recursive region splitting technique [15]. It uses information
from the histograms of the red, green, and blue image com-
ponents to split regions in the image into smaller sub-
regions on the basis of a peak/valley analysis of each histo-
gram. An input image typically consists of red, green, and
blue image planes, although monochrome images, texture
planes, and other pixel-oriented data may also be used.
Each plane is called a feature or feature plane.

Fig. 16 shows a conceptual description of the Phoenix
segmentation process. It begins with the entire image as a
single region. It then fetches this region and attempts to
segment it using histogram and spatial analyses. If it suc-

ceeds, the program fetches each of the new regions in turn
and attempts to segment them. The process terminates
when no region can be further segmented.

The histogram analysis phase computes a histogram for
each feature plane, analyzes it and selects thresholds or
histogram cutpoints that are likely to identify significant
homogeneous regions in the image. A set of thresholds for
one feature is called an interval set. During the analysis, a
histogram is first smoothed with an unweighted window
average, where the window width is hsmooth. It is then bro-
ken into intervals such that each contains a peak and two
“shoulders.” A series of heuristics is applied to eliminate
noise peaks. When an interval is removed, it is merged with
the neighbor sharing the higher of its two shoulders. Split-
min is the minimum area for a region to be automatically
considered for splitting.

Two tests determine if an interval should be retained.
First, the ratio of peak height to the height of its higher
shoulder must be greater than or equal to the maxmin
threshold. Second, the interval area must be larger than an
absolute threshold and the relative area, percent of the total
histogram area. The second highest peak can now be found,
and peaks lower than the height percent of this peak are
merged. The lowest valley is then determined, and any in-
terval whose right shoulder is higher than absmin (Phoenix’s
parameter) times this valley is merged with its right neigh-
bor. Finally, only intsmax (Phoenix’s parameter) intervals are
retained by repeatedly merging intervals with low peak-to-
shoulder ratio.

The spatial analysis selects the most promising interval
sets, thresholds the corresponding feature planes, and ex-
tracts connected components for spatial evaluation. The
feature and the interval set providing the best segmentation
(the least noise area) are accepted as the segmentation fea-
ture and the thresholds.

The histogram cutpoints are now applied to the feature
plane as intensity thresholds and connected components
are extracted. After each feature has been evaluated, the
one producing the least total noise area is accepted as the
segmentation feature. If no suitable feature is found, the
original region is declared terminal. Otherwise, the valid

Fig. 16. Conceptual diagram of the Phoenix segmentation algorithm.

PENG AND BHANU: CLOSED-LOOP OBJECT RECOGNITION USING REINFORCEMENT LEARNING 153

patches, merged with the noise patches, are converted to
new regions and added to the segmentation record. In ei-
ther case, a new segmentation pass is scheduled. For addi-
tional details, see [15].

APPENDIX B: THE CLUSTER-STRUCTURE
ALGORITHM

The cluster-structure algorithm can be divided into the fol-
lowing main steps:

1) Determine Disparity Matrix,
2) Initial Clustering,
3) Sequencing,
4) Final Clustering,
5) Transform Computation.

The algorithm first computes the disparity matrix. It deter-
mines the segment length of each line and the angles be-
tween successive lines from the set of vertices for the model
and the image input to the program. At this point, every
segment in the model will be compared against every seg-
ment in the image. If segment lengths and successor angles
are compatible, the algorithm computes the rotational and
translational disparity between pairs of segments. These
values are stored in the disparity matrix and are indexed by
the segment numbers in the model and the image. The al-
gorithm continues until all segments have been compared.
It then computes the range of rotational and translational
values present in the matrix, and normalizes them over
their appropriate range.

The initial clustering determines clusters from the nor-
malized values in the disparity matrix. At each step, the
program clusters all of the samples, recomputes the new
cluster centers, and continues until none of the cluster cen-
ters change their positions. The program then selects the
cluster having the largest number of samples. Also selected
are the clusters that are within 20 percent of the largest one.
Each cluster is considered separately and the final trans-
form comes from the cluster that yields the highest confi-
dence level.

The sequencing step uses the samples in the current
cluster to find all sequences in the samples. This provides
the critical structural information. Samples that are not
placed in any sequence are discarded. The program also
removes sequences that have a segment count of less than
three (three segments comprise the basic local shape struc-
ture). It then computes the rotational and translation aver-
ages of each sequence that has been located.

Using the sequences and the sequence averages, the final
clustering step clusters these values to find those sequences
that lead to the same rotational and translational results.
This is achieved by using the iterative technique of cluster-
ing, evaluating, clustering, etc. The program then selects the
cluster that contains the largest number of sequences and
passes this cluster to the final step.

The final step of the algorithm computes the confidence
level of the transformation determined by each cluster. The
cluster having the highest confidence level is selected as the
final transformation cluster. It assembles the set of matched
segments in the sequences in this cluster. The final output

of the program is the rotation and the vertical and hori-
zontal translation necessary to locate the model within the
image. The program also produces a confidence level indi-
cating the likelihood that the final matching is correct. For
further details, see [4].

ACKNOWLEDGMENTS

This work was supported by DARPA/AFOSR grants
F49620-97-1-0184 and F49620-95-1-0424. The contents of the
information do not necessarily reflect the position or the
policy of the U.S. Government.

REFERENCES

[1] A.G. Barto, R.S. Sutton, and C.J.C.H. Watkins, “Learning and
Sequential Decision Making,” COINS Technical Report 89-95,
Dept. of Computer and Information Science, Univ. of Mass., Am-
herst, Mass., 1989.

[2] B. Bhanu and T. Jones, “Image Understanding Research for
Automatic Target Recognition,” Proc. DARPA Image Understand-
ing Workshop, pp. 249-259, 1992.

[3] B. Bhanu and S. Lee, Genetic Learning for Adaptive Image Segmenta-
tion. Boston, Mass.: Kluwer Academic Publishers, 1994.

[4] B. Bhanu and J. Ming, “Recognition of Occluded Objects: A Clus-
ter-Structure Algorithm,” Pattern Recognition, vol. 20, no. 2, pp.
199-211, 1987.

[5] B. Bhanu, S. Lee, and S. Das, “Adaptive Image Segmentation Us-
ing Genetic and Hybrid Search Methods,” IEEE Trans. Aerospace
and Electronic Systems, vol. 31, no. 4, pp. 1,268-1,291, Oct. 1995.

[6] B. Bhanu, S. Lee, and J. Ming, “Adaptive Image Segmentation
Using a Genetic Algorithm,” IEEE Trans. Systems, Man, and Cyber-
netics, vol. 25, no. 12, pp. 1,543-1,567, Dec. 1995.

[7] D. Chapman, “Intermediate Vision: Architecture, Implementa-
tion, and Use,” Cognitive Science, vol. 16, pp. 491-537, 1992.

[8] R.T. Chin and C.R. Dyer, “Model-Based Recognition in Robot
Vision,” ACM Computing Surveys, pp. 67-108, Mar. 1994.

[9] M.A. Fischler, “On the Representation of Natural Scenes,” Com-
puter Vision Systems, A.R. Hanson and E.M. Riseman, eds. New
York: Academic Press, 1978.

[10] K. Fukushima, S. Miyake, and T. Ito, “Neocognition: A Neural
Network Model for a Mechanism of Visual Pattern Recognition,”
IEEE Trans. Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 826-
834, Sept. 1983.

[11] D.E. Goldberg and J.H. Holland, Special Issue on Genetic Algo-
rithms, Machine Learning, 2/3, 1988.

[12] R.C. Gonzalez and P. Wintz, Digital Image Processing. Addison-
Wesley Publishing Co., 1977.

[13] R.M. Haralick and L.G. Shapiro, “Image Segmentation Tech-
niques,” Computer Vision, Graphics, and Image Processing, vol. 29,
pp. 100-132, 1985.

[14] H.G. John, R. Kohavi, and K. Pfleger, “Irrelevant Features and the
Subet Selection Problem,” Proc. 11th Int’l Conf. Machine Learning,
pp. 121-129, 1994.

[15] K. Laws, “The Phoenix Image Segmentation System: Description
and Evaluation,” SRI Int’l Tech. Rep. TR289, Dec. 1982.

[16] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W.
Hubbard, and L.D. Jackel, “Backpropagation Applied to Hand-
written Zip Code Recognition,” Neural Computation, vol. 1, pp. 541-
551, 1989.

[17] J.L. Marroquin and F. Girosi, “Some Extensions of the K-Means
Algorithm for Image Segmentation and Pattern Classification,”
A.I. Memo No. 1390, MIT AI Lab, 1993.

[18] K.S. Narendra and M.A.L. Thathatchar, Learning Automata: An
Introduction. Englewood Cliffs, N.J.: Prentice Hall, 1989.

[19] R. Ohlander, K. Price, and D. R. Reddy, “Picture Segmentation
Using a Recursive Region Splitting Method,” Computer Graphics
and Image Processing, vol. 8, pp. 313-333, 1978.

[20] J. Peng and B. Bhanu, “Delayed Reinforcement Learning for
Closed-Loop Object Recognition,” Proc. DARPA Image Under-
standing Workshop, pp. 1,429-1,435, Feb. 1996.

154 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 20, NO. 2, FEBRUARY 1998

[21] V. Ramesh, “Performance Characterization of Image Under-
standing Algorithms,” PhD Thesis, Dept. of Electrical Eng., Univ.
of Washington, Seattle, Washington, 1995.

[22] S. Shafer and T. Kanade, “Recursive Region Segmentation by
Analysis of Histograms,” Proc. IEEE Int’l Conf. Acoustics, Speech,
and Signal Processing, pp. 1,166-1,171, 1982.

[23] P. Suetens, P. Fua, and A.J. Hanson, “Computational Strategies
for Object Recognition,” ACM Computing Surveys, vol. 24, no. 1,
pp. 5-59, 1992.

[24] S. Wang and T. Binford, “Local Step Edge Estimation—A New
Algorithm, Statistical Model, and Performance Evaluation,” Proc.
ARPA Image Understanding Workshop, pp. 1,063-1,070, Apr. 1993.

[25] R.J. Williams, “Simple Statistical Gradient-Following Algorithms
for Connectionist Reinforcement Learning,” Machine Learning,
vol. 8, pp. 229-256, 1992.

[26] R.J. Williams and J. Peng, “Function Optimization Using Connec-
tionist Reinforcement Learning Algorithms,” Connection Science,
vol. 3, no. 3, 1991.

Jing Peng received the BS degree in computer
science from the Beijing Institute of Aeronautics
and Astronautics, Beijing, China. He also re-
ceived the MA degree in computer science from
Brandeis University and the PhD degree in com-
puter science from Northeastern University,
Boston, Mass. Recently, he has been a research
scientist with Visualization and Intelligent Sys-
tems Laboratory at the University of California at
Riverside. Dr. Peng’s research interests include
machine learning, computer vision, image data-

bases, and learning and vision applications.

Bir Bhanu received the SM and EE degrees in
electrical engineering and computer science
from the Massachusetts Institute of Technology,
Cambridge, Massachusetts, the PhD degree in
electrical engineering from the Image Processing
Institute, University of Southern California, Los
Angeles, and the MBA degree from the Univer-
sity of California, Irvine. He also received the BS
degree (with Honors) in electronics engineering
from the Institute of Technology, BHU, Varanasi,
India, and the ME degree (with Distinction) in

electronics engineering from Birla Institute of Technology and Science,
Pilani, India.

Since 1991, he has been a professor of electrical engineering and
computer science and director of Visualization and Intelligent Systems
Laboratory at the University of California, Riverside. Previously, he was
a Senior Honeywell Fellow at Honeywell Systems and Research Cen-
ter, Minneapolis, Minnesota. He has been on the faculty of the De-
partment of Computer Science at the University of Utah, Salt Lake City,
and has also worked with Ford Aerospace and Communications Cor-
poration, INRIA-France, and IBM San Jose Research Laboratory,
California. He has been the principal investigator of various programs
for DARPA, NASA, the U.S. National Science Foundation, AFOSR,
ARO, and other agencies and industries in the areas of learning and
vision, image understanding, pattern recognition, target recognition,
navigation, image databases, and machine vision applications. He is
the coauthor of the books Computational Learning for Adaptive Com-
puter Vision (Plenum, forthcoming), Genetic Learning for Adaptive
Image Segmentation (Kluwer, 1994), and Qualitative Motion Under-
standing (Kluwer 1992). He received an outstanding paper award from
the Pattern Recognition Society. He has also received industrial
awards for technical excellence, outstanding contributions, and team
efforts. He has been the guest editor of several IEEE transactions and
journals and is on the editorial board of various journals. He holds 10
U.S. and international patents and has published more than 150 re-
viewed technical publications in the areas of his interest. He was the
General Chair for the first IEEE Workshop on Applications of Computer
Vision, Chair for the DARPA Image Understanding Workshop, and
General Chair for the IEEE Conference on Computer Vision and Pat-
tern Recognition.

Dr. Bhanu is a Fellow of the IEEE and AAAS (American Association
for the Advancement of Science). He is a member of ACM, AAAI,
Sigma Xi, Pattern Recognition Society, and SPIE.

