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Abstract—Human Embryonic Stem Cells (hESC’s) are promis-
ing for the treatment of many diseases such as cancer, Parkinsons,
Huntingtons, diabetes mellitus etc. and for toxicological testing.
Automated detection and classification of human embryonic stem
cell (hESC) videos is of great interest among biologists for
quantified analysis of various states of hESC in experimental
work. To date, the biologists who study hESC’s have to analyze
stem cell videos manually. In this paper we introduce a hier-
archical classification system consisting of Convolutional Neural
Networks (CNN) and Triplet CNN’s to classify hESC images into
six different classes. We also design an ensemble of Generative
Adversarial Networks (GAN) for generating synthetic images of
hESC’s. We validate the quality of the generated hESC images
by training all of our CNN’s exclusively on the synthetic images
generated by the GAN’s and evaluating them on the original
hESC images. Experimental results shows that we classify the
original hESC images, with an accuracy of 85.67% using the CNN
alone, 91.38% accuracy using the CNN and Triplet CNN and
94.11% accuracy by fusing the outputs of the CNN and Triplet
CNN’s, out performing existing state-of-the-art approaches.

I. INTRODUCTION

Video Bioinformatics [21] is an upcoming field to help
biologists achieve quicker and less demanding approaches to
analyze expansive volumes of video data. The biologists who
study human embryonic stem cells (hESC’s) have to analyze
stem cell videos every day. This is a very laborious manual
process and the accuracy of a human performing classification
is inversely proportional to long working hours. It is important
to utilize the information from live videos to study the behavior
of hESC’s during exposure to various chemical agents.

hESC’s are derived from the inner cell mass of developing
blastocysts and possess two important properties: 1) self-
renewal and 2) pluripotency [1]- [3]. Self-renewal is the ability
to go through unlimited cycles of cell division, and pluripo-
tency is the capability to differentiate into any cell type in the
human body. hESC are an important resource for regenerative
medicine, basic research on human prenatal development, and
toxicological testing of drugs and environmental chemicals.
Under the state of pluripotency, they can also be maintained
indefinitely [4] [5]. Therefore, understanding the behavior
of hESC is fundamental for medicinal and toxicological re-
search [5] - [7].

In this paper, we propose a system for classifying hESC
images using Convolutional Neural Networks (CNN) and
Triplet CNN’s in a hierarchical system. We compensate for
the lack of data by training Deep Convolutional Generative

Adversarial Networks (DCGAN) to generate synthetic hESC
images. We also make use of the features learned by individual
GAN’s, to further improve the quality of the generated images.
Furthermore, we validate the quality of the generated synthetic
images by training the CNN and Triplet CNN’s exclusively on
the synthetic images and evaluated the networks on the original
hESC images.

In this study, the hESC videos were taken with a BioStation
IM [8]. The hESC videos consist of frames of phase contrast
images. Each frame can contain any of the following six cell
types: 1) Cell Clusters (CC), 2) Debris (DEB), 3) Unattached
Cells (UN), 4) Attached Cells (AT), 5) Dynamically Blebbing
Cells (DYN), and 6) Apoptotically Blebbing cells (APO). Fig.
1 shows phase contrast images for each class.

Fig. 1. Phase contrast images for the six different classes.

The unattached cells, attached cells, dynamically blebbing
cells and apoptically blebbing cells are considered as the in-
trinsic cell types. Cell Clusters are a colony of cells consisting
of different intrinsic cell types that are packed close to each
other. Blebbing cells are membrane protrusions that appear
and disappear from the surface of cells. The changing area of
the blebbing cells over time is important for understanding and
evaluating the health of cells. Dynamic blebs indicate healthy
cells and apoptotic blebs indicate dying cells. The ability to
analyze rates of bleb formation and retraction are important in
the field of toxicology and could form the basis of an assay
that depends on a functional cytoskeleton [4] [6].



II. RELATED WORKS AND OUR CONTRIBUTIONS

There has been very limited work for stem cell classification
in the field of computer vision. Guan et al. [3] [10] [12]
proposed a model based approach for automatically segment-
ing hESC’s. The authors considered the foreground and back-
ground intensity distribution as a mixture of two Gaussians.
The objective of the algorithm is to find a threshold that
optimizes a criterion derived from the intensity distribution of
the foreground and background. The optimal segmentation is
achieved at the highest criterion value. Since the segmentation
method yields a binary image for each frame, the authors
were able to extract a pool of individual components from
each frame. The authors reported that, their proposed method
yields less than 10% average detection error of foreground and
background.

Lowri et al. [11] designed a texture based multi-stage
Bayesian level set algorithm to segment colony images of stem
cells and their derivatives. The authors use a Gabor based filter
bank to segment multi resolution texture images belonging to
different derivatives of stem cells.

Mangoubi et al. [22] classified hESC into differentiated
and pluripotent cell colonies using a wavelet based texture
decomposition. The authors observed that in contrast to differ-
entiated colonies, pluripotent colonies contained homogeneous
tight textures, thus allowing a statistical analysis of the coef-
ficients obtained from a wavelet based texture decomposition
to discriminate between the colonies. The authors achieved an
accuracy of 96% in classifying colonies that were very distinct
from each other and 86% in colonies with a mixed distribution.

To the best of our knowledge, we are not aware of any other
approach that uses Convolutional Neural Networks (CNN) to
classify hESC images into six different classes.

In light of the state-of-the-art, the contributions of this paper
are:

• A hierarchical classification system using CNN and
Triplet CNN’s to classify hESC images.

• Training an ensemble of Generative Adversarial Net-
works (GAN) and used the features learned by individual
GAN’s to improve the quality of generated images.

• Validated the quality of the generated images by training
all of our networks on the generated hESC images and
evaluating them on the original hESC images. We further
compare our approach with state-of-the-art classifiers.

III. TECHNICAL APPROACH

In this section we explain the framework and architecture
of our approach, the individual models in our hierarchical
classifier and the Generative Adversarial Networks used for
generating synthetic images. Fig. 2 shows the overall archi-
tecture of our hierarchical classification.

A. Detection of hESC Regions

In our system, we use the approach proposed by Guan et
al. [3] for detecting the cell regions. The hESC’s are grown in
culture dishes coated with a layer of substrate (Matrigel). The
substrate becomes the background after the hESC’s are placed

on its surface. Therefore, we model a hESC image with two
regions of interest: foreground and background. Fig. 1 shows
that the intensity distributions of these regions are similar to a
mixture of two Gaussians with different means and variances.

The objective of the algorithm is to find an optimal threshold
that maximizes the absolute difference of the two mean-to-
variance ratios M derived from the intensity distribution of
foreground and background.

M =

∣∣∣∣µf

σf
− µb

σb

∣∣∣∣ (1)

The optimal segmentation is achieved at the highest criterion
value. The segmentation algorithm was evaluated using the
Intersection over Union (IoU) metric and achieved an accuracy
of 86.6%. After detecting each individual cell in a given
frame, they are classified into the six different classes using
our hierarchical classification system.

B. Hierarchical Classification of hESC Images

Recently CNN’s and Triplet CNN’s have shown to be very
robust in extracting features for biological applications such
as detection of different types of cancer, gene identification
and biometrics liveness detection [13] - [15]. In our approach
we use CNN’s and Triplet CNN’s in a hierarchical manner to
classify hESC images into the six different classes.

1) Convolutional Neural Network: After detecting all the
cell regions in the video, we resize all the hESC images to
size 64x64. These images are then used for training the CNN.
Table I. shows the architecture of our CNN.

In Table I, conv(x, y, z) represents convolution(kernel
size=x, stride=y, padding=z) similarly, maxpool(x, y, z) rep-
resents maxpool(kernel size=x, stride=y, padding=z). The
weights for the CNN were initialized with uniform Xavier
distribution as described in [16].

Input
dimension

Output
dimension

Number of
Feature maps Layer

64x64 32x32 64 Conv(7,2,3)
32x32 16x16 64 Maxpool(3,2,1)
16x16 8x8 128 Conv(5,2,2)
8x8 4x4 128 Maxpool(3,2,1)

2,048x1 6 classes - FC layer

TABLE I
ARCHITECTURE OF CNN

To train the CNN, we chose a mini batch size of 64. Since
the size of our dataset is very limited, in order to prevent
the CNN from over-fitting, we perform random affine trans-
formations to the images. The images are randomly rotated
between −180◦ to 180◦, randomly sheared between 0◦ to 30◦,
randomly zoomed in and out between 70% to 140% of the
image size and randomly horizontally flipped. Furthermore, we
randomly chose 10 images from each class as the validation
dataset. The remaining of the dataset was divided into 2 folds,
50% of the dataset for training and 50% for testing

We did random hyper-parameter search for the CNN to
obtain the best learning rate, momentum and weight decay.



Fig. 2. Overall architecture of our hierarchical classification.

We chose random values for the learning rate, momentum and
weight decay within a given range and step size and trained
the network for three epochs. The combination of hyper-
parameters that gave us the highest classification accuracy after
three epochs are chosen as the best hyper-parameters for the
network. The random hyper-parameter search was done by
evaluating the CNN only on the validation dataset. Based on
this we chose the best hyper-parameters as learning rate =
1.2x10-2, momentum = 0.9 and weight decay = 1x10-3 The
network was optimized using the stochastic gradient descent
algorithm with cross entropy loss.

We performed 2-fold cross validation and the results are
shown in detail in the experimental section. After evaluating
the CNN we observed that the CNN was able to classify the
classes Debris and Unattached Cells with high accuracy, but
the classes Cell Clusters/ Apoptically Blebbing cells and Dy-
namically Blebbing Cells/ Attached Cells were misclassified
the most. The reason for this is that, the classes Cell Clusters/
Apoptically Blebbing Cells and Dynamically Blebbing Cells/
Attached Cells have similar intensity and texture. The only
difference between these classes is their morphology.

2) Triplet Convolutional Neural Networks: To solve this
misclassification, we train a Triplet CNN to perform fine-
grained classification between Cell Clusters and Apoptically
Blebbing Cells and similarly, for Dynamically Blebbing Cells
and Attached Cells. Table II. shows the architecture for Triplet
CNN A and Triplet CNN B shown in Fig. 2.

Input
dimension

Output
dimension

Number of
Feature maps Layer

64x64 32x32 256 Conv(7,2,3)
32x32 16x16 256 Maxpool(3,2,1)
16x16 8x8 512 Conv(5,2,2)

8x8 4x4 512 Conv(3,2,1)
8,192x1 2 classes - FC layer

TABLE II
ARCHITECTURE OF TRIPLET CNN A AND TRIPLET CNN B

The Triplet CNN takes as input a query image and one
anchor image from each class. The output of the Triplet CNN

is the two pairwise distances between the extracted features
for the query image and the two anchor images as shown in
Fig. 2. The query image is classified as the same class as the
anchor image closest to the query image.

We used the same 10 validation images from each class used
for validating the CNN, to validate the Triplet CNN. To train
both Triplet CNN A and Triplet CNN B, we did 2-fold cross
validation similar to how we trained the CNN. From each fold,
we randomly selected 75,000 triplets for training, 3,000 triplets
for validation and 35,000 triplets for testing. We chose a mini-
batch size of 256 triplets and performed random affine trans-
formation to the images and random hyper-parameter search
that was similarly done while training the CNN. Table III.
shows a summary for the best hyper-parameters for the CNN,
Triplet CNN A and Triplet CNN B. The Triplet CNN’s were
optimized using the Stochastic Gradient Descent algorithm
with the Ranked Marginal loss function as shown in equation
2.

Loss =Max(0,−Y ∗ (G(X1)−G(X2)) +margin)
(2)

Network Learning
rate Momentum Weight

decay

CNN 1.2x10-2 0.9 1x10-3

Triplet CNN A 5x10-2 0.75 1x10-4

Triplet CNN B 6x10-2 0.8 1x10-4

TABLE III
BEST HYPER-PARAMETERS FOR TRAINING THE NETWORKS

In equation 2, G(X) is the pairwise distance between the 1D
feature extracted by fully connected layer of the Triplet CNN
for the query image and the anchor image, Y is the ground-
truth. If Y = 1, it is assumed the first input should be ranked
higher than the second input, and vice-versa for Y = -1.

Upon evaluating the Triplet CNN’s with 2-folds cross
validation, Triplet CNN A achieved an average classification
accuracy of 91.86% and Triplet CNN B achieved an average
classification accuracy of 95.73%.



After training the CNN and the individual Triplet CNN’s
we combine them in a hierarchical system as shown in Fig.
2. The input hESC image is first passed into the CNN, the
CNN classifies the input image into one of the six classes. If
the predicted class is Debris or Unattached cells, we take the
prediction of the CNN as final prediction.

If the predicted class is Cell Clusters or Apoptically Bleb-
bing cells, the input image is passed to Triplet CNN A, and
we take the prediction of Triplet CNN A as final prediction.
Similarly, if the prediction of the CNN is Attached cells or
Dynamically Blebbing cells, the input image is passed to the
Triplet CNN B and we take the prediction of Triplet CNN B
as final prediction. The results obtained are explained in detail
in the experimental section.

3) Fusing the Output of CNN and Triplet CNN: In an
attempt to further improve the classification accuracy, we fused
the outputs from both the CNN and Triplet CNN’s. The fusion
was done by taking the complimentary pairwise distance
measure outputs from the Triplet CNN and multiplying the
corresponding probability score for that class from the CNN.
For example in Fig. 2, in Triplet CNN A, the complimentary
pairwise distance measure between the input image and anchor
image of Cell Clusters is multiplied with the probability score
for Cell Clusters from the CNN. Similarly, the complimentary
pairwise distance measure between the input image and anchor
image of Apoptically Blebbing cells is multiplied with the
probability score for Apoptically Blebbing cells from the
CNN, and so on for Triplet CNN B. The results obtained are
explained in the experimental section.

C. Generating hESC Images Using Ensemble of GAN’s

In this section we explain on how we performed data
augmentation to our dataset. The purpose of data augmentation
is to determine if adding more variability to the training dataset
helps improve the performance of the network.To achieve this
we trained a state-of-the-art Deep Convolutional Generative
Adversarial Network (DCGAN) [17].

DCGAN consists of two deep convolutional neural net-
works, a generator G and a discriminator D trained against
each other. The generator takes a random noise vector z and
returns an image Xgen = G(z). The discriminator takes a real
or a generated image, and outputs a probability distribution
P (S|X) = D(X) over the two image sources S. The discrim-
inator is trained to maximize the log-likelihood of assigning
the correct source while G tries to minimize it:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] +

+Ex∼pz(z) [log (1−D(G(z)))]
(3)

The objective is that the two networks converge to the Nash
equilibrium so that D is maximally confused and G generates
samples that resemble the training data.

In our approach we trained six individual DCGAN’s to gen-
erate images belonging to the corresponding six classes. Table
IV and Table V shows the architecture of the discriminator and
generator, respectively.

Input
dimension

Output
dimension

Number of
Feature maps Layer

64x64 32x32 32 Conv(7,2,3)
32x32 16x16 64 Conv(3,2,1)
16x16 8x8 128 Conv(5,2,2)
8x8 4x4 256 Conv(3,2,1)

4,096x1 1 class - FC layer

TABLE IV
ARCHITECTURE OF THE DISCRIMINATOR

Input
dimension

Output
dimension

Number of
Feature maps Layer

100x1 8,192x1 - FC layer
4x4 8x8 512 ConvT(6,2,2)
8x8 16x16 256 ConvT(6,2,2)

16x16 32x32 128 ConvT(6,2,2)
32x32 64x64 1 ConvT(6,2,2)

TABLE V
ARCHITECTURE OF THE GENERATOR

In Table V, convT(x, y, z) represents convolution trans-
pose(kernel size=x, stride=y, padding=z). We chose the learn-
ing rate for the Generator to be 1x10-4 and learning rate of
the Discriminator to be 1x10-5 and mini batch of size 32. Both
the networks were optimized using the Adam algorithm with
loss function as a combination of Binary Cross Entropy and
Embedding loss as shown in equation 4.

Loss =
−1
n

∑n
i=1 yi ∗ log(pi) + (1− yi) ∗ log(1− pi)

+α ∗ 1

n

∑n
i=1 ||Xi −X| |2

(4)
In equation 4, the first term is the Binary Cross Entropy

loss. yi is the ground-truth label (real or fake image), pi is the
probability score being a real image. The second term is the
Embedding loss, Xi is an image from the mini batch (either
fake or real image) and X is a real image chosen randomly
from the training dataset.

The Binary Cross Entropy loss ensures that the GAN is
able to extract accurate features to generate synthetic images
resembling the images from the training dataset and the
Embedding loss ensures that the generated images have same
morphology as the images from the training dataset. α is an
empirical value and was chosen to be 5x10-2. Fig. 3 shows
examples of generated image using the individual GAN’s.

On comparing the generated images in Fig. 3 with original
images in Fig. 1, we found that the images belonging to the
class Cell Clusters were not of good quality and had few
artifacts. By definition, Cell Clusters are a colony of cells
consisting of the four intrinsic cell types (unattached, attached,
dynamically blebbing and apoptically blebbing cells) tightly
packed in a very small area.

In order to generate good quality images of Cell Clusters,
we used the features learned by the GAN’s corresponding to
the intrinsic cells namely: Attached cells, Unattached cells,
Dynamically Blebbing Cells and Apoptically Blebbing cells



Fig. 3. Generated images for the six different classes. Each row corresponds
to the class of the real images as shown in Fig. 1.

in an ensemble manner to train another GAN to generate Cell
Clusters.

This is achieved by giving the same random noise vector
Z as input to all the four Generators. The generated images
are passed to the corresponding Discriminators. The features
extracted from the fully connected layer of the corresponding
discriminators are concatenated together and given as input to
train a GAN to generate Cell Clusters. The input vector to
this generator is a 1D feature vector of dimension 16,384x1.
The Discriminator for generating Cell Clusters is the same
as in Table IV, and Table VI shows the architecture of the
Generator. Fig. 4 shows examples of generated Cell Cluster
images using our ensemble of GAN’s approach.

Fig. 4. Generated images for Cell Clusters using ensemble of GAN’s.

Input
dimension

Output
dimension

Number of
Feature maps Layer

16,384x1 4,096x1 - FC layer
4,096x1 8,192x1 - FC layer

4x4 8x8 512 ConvT(6,2,2)
8x8 16x16 256 ConvT(6,2,2)

16x16 32x32 128 ConvT(6,2,2)
32x32 64x64 1 ConvT(6,2,2)

TABLE VI
ARCHITECTURE OF THE GENERATOR FOR CELL CLUSTERS

We further validated the quality of the generated images,
by training the CNN and Triplet CNN’s exclusively on the
synthetic hESC images and evaluated them on the real hESC
images. The results are shown in the experimental section.

IV. EXPERIMENTAL RESULTS

A. Dataset

The videos were acquired using a 20x objective with
600x800 resolution. A dataset of 784 images was obtained
from nine hESC videos. The dataset had the following num-
bers of images for each class: 1) 122 Cell Cluster images;
2) 113 Debris images; 3) 135 Unattached cell images; 4)
132 Attached cell images; 5) 104 Dynamically Blebbing cell
images; and 6) 178 Apoptotically Blebbing cell images. The
ground-truth for the dataset was generated manually by expert
stem cell biologists.

B. Classification Results

Table VII shows the average classification accuracy for
the 2-fold cross validation using CNN, CNN-Triplets, Fused
CNN-Triplets. All the networks in Table VII were trained and
evaluated on the real hESC images.

Approach Average Classification Accuracy
CNN 86.14%

CNN-Triplet 89.37%
Fused CNN-Triplet 91.71%

TABLE VII
AVERAGE CLASSIFICATION ACCURACY USING REAL HESC IMAGES

Table VIII and Table IX shows the confusion matrix using
the CNN and Fused CNN-Triplet for classification. It can
be observed in Table VIII, Cell Clusters (CC)/Apoptically
Blebbing cells (APO) and Attached cells (AT)/Dynamically
Blebbing cells (DYN) were misclassified the most. It can be
observed in Table IX, that our approach of using a Fused
CNN-Triplet hierarchical classifier helps resolve the misclas-
sification and improve the overall accuracy.

Class CC DEB UN AT DYN APO
CC 95 2 0 1 1 13

DEB 1 100 0 0 2 0
UN 3 0 121 0 0 1
AT 1 2 0 97 20 2

DYN 2 0 0 12 80 0
APO 27 3 2 0 5 131

TABLE VIII
CONFUSION MATRIX USING CNN FOR CLASSIFICATION

Class CC DEB UN AT DYN APO
CC 102 2 0 1 1 6

DEB 1 100 0 0 2 0
UN 3 0 121 0 0 1
AT 1 2 0 108 9 2

DYN 2 0 0 2 90 0
APO 15 3 2 0 5 143

TABLE IX
CONFUSION MATRIX USING FUSED CNN-TRIPLET FOR CLASSIFICATION

In order to observe the effect of augmenting the dataset with
the generated synthetic hESC images, we generated 30,000
images for each class using our ensemble of GAN’s. Table X,
shows the classification accuracy using only the generated im-
ages for training. We also compared our approach with existing



state-of-the-art CNN classifiers. All the networks in Table X
were trained exclusively only on the generated synthetic hESC
images and evaluated on the real hESC images.

Approach Classification Accuracy
CNN 85.67%

CNN-Triplet 91.38%
Fused CNN-Triplet 94.07%

ResNet18 [18] 67.31%
ResNet34 [18] 66.72%
ResNet50 [18] 70.87%
VGG-16 [19] 77.34%
VGG-19 [19] 79.35%
AlexNet [20] 73.47%

TABLE X
COMPARISON OF CLASSIFICATION ACCURACY

It can be observed from Table X, the state-of-the-art ap-
proaches did not perform well. One of the reasons for this is
that, these networks take as input, images of size 224x224,
resizing the input images to this size causes a lot of pixel
distortion making the images unrecognizable even to the stem
cell biologists. Fig. 5 shows some of the misclassified images
from our approach in Table X.

Fig. 5. Misclassified images from the Fused CNN-Triplet approach.

In Fig. 5, 5(a) is misclassified as Apoptically Blebbing cell,
5(b) is misclassified as Dynamically Blebbing cell, 5(c) is mis-
classified as Attached cell and 5(d) and 5(e) are misclassified
as classified as Cell Clusters.

V. CONCLUSIONS

We proposed an automated system for detecting and
classifying hESC images. We observed that the classes
Cell Clusters/Apoptically Blebbing cells and Attached
cells/Dynamically Blebbing cells have similar texture and
intensity and were misclassified the most. We solved this
problem by performing fine-grained classification using a
hierarchical classification approach involving CNN and Triplet
CNN’s. We show that by fusing the outputs of the CNN and
Triplet CNN’s we can achieve higher classification accuracy.

Furthermore, we designed individual GAN’s for each class
to generate synthetic hESC images. We further improve the
quality of the generated images by collectively using the
features learned by individual GAN’s in an ensemble. We
validated the quality of the generated images, by training the
entire system exclusively on the synthetic hESC images and
evaluated them on the real hESC images.
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