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ABSTRACT

Latent fingerprints are fingerprint impressions unintentionally left
on surfaces at a crime scene. Such fingerprints are usually in-
complete or partial, making it challenging to match them to full
fingerprints registered in fingerprint databases. Latent fingerprints
may contain few minutiae and no singular structures. Matching
algorithms that entirely rely on minutiae or alignment of singu-
lar structures fail when those structures are missing. This paper
presents an approach for matching latent to rolled fingerprints us-
ing the (a) similarity of learned representations of patches and (b)
the minutiae on the correlated patches. A deep learning network
is used to learn optimized representations of image patches. Sim-
ilarity scores between patches from the latent and reference fin-
gerprints are determined using a distance metric learned with a
convolutional neural network. The matching score is obtained by
fusing the patch and minutiae similarity scores. The proposed sys-
tem was tested by matching fingerprints segmented from the 258
latent fingerprints in the NIST SD27 database against a database
of 2,257 rolled fingerprints from NIST SD27 and SD4 databases.
Experimental results show a rank-1 identification rate of 81.35%
and highlights the promise of our proposed approach.

Index Terms— Fingerprint, Minutiae, Latent, Matching,
Deep Learning, Similarity.

1. INTRODUCTION

Fingerprints have been one of the most reliable methods used in
forensics for human recognition. Automated Fingerprint Identifi-
cation System (AFIS) provides two types of fingerprint searches,
namely tenprint search and latent search [9]. Tenprint search
involves searching 10 fingers of a person against a fingerprint
database of known individuals. Latent search involves searching
a fingerprint from a crime scene against a fingerprint database of
known individuals [9]. Latent search is used by law enforcement
for identifying and apprehending criminals.

Latent fingerprints are usually partial fingerprints and are char-
acterized by few minutiae points, and missing singular points such
as core and delta. The dearth of those structures coupled with un-
specified orientations, distortions, variations in the illumination of
a crime scene, and occlusions, make matching latent fingerprints
to full rolled/plain fingerprints very challenging. Many of the ex-
isting approaches for matching latent fingerprints to rolled/plain
fingerprints rely on fingerprint features mentioned above and be-
come unreliable when the latent fingerprint does not include those
structures.

Our approach computes a similarity score by taking into ac-
count the overlapped areas on the latent and rolled fingerprints
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and then matching the minutiae on them, if available. We learn
optimal representations of image patches and a similarity function
directly from annotated pairs of raw image patches using a deep
neural network modeled after a Siamese network (a neural net-
work architecture consisting of two or more identical networks).

2. RELATED WORK AND CONTRIBUTIONS

2.1. Related Work

Many of the existing approaches for matching latent fingerprints
rely on features extracted from the latent fingerprints. Jain et al.
[9] proposed a latent-to-rolled/plain matching algorithm that re-
lied on manually marked features (minutiae, core, delta) for the
latent fingerprints in NIST SD27 database and automatically ex-
tracted features for rolled prints in NIST SD4 and NIST SD14
databases. They reported a rank-1 identification rate of 74 percent.
Feng et al. [5] used ridge pattern, singular points, and orientation
field to match latent fingerprints in NIST SD27 with a database
of 10,258 rolled fingerprints. They reported a rank-1 accuracy of
73.3%. Tsai et. al [10] used localized secondary features derived
from relative minutiae information and trained a neural network
to generate the final similarity score based on minutiae matched
in the overlapping areas of a query latent fingerprint and reference
fingerprints. They reported 1.21% and 0.68% improvements on
minimum total error rates of FVC2002 DB1 and DB2 databases.
Deep learning has successfully been applied to latent fingerprint
image segmentation [4], and enhancement [11]. Patch-based im-
age matching has been extensively used in computer vision tasks.
It has been used for finding accurate correlation between images
in domains such as object recognition [12], classification [15], im-
age stitching [1], and image reconstruction [13]. Our approach to
patch similarity learning is similar to the techniques used in [6],
[10] and [16]. The main difference is that before using a neural
network to learn the pairwise similarity between image patches,
we first learn optimal representations of the image patches using a
pair of deep neural network each consisting of 4 layers of RBMs.
To the best of our knowledge, this work represents the first at-
tempt at performing latent fingerprint matching based on learned
similarity of image patches.

2.2. Contributions

Our contributions include a new system for patch-based latent fin-
gerprint matching using deep neural networks with an improve-
ment on the previous latent fingerprint matching results. The pro-
posed system learns optimal patch representation and patch simi-
larity without relying on hand crafted features.
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Fig. 1: Proposed architecture for learning fingerprint patch represen-
tation and similarity between fingerprint patches. Each Representation
Learning Network (RLN) consists of 4 layers of Restricted Boltzmann
Machine (RBM). The Similarity Learning Network (SLN) consists a 7-
layer deep convolutional network whose components are shown in 2.
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Fig. 2: Graphical depiction of RBM with binary visible and hidden units.

iyt = 1,...,4, are the visible units while hx,k = 1,...,3, are the
hidden units. bgs,,¢ = 1,...,4, are the biases for the visible units and
chy,k =1,...,3, are the biases for the hidden units.

3. TECHNICAL APPROACH

The block diagram of our proposed approach is shown in Fig-
ure 1. It consists of two neural networks, one for learning patch
representations and the other for learning the similarity between
the learned representations. During training, a pair of the rep-
resentation learning network (RLN) similar to Siamese network,
but without shared parameters, is applied to pairs of patches (P1,
P2). The learned representations (LR) from the RLNs are concate-
nated to form the input to the similarity learning network (SLN).
Similarity learning is supervised while representation learning is
unsupervised to facilitate discovery of hidden and interesting pat-
terns in the patches. The RLN and SLN are jointly trained on
patch-pairs generated from segmented Latent fingerprint images
and rolled images from the NIST SD27 database. Table 1 shows
the hyper-parameters and values used to train the RLN. The struc-
ture of the SLN is depicted in Table 2. The parameters for RLN
were selected based on the performance of the network on the
validation set. The choice of 32x32 patch size is based on its em-
pirically determined optimality.

3.1. Architecture and Hyper-Parameters

A Restricted Boltzmann Machine is a stochastic neural network
that consists of visible layer, hidden layer and a bias unit [7]. A
sample RBM with binary visible and hidden units is shown in Fig-
ure 2. RBM has no intra-layer connections and given the visible
unit activations, the hidden unit activations are mutually indepen-
dent. Also the visible unit activations are mutually independent
given the hidden unit activations [2].

We selected the value of the hyper-parameters used in the pro-
posed network based on the performance of the network on the
validation set. The parameters and values are shown in Table 1

We tried five different networks (with different number of lay-
ers and neurons in each layer) in the RLN and chose the architec-

Table 1: Parameters and values for the representation learning network
(RLN). L; refers to layer i. L; is the input layer. Layers 1, 2, and 3 are
RBM layers.

Parameter Lo Ly Ly Ly Ly
Number of Neurons | 1024 | 1800 | 1000 | 1200 | 1024

Batch Size 32 32 32 32
Epochs - 50 50 50 50
Learning Rate - le-3 | Se-4 | Se-4 | Se-4
Momentum - 0.70 | 0.70 | 0.70 | 0.70

Table 2: Parameters for the similarity learning network (SLN). Epochs
: 100, Batch size : 64, Learning rate : 0.0100, Momentum : 0.9000.

Name Type Dim. Filter | Stride
Input input 32x32x1 -

Conv Convolution 30 5x5

ReLU ReLU

MaxPool Max Pooling 1x1 [11]
Softmax Softmax

Output Similarity output

Table 3: Five candidate architectures and model performance. The dif-
ference between the architectures is the number of layers for patch rep-
resentation learning. The architecture with 5 layers gave the best perfor-
mance in terms of mean square reconstruction error (MSRE), and was
used in this paper. As can be seen from the table, the reconstruction error
improved as we added more pre-training layers. The gains started to fade
after 5 layers. This result is consistent with the observation in [3] that
for certain tasks, going deep improves network performance but after a
certain depth, the benefit starts to disappear.

Architecture No. of layers Minimum Maximum
MSRE MSRE
Archl 1 0.0350 0.2180
Arch2 3 0.0476 0.0952
Arch3 5 0.0045 0.0562
Arch4 6 0.0138 0.1085
Arch5 7 0.0248 0.1105
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Fig. 3: (a) Plot showing mean square reconstruction error (MSRE) dur-
ing the training of the RLNs. (b) Plot showing mini-batch accuracy during
the training of the SLN.

ture that gave the best performance in terms input reconstruction
errors. The architectures and their performance on the training
and validation datasets are shown in Table 3. The chosen RLN
architecture is highlighted in bold.

3.2. Image patch similarity

In this work, we consider two patches to be similar if there exist
an in-plane rotation by d degrees that makes them identical. When
a given patch p is rotated by d € {0°,45°,90°,135°,180°, 225°,
270°,315°}, we obtain a set of patches p. = {p1,p2,--- ,Ps}-
Each pair of patches (p;,px) € p, are considered similar. This
definition of similarity allows us to learn patch representations
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Fig. 4: Various rotations (0°, 45°,90°, 135, 1807, 225°, 270°, 315°) of
a sample fingerprint with a 32x32 patch highlighted with a bounding box.
By our patch similarity definition, all the patches are similar.

that are invariant to rotations. With this strategy, given an image
patch from a reference fingerprint image, the chances of finding a
matching patch from the latent fingerprint being matched against
it is enhanced. Figure 4 shows in-plane rotations of a sample fin-
gerprint with a 32x32 patch highlighted with a bounding box. The
32x32 patches in all the rotations are similar.

4. MATCHING

4.1. Patch Similarity

Let L and R be latent and reference fingerprints, respectively. Let
P, = {lh,---,lx} and P = {r1,---,r,} denote the 32x32
patches from L and R. For each I; € Pr,i = 1,...,k, we cre-
ate tuples (l;,r;),7; € Pr,j = 1,...,n, feed each tuple to our
trained model and record the similarity score. To show that using a
brute-force matching strategy is feasible in this scenario, we note
that a reference fingerprint in the NIST SD27 database is 800x768
while one of the largest segmented fingerprint from a latent fin-
gerprint in the same database is 380x448. The number of 32x32
non-overlapping patches from the reference and latent fingerprints

6}%320 = 600 and 11?0"310 = 166, respectively. Evaluating a
match between them requires 166 x 600 = 99, 600 comparisons
in the worst case. To minimize the computation time, a pipeline
with 166 parallel computations can be used. We define the patch
similarity score for each [ € Py, as:

S; =max(s(l,r1),...,s(l,m)) M

where s(l, i) is the similarity score of tuple (I,7),l € Pr,7 €
Pr,k = 1,...,n. Apatchl € Py, is said to have a match if
S; = p, where p is an empirically determined threshold value
(0.75). The patch similarity score between L and R is defined as:

P _ Lm
LR |PL|

(@)

where L,, is the number of patches in L with matching patches in
R, and | P | is the total number of patches in L.

4.2. Minutiae Matching

Minutiae extraction from patches in L with matching patches in R
was done using minutiae extraction algorithm based on crossing
number [14]. The minutiae similarity score is calculated as:

o

STr=— 3)

where o is the number of patches in L with matching minutiae in
R, and 7 is the total number of minutiae in R.

] 3 J
te |
s
(@) ®) © (d)
Fig. 5: Examples of matching query and reference fingerprint patches.

(a) and (b) are matching patches with minutiae, while (c) and (d) are
matching patches without minutiae.
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Fig. 6: Sample patch and minutiae similarity scores for 10 segmented
latent fingerprints from NIST SD27.

The fused score is given by:
1, .. »
Fmp:§(SLR+SLR) “)

A threshold of 0.45 was used for F,,,. Figure 5 shows examples
of matching patches with minutiae and matching patches with-
out minutiae, while Figure 6 shows patch and minutiae similarity
scores computed for 10 segmented latent fingerprints.

5. EXPERIMENTS AND RESULTS

We implemented the algorithms in Matlab R2017a running on In-
tel Core i7 CPU with 8GB RAM and 750GB hard drive. Our
implementation relied on NNBox, a Matlab toolbox for neural
networks. The implementation uses backpropagation, contrastive
divergence, Gibbs sampling, and hidden units sparsity based opti-
mization techniques.

5.1. Training Dataset

The training dataset was created from fingerprint impressions seg-
mented from the latent fingerprint images in the NIST SD27
database, as well as the matching rolled fingerprint images.
The segmentation was done using a different deep learning
model details of which are omitted for brevity. We split the
fingerprint images into 32x32 non-overlapping patches and cre-
ated 7 similar patches for each patch by rotating the patch by
459,900, 135°,180°,225°,270°, and 315°. The training dataset
was then partitioned into groups of (p;,p;,2) where z = 1 if
p; = p; and 0 otherwise. The operator = reflects patch similarity
as defined in section 3.2. A total of 100,000 patches (W

from 602 fingerprints (150 segmented latents (NIST SD27), 150
rolled fingerprints (NIST SD27), 302 fingerprints (NIST SD4
database) patches were augmented with the rotated patches to
obtain a training set containing 100, 000 x 8 = 800, 000 patches.

5.2. Evaluation Datasets

We created two evaluation datasets: query dataset and reference
dataset. Regions-of-interest were segmented from the 258 latent
fingerprints in NIST SD27 database and saved in a query dataset.
The reference dataset containing 2,257 rolled prints was created
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Fig. 7: The 30 5 x 5 filters learned in the convolutional layer of SLN
on the 32 x 32 patches from segmented fingerprint impressions in NIST
SD27 database. The dark colors represent intensity.

from 2,000 fingerprint images in NIST SD4 database, and the 257
rolled images in NIST SD27 database. We matched each fin-
gerprint in the query dataset against the images in the reference
dataset to evaluate the proposed approach.

5.3. Training, Validation and Testing

One set of fingerprint patches at a time from the training dataset
was fed to the RLN after being preprocessed to have 0 mean and
unit standard deviation. The training of the RLN was done using
standard stochastic gradient descent and back-propagation with a
batch size of 64 and different learning rates for each layer. In
our implementation, we randomly generated the connection map
between the visible layer and the first hidden layer. The input
weight of all other hidden layers are the output weights of the
respective preceding layers. We kept adjusting the learning rate
until the mean square reconstruction error stabilized. For the SLN,
the objective was to minimize the cross-entropy error defined as:

1 & . X
C=——> wlogje+(1—y)log(l—gn) ()
k=1

over a training set of m patch pairs using stochastic gradient de-
scent with a batch size of 64. In the above equation, y, is the
similar(1) or dissimilar(0) label for input pair x, while ¢ and
1 — g, are the Softmax activations computed on the values at the
two output nodes. We sampled equal number of positive and neg-
ative pairs for training to prevent over-fitting. A positive entry in
the training dataset is of the form (p;, px, 1), with p; = pj, while
a negative sample is of the form (p;, p;,0), with p; # p;. We
used 100,000 positive pairs and 100,000 negative pairs to train
the entire network. 40,000 positive and negative pairs were used
to validate the network, while 20,000 positive and negative pairs
were used for testing. There was no overlap between the train-
ing, validation and test datasets. We obtained 96.88%, 95.31%,
and 93.75% training, validation and testing accuracy, respectively.
Figure 7 visualizes the convolutional filters learned on the NIST
SD27 database by the SLN.

5.4. Matching Results

Rank identification rate provides an estimate of the probability
that a matching rolled fingerprint is identified correctly at least
at rank-k during a search with a latent candidate. Figure 8(a)
shows the cumulative match characteristics (CMC) curve of the
proposed approach in matching 258 latent fingerprints in NIST
SD27 database against database of 2,257 rolled fingerprints. Fig-
ure 8(b) shows CMCs of matching the three categories of latent
fingerprints in the NIST SD27 database (88 Good, 85 Bad, and 85
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Fig. 8: (a) CMC curve of the proposed approach in matching 258 latent
fingerprints in NIST SD27 database against a test database of 2,257 rolled
fingerprints. (b) CMC curves for the 258 latent fingerprints in the NIST
SD27 database that were grouped by subjective quality into Good (88),
Bad (85), and Ugly (85).
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Fig. 9: Plot showing mini-batch accuracy during the training of the SLN

with and without learned representation (LR) of patches. Using LR to

train the SLN boosts its performance.

Ugly) [8] against the test database of 2,257 rolled prints. The plot
shows the rank-k identification rate against k, k = 1,...,20. We
obtained a rank-1 identification rate of 81.25% and a rank-20 iden-
tification rate of 93.65% on matching the 258 latent fingerprints.
These results look promising when compared to a state-of-the-art
rank-1 and rank-20 identification rates of 74.0% and 82.9%, re-
spectively, reported in [9], which to the best of our knowledge, is
the current state-of-the-art result. It should be noted that a test
database of 29,257 fingerprints was used by the authors in [9]
against 2,257 used in this work.

5.5. LR and SLN Performance

Figure 9 shows the comparison of the performance of the SLN
when learned representations (LR) of patches are used for training
versus when raw patches are used. The figure shows that using
learned representation boosts the mini-batch accuracy of the SLN.

6. CONCLUSIONS AND FUTURE WORK

This paper proposes a patch based latent fingerprint matching sys-
tem based on the similarity of learned representations encoded in
a deep neural network. Our model learns patch representation and
similarity function that make matching of patches invariant to ro-
tation. We tested the proposed system by matching segmented
fingerprints from 258 latent fingerprints in NIST SD27 against a
database consisting of 2,257 rolled fingerprints from two differ-
ent NIST databases, and achieved a rank-1 identification rate of
81.25%. This is a significant improvement on the state-of-the-art
rank-1 identification rate, which to the best of our knowledge is
74%. Part of our future work is to use a deep learning approach
for minutiae extrattion, as well as exploring the performance of
the proposed approach on a larger fingerprint database with mixed
images resolutions.
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