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ABSTRACT
Pedestrian tracking has been a popular research topic and
application in the field of computer vision. Recently group
information has been receiving increasing attention for pedes-
trian tracking, especially in highly occluded scenarios that
make traditional vision features unreliable. In this paper,
we propose a novel multi-camera pedestrian tracking sys-
tem which incorporates a pedestrian grouping strategy and
an online cross-camera model. The new cross-camera model
is able to take the advantage of the information from all
camera views as well as the group structure in the inference
stage, and can be updated based on the learning approach
from structured SVM. The experimental results demonstrate
the improvement in tracking performance when grouping
stage is integrated.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking

General Terms
Algorithms
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1. INTRODUCTION
During the past decades, pedestrian tracking has always

kept its popularity among various topics in the field of com-
puter vision. It has made crucial contributions to many im-
portant application areas such as security surveillance and
resource management. However, due to many existing chal-
lenges, the problem is still far from getting a perfect solu-
tion, although there have been a large amount of approaches
invented and applied [1, 3, 5, 6, 8, 9, 13, 16].
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One of the biggest challenges is the occlusions of pedes-
trians in the scene. For each pedestrian, the occlusion can
be introduced by static objects in surrounding environment
(e.g., buildings, trees), as well as other pedestrians in the
same scene, especially when the density of the pedestrians in
the scene gets higher. The severe occlusions can easily make
the appearance and even shape models, which are the most
important components that traditional tracking approaches
are based on, no longer reliable. To overcome the occlusion
problem, researchers proposed a variety of different meth-
ods. For example, training models for heads and/or different
parts of human body [3, 17], using top view and depth infor-
mation to avoid possible occlusion between pedestrians [15],
constructing trajectories in a certain sliding window which
provides both past and future information [3, 6, 16], or using
multiple cameras with overlapping field-of-views (FOVs) for
additional information [9, 14]. In this paper, since we are
focused on pedestrian tracking problem with medium den-
sity, which may lead to severe occlusions in a single camera,
a system consisting of cameras with overlapping FOVs is
applied to combine the information from multiple views.

Another challenge comes from the similar appearances of
pedestrians. This refers to not only the similar shape of
pedestrians shown in the captured images, but also the col-
ors of the clothes in many cases especially when severe oc-
clusions exist. Up to now, the usage of spatial and temporal
information is the main strategy for solving this problem.
This includes but is not limited to: applying distance thresh-
old when connecting detections from consecutive frames to
form tracklets [3, 16], grouping nearby pedestrians with sim-
ilar velocity together and tracking with the help of their av-
eraged trajectory [6, 16], and generating confidence masks
when associate detections and trackers [5]. In this paper,
however, a more decent structure preserving object track-
ing (SPOT) approach, which further takes into account the
graph property of the tracking objects [18] is considered.
Either the minimum spanning tree or the central position
of the graph is maintained and it is used in determining
the location of the whole graph. The approach is originally
designed for general object tracking and the spatial relation-
ship is computed across all objects, but in our system, we
added a grouping stage based on [6] and the spatial relation-
ship is only effective inside each group.

The framework for the proposed approach is illustrated in
Figure 1. For each pedestrian, an SVM classifier is trained
for each camera view during the initialization stage. At each
time step, the pedestrians are grouped into different groups
based on their locations and velocities [6]. Then a com-
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Figure 1: The system framework. At each time step, pedestrians are firstly grouped together (grouping
stage), then the tracking is performed on each group (tracking stage).

bined confidence map for the whole group is computed on
the ground plane based on the classifiers as well as the group
structure. The tracking is conducted on this confidence map
and the ground location for each pedestrian in the group is
estimated. Finally, the estimated ground location for each
pedestrian is used to update the cross-camera pedestrian
model if necessary. This framework is similar to the SPOT
tracker [18], with extension to multiple cameras. Further-
more, it takes the advantages of group structure information
in multi-camera tracking and is expected to outperform the
tracking approach without taking into account the group
information.

2. RELATED WORK AND CONTRIBUTIONS

2.1 Related Work
The state-of-the-art tracking approaches are mostly based

on sophisticated classification and/or detection methods, and
they are known as tracking-by-classification or tracking-by-
detection. In addition, these tracking approaches are de-
signed in an online manner, which means that only limited
initialization information is required. For example, both of
the online Ada-Boosting [10] and Multiple Instance Learn-
ing [2] trackers use the online boosting classifier and can be
initialized from the first frame. The general idea for this
type of tracker is to train an online classifier during the ini-
tialization stage based on the limited information provided.
Then this classifier is used to classify and locate the object
from background. In addition, because the model for the ob-
ject can be changed as time varies (e.g., illumination change,
occlusions, etc), the classifier should have the ability to up-
date its model based on the recent tracking result. The most
widely used features for this type of classifiers include vari-
ous appearance features as well as shape features [1, 2, 10,
11, 18]. They have been proven by a lot of successes in solv-
ing many general object tracking, especially single object
tracking problems.

However, as pedestrian tracking usually has far more than
one object (pedestrian) in the same scenario, occlusions may
occur more frequently and similar pedestrian characteris-
tics may be more and more shared among different objects.

This makes the appearance and shape features not reliable
enough to classify pedestrians from the background, or to
distinguish one pedestrian from another. In this case, the
spatial and temporal relationships between objects (pedes-
trians) begin to show their importance. For pedestrian track-
ing problems, one of the simplest but most representative
relationships is the group information. Different from gen-
eral objects, pedestrians have social property and, therefore,
a crowd of pedestrians will be naturally formed into groups.
It has also been shown that the integration of group infor-
mation would provide positive feedback for the performance
of pedestrian tracking. In the work from [6, 16], the data
association between tracklets is significantly improved after
the introduction of a grouping stage. Even for the general
object tracking, group structure can also be very helpful,
especially when these objects have similar appearances [18].

Another way to improve multi-person tracking performance
is to use camera networks. Camera networks basically have
two settings: overlapping [8, 9, 14] and non-overlapping [6,
13], or sometimes the mixture of them. But only the over-
lapping setting can provide additional information for the
pedestrians in the same scene, and thus, improve the track-
ing performance. When pedestrians occur under a cam-
era system with multiple cameras with overlapping field-
of-views (FOVs), the same scenario may appear completely
differently as the perspectives of cameras differ from each
other. As a result, the occlusions observed by different cam-
eras may also be totally distinct, and for each pedestrian,
the probability that it can be confidently tracked in at least
one camera will become significantly higher. Of course, the
data association between cameras is another complicated
problem. Since we are focused on how group information
influence multi-camera pedestrian tracking performance, we
simply use fixed (manual) data association in our system to
avoid errors induced by this problem.

2.2 Contributions of This Paper
The key contributions of this paper are: 1) The tracking

system incorporates a grouping stage, and for pedestrians in
the same group, the tracking is performed with the group
structure. 2) The original SPOT tracker is modified and
extended to be suitable for an environment with multiple



cameras with overlapping FOVs. For each pedestrian, the
information from all camera views is fused together in the
ground plane for tracking, and the tracked location is then
projected back to all views to update the tracker, if neces-
sary.

3. TECHNICAL APPROACH
The system mainly consist of two stages: (1) a group-

ing stage which computes the groups for all the pedestrians
based on their location and velocity information, and (2) a
tracking stage which is able to track pedestrians in the same
group. In this section, we will provide details for both of the
two components.

3.1 Grouping
In the grouping stage, the pedestrians will be grouped

based on their current status. For each pedestrian Pi, we
maintain its status as (xg, yg, ug, vg) on the ground plane,
where (xg, yg) is the ground location coordinate and (ug, vg)
is the velocity. Similar to [6], a pair-wise grouping score is
computed between every two pedestrians according to the
relationship between their locations and velocities

Sg
ij = Dg

ij · V
g
ij (1)

where Dg and V g are the scores based on the distance and
the velocity between them, respectively, which are calculated
using the equations

Dg
ij = 1− 2

π
arctan(dist(Pi, Pj)) (2)

V g
ij = 1 +

~vi · ~vj
‖~vi‖ · ‖~vj‖

(3)

Here, dist(Pi, Pj) is a relative distance between the two
pedestrians and ~vi, ~vj are their velocities. Unlike the dis-
tance used in [6], we use a simpler Euclidean-based distance
since the pedestrian status in our system include their loca-
tions on the ground plane

dist(Pi, Pj) = max

(
0,
‖~pi − ~pj‖
ri + rj

− 1

)
(4)

~pi and ~pj are the ground location vectors for the two pedes-
trians, and ri, rj are the radius for them. In our system,
we assume all pedestrians have the same radius (size), that
is, ri = rj = r. According to this definition, the mini-
mal value of the actual Euclidean distance between any two
pedestrians is the sum of their radii (2r in our system), thus
0 < Dg ≤ 1.

Based on these pair-wise grouping scores, we firstly label
two pedestrians Pi and Pj to be in the same group when
their grouping score Sg

ij ≥ Tg where Tg is the threshold for
the grouping strategy and it is set to a fixed value during
the whole experiment. Secondly, we extend these pair-wise
grouping relationship to all the pedestrians by transitivity.
That is, if Pi and Pj are labeled in the same group and
Pi and Pk are labeled in the same group, then we label Pj

and Pk to be in the same group as well. This step iterates
until a stable result is achieved (convergence). Finally, the
set of all pedestrians P = {Pi} can be divided into a set of
groups (partitions) G = {Gi}, so that each group contains
a set of pedestrian indexes Gi = {i1, i2, . . . , in}(1 ≤ ik ≤
|P|) and none of the two groups are overlapping Gi ∩ Gj =
∅(∀i, j). The tracking approach in the following section is
then conducted based on the group partitions.

3.2 Tracking
The tracking stage is conducted on each group based on

the grouping result G. This stage has three general steps:
(1) compute a confidence map on the ground plane for each
pedestrian; (2) tracking pedestrians in each group according
to their ground confidence maps; (3) for each pedestrian,
update the relevant classifiers as well as the frame locations
for all camera views. To accomplish this tracking task, we
modified and extended the idea from [18] to make it suitable
for multi-camera tracking.

3.2.1 Cross-Camera Model
The pedestrian model in the original work [18] requires

modification to maintain the information from all camera
views. For each pedestrian Pi, we define a bounding box
Bv

i = (xvi , y
v
i , w

v
i , h

v
i ) for each camera view v(v ∈ V), where

(xvi , y
v
i ) is the frame location and (wv

i , h
v
i ) is the size infor-

mation (width and height).
In a pedestrian tracking system, the camera views are

usually perspective, which makes the change in size of the
bounding box relevant to the frame location changing. There-
fore, we can use only two variables (xvi , y

v
i ) to get both of

the most recent position and size information of the bound-
ing box. In addition, to simplify this processing and unify
the features across all pedestrians, we used a scaling tech-
nique for the bounding box sizes. We set a target size for all
pedestrian bounding boxes as (w, h) and compute the scale
as lvi = hv

i /h. Then, given the initial scale of a bounding

box l̃vi , the status for a bounding box Bv
i in our system can

be re-defined as Bv
i ≡ B̃v

i , where B̃v
i = (xvi , y

v
i , l̃

v
i ).

A configuration for all the pedestrians in a group G ∈ G
is then defined as the set of all their bounding boxes for all
camera views. Using the notation of unified bounding boxes
and scales, C = {B̃v

i }(∀v ∈ V, ∀i ∈ G).
The feature used in our system is the histogram of gradient

(HOG), first proposed by [7], which is the same feature used

in the original work. For each bounding box B̃v
i and a frame

Iv, we firstly compute the current scale lvi of the bounding
box according to its position, and then re-size the frame
by this scale. This ensures that the bounding box is re-
sized to the target size (w, h). The HOG feature is then

extracted on the re-sized frame. We use φ(Iv; B̃v
i ) to denote

the feature extraction. The output for the function φ(·) is a
concatenated feature vector.

Then for each pedestrian Pi and camera view v, the con-
fidence can be calculated as

cfv(Cv
i ; Iv,w

v
i ) = wv

i
T · φ(Iv; B̃v

i ) (5)

where wv
i is the weight vector on the HOG features extracted

from unified bounding boxes, and Cv
i is the configuration

for this particular pedestrian and camera view, Cv
i = {B̃v

i }.
Then the ground confidence can be computed using the fol-
lowing equation

cg(Ci; I, θi) =
1

‖V‖
∑
v∈V

Hv

(
cfv(Cv

i ; Iv,w
v
i )
)

(6)

where I is defined as the set of all frames across all views
I = {Iv}(∀v ∈ V), similarly, Ci = {Cv

i }(∀v ∈ V), θi =
{wv

i }(∀v ∈ V). Hv(·) is a projection from the frame coor-
dinates of camera view v to the coordinates on the ground
plane.

Since the minimum spanning tree (MST) model is re-



ported to have better performance in [18], we use only this
model in our system, and an edge eij in the tree denotes
that the two pedestrians Pi and Pj are connected and eij =
~pi − ~pj .

Therefore, for the complete configuration C, its corre-
sponding score can be calculated as

Sc(C; I,Θ) =
∑
i∈G

cg(Ci; I, θi)

− λ
∑
E(i,j)=1

‖(~pi − ~pj)− e′ij‖2 (7)

where e′ij is the edge in the minimum spanning tree and
is computed according to the previous location informa-
tion of all the pedestrians. E(i, j) is an indicator function
which denotes whether there is an edge in the tree connect-
ing pedestrians Pi and Pj . Θ is the set of all parameters,
Θ = {θi} ∪ {eij}(∀i ∈ G, E(i, j) = 1). In our system, the
MST is computed after the grouping stage, and eij is up-
dated if necessary, but before the inference.

3.2.2 Ground Inference
The purpose of ground inference is to find the optimal

configuration C∗ for all the pedestrians in a group, which
maximizes the configuration score. As stated in the original
work, for a tree-structured graph, this optimization can be
performed in linear time using a combination of dynamic
programming and min-convolution [18].

In our system, the inference processing is the same as in
the original work after we project the confidences from each
view onto the ground plane and sum them up. The message-
passing equations have the form as (starting from the root
node)

Rij(~pi) = cg(Ci; I, θi) +
∑

∀k 6=j:E(k,i)=1

µk→i(~pi) (8)

µi→j(~pi) = max
~pi

′

(
Rij(~pi

′)− λ‖(~pi − ~pi
′)− eij‖2

)
(9)

These two equations are exactly the same as in [18], except
for the confidence calculation. This message-passing starts
from the root node of the MST, and the optimal configura-
tion C∗ can be obtained after a full forward-backward pass
along the tree. Therefore, the same inference algorithm can
be applied in our system after the ground confidence for each
pedestrian is calculated.

The pedestrian location on the ground plane, ~pi, is com-
puted according to its corresponding configurations, by us-
ing the principal-axis based correspondence [12]. In addi-
tion, realizing that a pedestrian only moves within a rel-
atively small distance at each time step, we extract HOG
features only on a small region around its bounding box for
computational efficiency. Therefore, the global optimization
is limited to a small region around its ground location ~pi as
well. The detailed information will be provided in Section 4.

3.2.3 Cross-camera Learning
The model updating, or model learning process is also

different from the original work since it is a cross-camera
process.

When a set of observations I are obtained, the optimal
configuration C∗ is determined by maximizing Equation (7).
Note, according to the definition, the optimal configuration
includes not only the position of the bounding boxes on all

camera views, but also their optimal scales. This optimal
configuration is then considered as a true positive example.
Similar to the original work [18], a margin function ∆(C,C∗)
is defined for the structured SVM

∆(C,C∗) =
∑
v∈V

∑
i∈G

(
1− B̃v

i ∩ B̃v
i

∗

B̃v
i ∪ B̃v

i

∗

)
(10)

The function is limited as 0 ≤ ∆(C,C∗) ≤ |V| · |G|, where 0
can be reached if and only if C = C∗. Then the loss function
of the structured SVM is defined as

L(Θ; I,C∗)
= max

C
(Sc(C; I,Θ)− Sc(C∗; I,Θ) + ∆(C,C∗)) (11)

Although this loss function has a more complex approach
to calculate Sc, it only contains a set of affine functions,
without any quadratic terms. Therefore, the loss function in
Equation (11) is still a convex function w.r.t the parameter
set Θ, which is the same as in the original work. As stated
in [18], the gradient of this loss function does not work very
well since it may tend to provide uninformative directions.
Therefore, the same modification as in the original work,
which is only based on the confidence scores, is used to define
the new search direction p. This direction is then used to
update the parameter set.

Different from the original work, our tracking system has
multiple views. Thus, the parameters from all views are up-
dated simultaneously. However, because the parameter set
is a vector concatenating all weight vectors w and the MST
edge information, the weight vectors for different views can
be updated independently as long as the global information
for L(Θ; I,C∗) and p are provided. The initialization of the
weight vector wv

i for each view is conducted by training an
SVM using the initial patch as positive sample and 50 ran-
domly selected patches as negative samples.

In addition, since we have a grouping stage at each time
step, the MST may be different from frame to frame. There-
fore, if an edge eij from the previous MST is preserved to
the current time step, then the updated value is kept. Oth-
erwise, if an edge is new, then its value is initialized after
the MST is obtained.

4. EXPERIMENTAL RESULTS
In this paper, we conducted experiments to investigate

the performance of the proposed multi-camera pedestrian
tracking system. This section describes details for our ex-
perimental settings, and the final output of the system.

4.1 Experimental Settings
The dataset used is PETS 2009 with medium density

crowd (i.e., S2.L2). It originally contains 4 views, but View
3 has a huge tree in the center of the frame and View 4 suf-
fers from frame rate instability, so only frames from View 1
and View 2 are used in our experiments. The ground-truth
for each view is manually annotated for every 5 frames and
interpolated in between. The ground-truth on the ground
plane is then computed using principal-axis based correspon-
dence [12]. The target size of each pedestrian patch is set to
64×128. As a result, the frames from each view are re-sized
to 2560× 1920 so that the smallest pedestrian in the frame
appears in a comparable size to the target pedestrian patch
size.



Figure 2: The results for the two segments. The left two columns are View 1 and View 2 for Segment 1, and
the right two columns are for Segment 2. From top to bottom, the four rows illustrate the initial frames, the
final frames without grouping, the final frames with grouping, and the ground-truth, respectively.

The ground plane is set to a grid with size of 700 × 700.
The projection functions Hv(·) are obtained by manually
labeling four corresponding points across all views and the
ground plane (via Google Maps). In addition, we check all
the ground-truth of the ground locations for all the pedes-
trians to make sure that they are not exceeding the area
of the ground grid. The radius of pedestrians r is set to
5, which is estimated from the ground plane size and the
dataset frames.

For the parameters, we basically follow the settings from
the original work [6, 18]. The grouping threshold Tg is set to
0.2 for all experiments. The λ in Equation (7) is set to 0.001.
The confidence threshold Tp and the control parameter K
in the model learning are set to 0.4 and 1, respectively.

For speed-up purposes, the inference for each pedestrian
is only performed in a small region around its previous lo-
cation. Therefore, on each frame, the search region is a
small area around its previous frame location, with a size
of 320× 240. In addition, since the scale change inside this
region is relatively small, we relax the constraint between
the scale and the location change. That is, the confidence

in the search region will be calculated over all possible scale
levels. In the experiment, we use three scale levels: 0.95, 1,
1.05.

In this experiment, we select two segments of the dataset,
with different densities. Segment 1 starts from frame #0,
and Segment 2 starts from frame #300. Both of them have
a length of 20 frames. There are about 30 pedestrians in
the first segment and about 10 in the second one. The ini-
tial positive patches for each pedestrian come directly from
the ground-truth. We tested two situations: with/without
grouping. The results are reported in the next section.

4.2 Results
The metric used for evaluating the tracking performance

is multi-object tracking precision (MOTP) and multi-object
tracking accuracy (MOTA) [4].

For the frame results, since we have the bounding box
information, the accuracy of the tracker is defined as the
rectangle overlapping ratio between the tracked bounding
box and the ground-truth, which is in a range of [0, 1]. When
the ratio is above 0.5, we consider the tracked bounding box



as accurate.
On the ground plane, the bounding boxes for pedestrians

are no longer available. Thus, we use a Euclidean distance
based accuracy calculation

d(tr, gt) = max

(
0, 1− ‖ptr − pgt‖

4r

)
(12)

The tracking is considered as accurate when d(tr, gt) > 0.5,
that is, the distance between the tracked position and the
ground-truth is less than the diameter of a pedestrian.

Table 1: The MOTP and MOTA for Segment 1 (Bet-
ter results are shown in bold).

No Grouping Grouping
MOTP MOTA MOTP MOTA

View 1 71.10% 62.73% 70.71% 72.38%
View 2 72.37% 70.38% 72.52% 76.04%

Ground plane 80.02% 52.08% 80.44% 57.40%

Table 2: The MOTP and MOTA for Segment 2 (Bet-
ter results are shown in bold).

No Grouping Grouping
MOTP MOTA MOTP MOTA

View 1 71.75% 55.25% 71.63% 55.80%
View 2 73.12% 63.54% 72.27% 63.54%

Ground plane 83.10% 51.38% 83.03% 55.25%

Table 1 and 2 show the MOTP and MOTA results for
View 1, View 2, and the ground plane, for the two seg-
ments, respectively. The qualitative results are illustrated
in Figure 2. The results reveal that the group information
has a positive influence on the performance of the track-
ing system for medium density crowd with many occlusions
(Segment 1). But in low density scenes, the integration of
grouping does not lead to significant performance improve-
ment, which is reasonable since less number of groups will
be formed when people are moving sparsely.

5. CONCLUSIONS
In this paper, we proposed a new approach for multi-

camera pedestrian tracking, which takes the advantage of
group structures. It has a grouping stage and a tracking
stage. For the grouping stage, the most recent approach
which uses the location and velocity information for pedes-
trians is applied. For the tracking stage, a cross-camera
model is set up for each pedestrian, which utilizes HOG
features and maintains an SVM classifier for each camera
view. The inference of this model is performed on the ground
plane, based on the confidence map computed by the clas-
sifiers as well as the group structure. The model can be
updated in an online manner as the tracking continues. The
experimental results demonstrate that the group informa-
tion has positive influence on the performance of the track-
ing system, especially when the density is relatively high.
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