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Abstract—For person re-identification, most current research
aims to encode the spatial and temporal information by using
convolutional neural networks (CNNs) to extract spatial features
and recurrent neural networks (RNNs) or their variations to
discover the time dependencies. However, it ignores the effect of
the complex background, which leads to a biased spatial rep-
resentation. Further, it often uses the backpropagation through
time (BPTT) to train RNNs. Unfortunately, it is hard to learn the
long-term dependency via BPTT due to the gradient vanishing
or exploding. The significance of a frame should not be biased
by its position in a given sequence. In this paper, a new method
is proposed to learn an unbiased semantic representation for
video-based person re-identification. To handle the background
clutter and occlusion, a two-branch CNN model is used to obtain
the enriched representation from both the foreground person
and original pedestrian images. Then, an unbiased bidirectional
convolutional neural network architecture is developed to learn
the unbiased spatial and temporal representation. Experimental
results on three public datasets demonstrate the effectiveness of
the proposed method.

Index Terms—person re-identification (re-id), unbiased rep-
resentation, sparse attentive backtracking, pedestrian detection,
uncertainty control, bidirectional recurrent neural networks

I. INTRODUCTION

THE amount of video data has been rapidly increasing
due to the prevalence of both the Internet and recording

devices e.g., cell-phones with quality cameras, compact video
cameras and video surveillance systems. Video analytics has
become a hot topic with increasing demands for developing
automatic processing tools. In this paper, we focus on the
person re-identification (re-id) task, which aims to identify
pedestrians across non-overlapping cameras. It has attracted
much attention from both the research community and in-
dustry, and plays an important role in various surveillance
applications [1], [2]. For example, when a girl gets lost in a
theme park, the re-id techniques can be used to search the child
in the video camera network. Re-id can be used for continuous
tracking in video games using a Kinect sensor [3]. Still another
example, we could use re-id to track a specific soccer player
and obtain video analytics for each player for the duration of
the game [4].

In spite of significant research in recent years, person re-id
remains very challenging. As the common surveillance setting
moves into the unconstrained environment, it becomes very
difficult to re-identify pedestrians due to the variations in
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Fig. 1. Challenges in re-id task. In (a), the first image is taken from the front
view and the other two images are taken from the side view. In (b), the first
image is taken from the first camera, while the other two frames are captured
by the second camera. Due to the illumination changes, the yellow color of
the backpack differs a lot in different frames. Also, the person changes the
location of bag from the back to hands to hold the bag. In (c), in the subsequent
frames, people are blocked by other persons. In (d), the background keeps
changing as the person moves.

view angle of the camera, pose of pedestrian, illumination
conditions, background clutter and occlusions as shown in Fig.
1.

In this paper, we address re-id problem in the video context.
Compared to the still images, video-based re-id provides
various samples to learn a more discriminative and robust
appearance representation, especially, when frames include
occlusions or complex backgrounds. Another benefit for using
the videos instead of images is that the useful temporal
information, such as gait, pose, movement captured in video
may help to distinguish people in difficult scenarios.

Existing video-based person re-id methods extract frame-
level features by using convolutional neural networks (CNNs)
and aggregate the representation with recurrent neural net-
works (RNNs) across time [5]–[7]. However, these methods
have several drawbacks. First, most methods learn the person
representation either from the full-body or integrate different
body parts from the estimated regions of interest (ROIs).
Usually, the ROIs are in the form of rectangular bounding
boxes, which may not capture the silhouettes well and may
even include the complex backgrounds and occlusions. As
shown in Fig. 2 (a), the background differs with the frames.
In frame 1, grass and flowers are detected which disappear
in the frame 2 to 4. Then, a patch of green grass appears
in frame 5 and 6. Also, the other two persons with different
shirts (striped shirt and white shirt) walk in front of the
target person from the camera view. Thus, learning a good

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 17,2022 at 02:59:59 UTC from IEEE Xplore.  Restrictions apply. 



2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3159557, IEEE
Transactions on Cognitive and Developmental Systems

IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 2

Fig. 2. Examples of walking pedestrians in two sequences. For (a) and
(b), 7 frames are selected from two videos. In (a), as the person walks,
the background changes. At the same time, the person is blocked by two
different people from frame 3 to 6. In (b), the walking person is captured
from different angles. The early images represent the front angle, and we
could see the purple T-shirt, scarf, and the shopping bag in her right hand,
which disappear gradually as shown in the following images. Occlusions also
exist with varying degrees from frame 3 to 5.

spatial representation, without bias, for the background is
essential, which may help filter the changing background
(grass) and other pedestrians (frames 4 and 5) with less
overlapping with frame 1 in the example. More recent work
[8], [9] has exploited segmentation techniques to emphasize
the foreground information to avoid the background clutter.
However, such methods have the following drawbacks: seg-
mentation methods are usually noisy and do not capture the
perfect silhouette information, especially when there are more
than one pedestrians. Further, the useful information is lost
when the background is removed since there are connections
between the person and background, e.g., backpacks, the
carried briefcase, and other belongings. Thus, a hard cut-off of
the background information is detrimental to the performance
of the re-identification techniques.

Second, it is very intuitive to obtain the global representa-
tion of a given sequence with RNNs. For our task, the infor-
mation that we want to capture is the identity of the person in
the given frame, which is consistent along the sequence. Thus,
the importance of each frame should not be dependent on its
position. But, backpropagation through time (BPTT), which
is now commonly used to train RNNs, is not able to capture
the long-term dependencies due to the well-known gradient
vanishing or exploding problem [10]. Although Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) are
proposed to alleviate this problem, it is still doubtful how much
a fixed-length vector can memorize over a long sequence. All
these limitations result in the difficulty in assigning enough or
at least fair credit to the earlier time steps in a long sequence,
while looking at the entire sequence would be considerably
better than relying on the last few frames only. For example,
as shown in Fig. 2, the first two frames capture the front side of
the person and the other frames represent the side view. Both
angles are important to achieve a comprehensive representation
for this specific target. The first two frames should be given at
least the equal emphasis as the latter frames. Frame 3 and 6
in Fig.2 (a) and frame 5 in Fig.2 (b) should be assigned with

lower weights as they are not helpful in recognizing the target
persons as they are completely blocked by the other people.

In light of the above discussions, this paper proposes to
learn an unbiased spatio-temporal semantic representation for
person re-identification. Specifically, our pipeline first uses a
pedestrian detection method to obtain pixel-level mask for
the body, and then replaces the complex background with a
unified representation of the background to only capture the
foreground pedestrian. Unlike other research [11]–[13] that
learn features from either the whole image or foreground
image, we use a two-branch network which includes both
the masked foreground pedestrian and the original image.
In order to learn the contribution of each branch (masked
foreground branch and original image branch), we introduce
homoscedastic uncertainty to combine the loss functions with-
out manual tuning. Further, instead of BPTT, sparse attentive
backtracking mechanism [14] is used to train RNNs in both
forward and backward directions to get the unbiased temporal
representation for pedestrians.

The paper is organized as follows. Section 2 summarizes
the related work and contributions of this paper. Section 3
presents the framework of the proposed method and describes
each component in detail. Experimental results on three video-
based person re-id public datasets are shown and discussed in
Section 4. Finally, the paper is concluded in Section 5.

II. RELATED WORK AND CONTRIBUTIONS

A. Related Work
The re-id task has been extensively explored in the last

few years. The current approaches generally fall into two
categories: (a) developing robust features for the given image
or video and (b) designing discriminative metric learning
methods that push the same person to be close by increasing
similarity and pull different persons to be away by decreasing
similarity. Recently, deep learning methods have been suc-
cessfully applied to learn feature representation and similarity
distance metric jointly.

For feature-based methods, different cues are used to learn
discriminative and robust feature representation. A large part
of person re-id methods subdivide the whole body into parts
and then integrate different local and global low-level features
[15]. One example SDALF [16] separates the body into parts
and extracts three sets of entities, which are color histogram,
maximally stable color regions, and recurrent high-structured
patches. It also applies symmetric information to obtain good
view invariance. Ma et al. [17] combine the Gabor filters and
covariance descriptor to get the BiCov descriptor and dense
color histogram [18]. Some approaches extract features from
the whole body: treat the body as a whole and represent it
using various kinds of features: haar-like features [19]; SIFT-
like interest points [20]; texture (Schmid and Gabor filters) and
color (histograms in different color spaces) [21]; color-position
histogram [22]; 4-D multicolor height histogram; transform-
normalized RGB (illumination invariant) features [23] and
patch-based saliency features [24]. Some methods learn feature
representations from multi-scales [25], [26]. Some other meth-
ods adopt semantic attributes and co-occurrence properties to
model the consistent features across different views [27], [28].
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Metric Learning methods aim to learn the distance between
the given images or videos across different camera views
by finding the mapping functions, which make the distance
between the matched persons smaller but larger for different
people in the learned space. For instance, KISSME [29] has the
assumption that the distance follows a Gaussian distribution
and the metric is formulated as a log-likelihood ratio test. Liao
et al. [30] propose XQDA to learn a discriminative subspace
by linear discriminant analysis (LDA). Mingnon et al. [31]
utilize a sparse set of pairwise similarity constraints to learn
the distance metric. An et al. [32] propose a modified cosine
similarity to measure the matching scores between probe and
gallery. Chen et al. [33] learn the similarity from an explicit
polynomial kernel feature map. Zheng et al. [34] formulate
the problem as a relative distance comparison problem and
present a probabilistic solution. An et al. [35], [36] learn a
subspace in which the correlations of the reference data from
different cameras are maximized using regularized canonical
correlation analysis (RCCA).

Recent advances in deep learning provide a joint solution
to integrate the feature representation and distance metric in
a supervised manner. Li et al. [37] propose a filter pairing
neural network (FPNN) to handle the body part displacements.
Ahmed et al. [38] include a new layer which encodes the
cross-input neighborhood differences and a subsequent layer
that summarizes these differences in a siamese architecture.
Ding et al. [39] develop an effective triplet generation scheme
and use triplet loss to train the model. Zhao et al. [40] propose
a center-triplet model which jointly learns the robust feature
representation and optimizes the metric loss function.

Beyond the image-based person re-id, researchers have
exploited temporal information across frames for video-based
re-id. Early work used gait [41]–[43] or HOG3D descriptors
[44]. More recently, McLaughlin et al. [35] introduced RNNs
to explore the temporal information and added an additional
pooling layer to summarize a video. Instead of using regular
RNNs, Varior et al. [6] and Zhang et al. [7] adopted the
LSTMs and bi-directional RNNs to select and encode more
information. Liu et al. [45] constructed motion net to encode
the motion information in their framework. Xu et al. [46] used
a similar architecture but added one spatial pooling layer to
select regions from each frame, and added another attentive
temporal pooling layer to select informative frames. Zhou et
al. [47] used a similar attention temporal pooling mechanism,
but they employed spatial RNNs to integrate the neighborhood
similarities within and across the frames. All of the above
methods used BPTT to train the networks and thus, they
introduced bias along time. These networks inevitably put
more emphasis on the last few frames even when the earlier
frames may contain more useful information.

As the quality of frames along a video differs significantly,
attention schemes are widely employed to associate weight and
select the informative frames. Li et al. [48] learned multiple
spatial attention models with a diversity regularization term to
localize body parts and combine features using temporal atten-
tion. Wu et al. [49] proposed a Siamese attention architecture
that jointly optimized spatio-temporal video representations
and their similarity metrics. Subramaniam et al. [50] activated

a common set of salient features across multiple frames of
a video with mutual consensus. To deal with the varying
lengths of videos, Chen et al. [51] divided the long video
sequences into multiple short snippets and aggregated the
top-ranked snippets to estimate the sequence-level similarity.
Similarly, Fu et al. [52] computed clip-level feature represen-
tation by aggregating frame-level representations. Gu et al.
[53] proposed Appearance Preserving 3D Convolution (AP3D)
model to learn better appearance representation for the video
data. Yang et al. [54] applied the dynamic pyramid strategy
to exploit multi-scale features under attention mechanism to
maximally capture discriminative features.

Bayesian models mainly include two types of uncertainty:
epistemic uncertainty and aleatoric uncertainty. Aleatoric un-
certainty is inherent in data observations and cannot be re-
duced even if more data is collected. Kendall and Gal [55]
divided it into homoscedastic uncertainty and heteroscedastic
uncertainty. Homoscedastic uncertainty is captured indepen-
dent of the input data and varies between different tasks.
Heteroscedastic uncertainty is data dependent and varies across
different data inputs. Epistemic uncertainty refers to the uncer-
tainty in the model and can be reduced with enough training
data. Modeling uncertainty can help to improve both the
robustness and the interoperability of various algorithms.

B. Contributions of this paper

In this paper, we propose a new scheme to learn an unbi-
ased semantic (spatial and temporal) representation to handle
these difficulties of video-based person re-identification. The
contributions of this paper are:

(1) A novel framework is proposed to effectively model
the temporal correlations among frames by a sparse attentive
backtracking mechanism [14], [56], which emphasizes the
importance of learning long-term dependencies in re-id. We
enable all possible interframe relations among any RNN units
instead of restricting the information flow only within the adja-
cent RNN units from BPTT. Then we use a temporal attention
to select the important routes to perform backtracking.

(2) A two-branch CNN model is used to enrich the unbiased
spatial representation. It enables the model to get rid of the
background clutter and occlusions.

(3) Homoscedastic uncertainty is used to balance the origi-
nal branch and the masked branch instead of a naive manually
tuned approach for estimating weights for the identification
terms.

(4) Three public datasets are used for evaluation and com-
parison with other state-of-the-art methods. The importance of
each component of our framework is validated experimentally.

This paper is an extension of our previous work [57]. We
make the following major advancements compared with [57].

(a) We improve our elementary framework by incorporating
a two-branch CNN to learn the unbiased spatial representation
along with a principled way to combine the two identification
loss terms. We conduct more experiments on more data sets
and achieve state-of-the-art results, and provide visualization
to explain the dynamic progress of using attentive weights for
backtracking.
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Fig. 3. Framework of the proposed method. There are three stages: (a) unbiased spatial representation, (2) unbiased temporal representation and (c) multitask
learning with uncertainty. The first stage (a) includes a two branch convolutional neural network (ResNet). The first branch (O branch) is for the original
images, and the second branch (M branch) is for the foreground images where the pedestrians are detected and their mask is used to replace the background
to a uniform color. Both branches are passed through the SEBblock (Squeeze and Excitation Block). In the second stage (b), bi-directional RNNs encode
temporal information, and use the sparse attentive backtracking method to train RNNs. The connections among the hidden units are shown in the figure, where
the orange lines represent the forward connections among hidden units while the green lines illustrate the backward links. In the last stage (c), the features
from both branches are fused by pooling layers with global average pooling layer (GAP) and one fully connected layer (FC). The whole network is trained
end-to-end with both the contrastive loss and identification loss, where the identification loss is computed by aggregating with homoscedastic uncertainty σo
and σm (best viewed in color).

(b) We exploit the temporal information in a bi-directional
way to get a more complete representation of a video, as
the identity of the person remains consistent along both the
forward and backward directions.

(c) We explore the related work more extensively, and
more datasets and ablation studies are included for a better
understanding.

III. OUR APPROACH

A. Unbiased spatial representation

As the person re-id task often involves an unconstrained
environment, the regions-of-interest (ROIs) usually contain
occlusions and complex background information, which is
usually considered as noise. It is very important to achieve a
good spatial representation by extracting features which could
resist the interference by noise.
Invariant background generation: Most of the early work
takes the entire image as the input to the CNNs to extract
spatial features. However, the presence of occlusions and
variations in the background make it difficult to get the
discriminative representation. Therefore, we are motivated to
use a pedestrian detection method to get a segmented person,
and then replace the complex background with a uniform color.
Taking into account the scenario of re-id, we aim to have a
method that is not sensitive to the background clutter, complex
poses, and occlusions. Besides, we assume that there is only
one target person in a frame. We used the pre-trained Deep
Decompositional Network (DDN) [58] to get the estimated
mask for the human body. DDN jointly estimates occluded
regions and segments body parts by stacking occlusion esti-
mation layers, completion layers, and decomposition layers.

When we apply DDN to the images, the masks usually con-
tain sharp boundaries that are neither appropriate to describe
the human silhouette nor good for further feature extraction.
Gaussian smoothing method (kernel 3 x 3) [59] is used to
smooth the undesired boundaries. As shown in Fig. 4, The first
row shows the original images and the second row displays the
corresponding masked images. After applying the smoothing
method, the final outputs are illustrated in the third row, which
excludes the occlusions and other background clutter. Then,
we replace the backgrounds of all the frames to a unified
background, which is black background in our case.

Two branch architecture: We design a two branch architec-
ture to balance both the foreground pedestrian and background
information [60] . One pair of images for each person (both
the original image and the masked image) are fed into the
CNN. Both branches share the same architecture, but their
network parameters are not shared. In order to model the
inter-dependencies between channels, the SEBlock (Squeeze
and Excitation Block) [61] is added to re-calibrate the feature
responses of the residual block to enhance spatial structure
information. As shown in Fig. 5, the features X are first
passed through a squeeze operation, which aggregates the
feature maps across spatial dimensions H x W to produce
a channel descriptor for C Channels. Then an extraction
operation (Fully connected layer, ReLU, Fully Connected
Layer, Sigmoid, Scale) is added to fully capture channel-wise
dependencies. The reduction factor r can also help to adjust the
cost to improve model efficiency. Unlike the channel attention,
spatial attention concentrates on processing information into
specific locations in space. Inspired by [62], [63], we add one
self-attention module after the SEBlock to generate spatial
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Fig. 4. Examples of invariant background generation. The three rows show the
original frames, the results of pedestrian detection and Guassian smoothing,
respectively (best viewed in color).

Fig. 5. The schema for SEBlock (Squeeze and Excitation Block), which
aggregates the feature maps across spatial dimensions H x W for C channels
with the reduction factor r).

attention map to align the features.

B. Unbiased temporal representation

It is intuitive to use RNNs to capture the time-series
dynamics for it tracks the information of previous frames to
predict the states of the current node. However, RNNs, which
are trained using BPTT, suffer from the well-known exploding-
or vanishing-gradient problems and they tend to forget the
early inputs in case of long term sequences. Existing methods
try to solve this by adding a pooling layer to summarize all
the outputs from all the hidden units including the early ones.
This could somehow include the information from the early
frames, but it is still biased because the interference made

Fig. 6. Illustration for the forward pass with BPTT and sparse attentive
backtracking to compute the hidden unit h3 (which is [hf3 ;h

b
3]) in our

bidirectional RNNs. We take the forward direction as an example. In (a),
the only way that hf3 gets the information from hf1 is through h2 . In (b),
hf3 could selectively choose any previous hidden units (hf1 and hf2 ) for direct
interaction (best viewed in color).

from the early frames do not include the information from
the latter frames. We expect to make the decision after seeing
what has happened across all the previous timesteps, i.e., if
we use the one-directional RNNs, the final decision is made
based on ht(t ∈ 1....N) when we use h1, · · · , ht−1 as the
sequence of the hidden units. To address this problem, we
use the sparse attentive backtracking mechanism [14], which
is capable of learning long term dependencies but not lean
towards the last few frames. Unlike the previous work [57]
which uses the sparse attentive backtracking in one direction,
we apply it to train bi-directional RNNs. The hidden state ht at
time t is a concatenation of the hidden state hft in the forward
direction and hbt in the backward direction. To compute hft ,
we split the input into two sources: 1) the hidden unit from
last timestep ht−1; 2) all the hidden units prior to t. Likewise,
when computing hbt , we need hbt+1 and all the hidden units
after t.

Additionally, the attention mechanism is adopted to assign
credits for each former or latter states to compute hft or hbt . We
follow the attention process in [64] to compute the weights.
The sparse attentive backtracking process is formulated as
follows:
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Fig. 7. This figure illustrates the forward pass in sparse attentive backtracking when the clip length is T = 2, and only the top M = 3 clips will be
backpropagated. Black arrows describe how attention weights h(t) are calculated by current provisional hidden state h′(t) against the set of all memories
H . The system selects and normalizes only the top k attention weights, while the others are zeroed out. Red arrows show the selected non-zero sparsified
attention weights (best viewed in color).
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where Wh̃ ∈ Rn×n and wh̃ ∈ R2n.
The final output of bi-directional RNNs is represented as:

yt =Wyht

ht = [hft ;h
b
t ] (2)

where yt is the output of the RNNs at time t, and it is used
as a sequence-level feature representation. Its computation
is dependent not only on the previous frames but also the
upcoming frames. Wy represents the parameters of projections
from the hidden layer to the output yt based on the combined
hidden states of hft and hbt . In this work, we apply one RNN
layer for both the forward pass and the backward pass.

As described above, this sparse attentive backtracking strat-
egy explores all possibilities for correlations among the hidden
states, and use attention mechanism to select the key routes
to do the backtracking. In order to deal with the varying
lengths of videos and speedup the backtracking, we first divide
the given video into multiple small clips, where each clip
includes T consecutive frames. We only select the clips with
the top M highest attention weights to backpropagate as shown
in Fig. 7. The use of bi-directional RNNs adds a stronger
constraint for the consistent identity among the frames of
any given video. We employ both techniques (sparse attentive
backtraking and bi-directonal RNNs) to discover the potential
long-term dependency patterns and learn an unbiased temporal
representation.

C. Learning with uncertainty

We employ both contrastive loss and identification loss over
the training samples and the two loss terms are denoted as
Lcontrastive and Lid, respectively.

The contrastive loss aims to push the feature representation
of the same person close and pull the features of different
persons away. We employ the triplet loss with hard mining for
contrastive loss [65]. To form a batch, we randomly sample
P identities and randomly sample K clips for each identity
(each clip contains T frames). The total number of clips in
a batch is PK. For each sample a in the batch, the hardest
positive, and the hardest negative samples within the batch are
selected. The Ltriplet is defined as:

Lcontrastive =

all anchors︷ ︸︸ ︷
P∑
i=1

K∑
a=1

[H +

hardest positive︷ ︸︸ ︷
maxD
p=1···K

(f(xia), f(x
i
p))

− minD
j=1···P
n=1···K

j 6=n

(f(xia), f(x
i
n))]

︸ ︷︷ ︸
hardest negative

(3)

where xia is the anchor, xip is the positive sample which
has the same identity as xia, xin is the negative sample with
different identity from xia. D() means the euclidean distance
and H is the hyperparameter margin in hard-batch triplet loss.
Hard-batch triplet loss makes sure that given an anchor xia, xip
is closer to xia than xin.

The second term is an identity related loss. We use the
cross-entropy loss function which is presented as follows:

Lid = λoL
o
id + λmL

m
id (4)

where Lo
id and Lm

id are the losses of the original branch O and
masked branch M respectively.

To optimize λo and λm, one common option is to use a
heuristic approach to weight the losses with grid search [28].
Another solution is to use network learning with validation
loss to determine the weights for the task losses. Both methods
require additional validation data. Model performance is ex-
tremely sensitive to weight selection and remains a challenging
problem for the community.

To solve this problem, we formulate this problem as a
multi-task learning (MTL) process. The uncertainty of MTL
is homoscedastic in nature, which is task dependent. Thus,
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we infer the weights for the task loss from the observable
homoscedastic uncertainty noise [66], [67].

We derive Lid based on maximizing the Gaussian likelihood
with homoscedastic uncertainty. Let fW be the output of a
neural network with weights W on input x. The classification
likelihood of a Bayesian probabilistic model is defined as:

p(y|fW (x, σ)) = Softmax(
1

σ2
fW (x)) (5)

where y refers to the model output and σ is the observation
noise. The log likelihood for the output is:

logp(y = c|fW (x), σ) =
1

σ2
fWc (x)

−log
∑
c′

exp
1

σ2
fWc′ (x) (6)

Then, the identification loss for a given class c can be
formulated as −logp(y = c|fW (x), σ), c′ refers to any
possible class of the classification task. The identification loss
could be defined as L(x,W ) = −logSoftmax(y, fW (x)),
which could be simplified to

L(x,W, σ) ≈ 1

σ2
L(x,W ) + logσ (7)

Next, the joint identification loss of two branches is given as:

Lid = L(x,W, σo, σm) ≈ 1

σo2
Lo(x,W ) +

1

σ2
m

Lm(x,W )

+logσoσm
(8)

The final training objective is the combination of contrastive
loss and identification loss as:

L = Lcontrastive + Lid (9)

According to the above equation, the contrastive loss and
the identification loss terms are assigned the same weight.
During training, we use the given identity labels of the videos
as the outputs of the network. We alternatively feed the
positive (same person) and negative (different people) pairs of
sequences as the inputs. The sparse attentive backtracking is
used to train the bidirectional RNNs over the time steps in the
network. While in the test phase, we discard the softmax layer
and use the network as a feature extractor. Then we compute
the distance of the extracted features against the gallery set.
Similar pedestrians are closer in the Euclidean distance space.

IV. EXPERIMENTS

In this section, we evaluate the proposed approach on four of
the most popular public video datasets: iLIDs-VID [44], PRID
2011 [80], MARS [42], and DukeMTMC-VideoReID [81] and
compare our method with other state-of-the-art methods.

A. Datasets

The iLIDs-VID dataset [44] contains 300 persons, which
are recorded at an airport arrival hall using a CCTV network.
Each person has 2 acquisition of videos with the sequence
length varying from 23 to 192 frames. This dataset is very
challenging due to the clothing similarities among people,
changing illumination conditions and viewpoints, cluttered
background, and the presence of occlusions.

The PRID 2011 dataset [80] consists of 749 persons cap-
tured by two adjacent camera views. Only the first 200 pairs
of videos are taken from both cameras. The length of the
image sequences ranges from 5 to 675, with an average of 100
frames. As compared to the iLIDs-VID dataset, this dataset
is less challenging because it is taken under the uncrowded
outdoor scenes, and it has relatively simple background and
rare occlusions. We use the first 200 persons for evaluation as
the other compared works [5], [43], [46].

The MARS dataset [43] includes 20,478 tracklets of 1,261
pedestrians which are captured at a university campus from 6
non-overlapping camera views. The dataset is divided into a
training set with 625 pedestrians and a testing set with 626
pedestrians. There are 8,298 tracklets for the training set and
12,180 tracklets for the testing set. MARS dataset is one of the
largest publicly available video-based person re-identification
datasets.

The DukeMTMC-VideoReID is a subset of a large-scale re-
id dataset DukeMTMC [81], which is recorded in an outdoor
environment. This dataset is very challenging due to the chang-
ing illumination and viewpoint conditions, varying poses,
noisy background and presence of occlusions. It includes 2,196
tracklets of 702 identities for training and 2,636 tracklets of
another 702 identities for testing. Each identity has only one
tracklet from one camera.

B. Experimental Setup

We use cumulative matching characteristic (CMC) curve
and mean average precision (mAP) as the evaluation metrics
to evaluate the performance. Cumulative Match Characteristics
(CMC) curve which shows the identification rate vs. the rank
for a closed set consisting of persons to be re-identified. To
be specific, during evaluation, our USTRU model is used as a
feature extractor for both the gallery sequences and the target
sequence. After training for any test sequence, we sort all the
gallery sequences by their nearest distance to the test sequence
arranged in an ascending order. The recognition score at rank
R means target persons are identified within the top R ranks.
We report rank-1, rank-5 and rank-20 scores to display the
CMC curve.

The MARS and DukeMTMC-VideoReID datasets have pro-
vided the splits for the training set and the testing set, which
means the testing identities are fixed. Thus, we report the
mAP for these two datasets. However, the PRID2011 and
iLIDS-VID datasets do not provide the splits for the training
and testing sets. We follow the common strategy to randomly
divide the datasets into training sets and testing sets 10 times
as in other papers [5], [74], [75] and report the average CMC
curve for these two datasets.
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TABLE I
ILIDS-VID DATASET: COMPARISONS OF THE RECOGNITION RATES AT DIFFERENT RANKS (%). THE TOP THREE SCORES ARE INDICATED IN RED,

ORANGE AND GREEN, RESPECTIVELY. IF TWO SCORES ARE IDENTICAL, WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR.

Methods Reference Backbone iLIDs-VID
rank r=1 rank r=5 rank r=10 rank r=20

RQEN [68] AAAI18 GoogleNet 77.1 93.2 7.7 99.4
STAN [48] CVPR18 ResNet50 80.2 - - -
ADFD [69] CVPR19 ResNet50 86.3 97.4 - 99.7

VRSTC [70] CVPR19 ResNet50 83.4 95.5 97.7 99.5
COSAM [50] ICCV19 ResNet50 79.6 95.3 - -

GLTR [71] ICCV19 ResNet50 86.0 98.0 - -
SCAN [72] w/o optical TIP19 ResNet50 81.3 93.3 96.0 98.0
SCAN [72] w optical TIP19 ResNet50 88.0 96.7 98.0 100

MGH [73] CVPR20 ResNet50 85.6 97.1 - 99.5
AP3D [53] ECCV20 AP3D 86.7 - - -
DCGN [74] Multimed Tools Appl21 ResNet 78.5 94.5 - 98.5

PS-GNN [75] IEEE Signal Process. Lett.21 ResNet50 89.3 98.0 - 99.3
STRF [76] ICCV21 3D CNN 89.3 - - -

USTR (Ours w/o uncertainty) - ResNet50 87.2 97.5 98.1 99.7
USTRU (Ours w/ uncertainty) - ResNet50 89.7 97.8 98.3 100

TABLE II
PRID 2011 DATASET: COMPARISONS OF THE RECOGNITION RATES AT DIFFERENT RANKS (%). THE TOP THREE SCORES ARE INDICATED IN RED,

ORANGE AND GREEN, RESPECTIVELY. IF TWO SCORES ARE IDENTICAL, WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR.

Methods Reference Backbone PRID 2011
rank r=1 rank r=5 rank r=10 rank r=20

RQEN [68] AAAI18 GoogleNet 91.8 98.4 99.3 99.8
STAN [48] CVPR18 ResNet50 93.2 - - -
ADFD [69] CVPR19 ResNet50 93.9 99.5 - 100
GLTR [71] ICCV19 ResNet50 95.5 100 - -

SCAN [72] w/o optical TIP19 ResNet50 92.0 98.0 100.0 100.0
SCAN [72] w optical TIP19 ResNet50 95.3 99.0 100.0 100.0

MGH [73] CVPR20 ResNet50 94.8 99.3 - 100
DCGN [74] Multimed Tools Appl21 ResNet50 90.8 96.3 - 98.9

PS-GNN [75] IEEE Signal Process. Lett.21 ResNet50 95.5 100 100 100
USTR (Ours w/o uncertainty) - ResNet50 94.5 98.7 100.0 100.0
USTRU (Ours w/ uncertainty) - ResNet50 95.3 99.2 100.0 100.0

The hinge margin value in our experiment is set to 4 as
we use bi-directional RNN and the dimension of the final
representation is 512, which is doubled as compared to [5].
We randomly crop and flip each image in each dataset to
augment the data. To train the network, we set the initial
learning rate to be 1e − 2 for the first 100 epochs and then
change to 1e− 3 for the remaining epochs, the momentum of
0.9, dropout rate of 0.7, and the number of epochs to be 600.
The frame features are first extracted by ResNet50, and then
the average temporal pooling is used to obtain the sequence
feature. Input images are resized to 256×128. The batch size is
set to 32. We analyze the use of the snippet representation and
also competitive similarity aggregation. Our standard version
sets the clip length L = 4, each clip includes T = 4 images.

C. Experimental Results and Discussion

Comparisons with state-of-the-art methods: We com-
pare our method with the related state-of-the-art results on
iLIDs-VID dataset, PRID 2011 dataset, MARS dataset and
DukeMTMC-VideoReID dataset, shown in Table I, Table II,
Table III, and Table IV, respecitivly. These tables also show
the results using RQEN [68], STAN [48], ADFD [69], VRSTC
[70], COSAM [50], GLTR [71], SCAN [72] MGH [73], AP3D

[53], DCGN [74], PS-GNN [75], DPRM [54], STRF [76], and
Bicnet-TKS [79]. We list the quantitative recognition results
at different ranks by our method and the above approaches.

We achieve rank 1 recognition rates of 89.7%, 95.3%,
90.1% , and 96.7% for iLIDs-VID dataset, PRID 2011 dataset,
MARS dataset, and DukeMTMC-VideoReID dataset, which
are reported in Tables I, II, III, and IV, respectively. USTR
(Ours without w/o uncertainty) refers to the case where we
take the same weight for λo and λm of 0.5, while USTRU
(Ours with w/ uncertainty) refers the full model using
homoscedastic uncertainty to weight the two identification loss
terms. The proposed USTRU outperforms USTR at all ranks
on all the three datasets.

We highlight the top three identification rates at each rank
and mean average precision (mAP) in Table I, II, III, IV.
Our model outperforms other compared methods with rank
1 accuracy on iLIDs-VID dataset (Table I) and ranks into the
top three places for all other datasets (Table II, III, IV). For the
MARS dataset (Table III), our rank 1 recognition rate 90.1%
is 0.2% lower than the best 90.3% from STRF [76] with a
different backbone of 3D CNN. The 0.2% difference means
that our model approximately makes only one more mistake
when recognizing around 600 pedestrians compared to the best
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TABLE III
MARS DATASET: COMPARISONS OF THE RECOGNITION RATES AT DIFFERENT RANKS (%). THE TOP THREE SCORES ARE INDICATED IN RED, ORANGE

AND GREEN, RESPECTIVELY. IF TWO SCORES ARE IDENTICAL, WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR.

Methods Reference Backbone MARS
rank r=1 rank r=5 rank r=20 mAP

RQEN [68] AAAI18 GoogleNet 77.8 88.8 94.3 71.1
DuATM [77] CVPR18 DenseNet121 78.7 90.9 95.8 62.3
STAN [48] CVPR18 ResNet50 82.3 - - 65.8

Part-Aligned [78] ECCV18 InceptionV1 84.7 94.4 97.5 75.9
STA [52] Arxiv19 ResNet50 86.3 95.7 98.1 80.8

ADFD [69] CVPR19 ResNet50 87.0 95.4 98.7 78.2
VRSTC [70] CVPR19 ResNet50 88.5 96.5 97.4 82.3
COSAM [50] ICCV19 ResNet50 84.0 95.5 97.9 79.9

GLTR [71] ICCV19 ResNet50 87.0 95.8 98.2 78.5
SCAN [72] w/o optical TIP19 ResNet50 86.6 94.8 97.1 76.7
SCAN [72] w optical TIP19 ResNet50 87.2 95.2 98.1 77.2

MGH [73] CVPR20 ResNet50 90.0 96.7 98.5 85.8
AP3D [53] ECCV20 AP3D 90.1 - - 85.1
DCGN [74] Multimed Tools Appl21 ResNet50 89.6 96.5 98.3 81.8

PS-GNN [75] IEEE Signal Process. Lett.21 ResNet50 87.1 94.9 97.1 76.0
DPRM [54] TIP21 DPRM 89.0 96.6 98.3 83.0

Bicnet-TKS [79] CVPR21 Bicnet 90.2 - - 86.0
STRF [76] ICCV21 3D CNN 90.3 - - 86.1

USTR (Ours w/o uncertainty) - ResNet50 89.2 96.3 98.2 82.4
USTRU (Ours w/ uncertainty) - ResNet50 90.1 96.8 98.6 85.8

TABLE IV
DUKEMTMC-VIDEOREID DATASET: COMPARISONS OF THE RECOGNITION RATES AT DIFFERENT RANKS (%). THE TOP THREE SCORES ARE INDICATED

IN RED, ORANGE AND GREEN, RESPECTIVELY. IF TWO SCORES ARE IDENTICAL, WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR.

Methods Reference Backbone DukeMTMC-VideoReID
rank r=1 rank r=5 rank r=20 mAP

DuATM [77] CVPR18 DenseNet121 81.8 90.2 95.3 64.6
Part-Aligned [78] ECCV18 InceptionV1 84.4 92.2 95 69.3

STA [52] Arxiv19 ResNet50 96.2 99.3 99.6 94.9
VRSTC [70] CVPR19 ResNet50 95 99.1 99.4 93.5
COSAM [50] ICCV19 ResNet50 95.4 99.3 - 94.1

GLTR [71] ICCV19 ResNet50 96.3 99.3 - 93.7
AP3D [53] ECCV20 AP3D 96.3 - - 95.6
DCGN [74] Multimed Tools Appl21 ResNet50 95.4 98.7 99.4 93.1

PS-GNN [75] IEEE Signal Process. Lett.21 ResNet50 95.9 99.2 99.7 93.1
DPRM [54] TIP21 DPRM 97.1 99.4 100 95.6

Bicnet-TKS [79] CVPR21 Bicnet 96.3 - - 96.1
STRF [76] ICCV21 3D CNN 97.4 - - 96.4

USTR (Ours w/o uncertainty) - ResNet50 95.9 99.1 99.9 93.5
USTRU (Ours w/ uncertainty) - ResNet50 96.7 99.3 99.9 95.8

TABLE V
COMPARISON RESULTS OF METHODS TESTED ON ALL DATASETS. THE TOP TWO SCORES ARE INDICATED IN RED AND ORANGE, RESPECTIVELY. NOT

ALL THE METHODS LISTED IN PREVIOUS TABLE I, II, III, IV ARE SHOWN IN THIS TABLE SINCE NOT ALL THE METHODS ARE TESTED ON ALL DATASETS.
IF TWO SCORES ARE IDENTICAL, WE HAVE LABELED ALL THOSE SCORES WITH THE SAME COLOR.

Methods
Datasets MARs DukeMTMC-VideoReID iLIDs-VID PRID 2011

rank r=1 mAP rank r=1 mAP rank r=1 rank r=1
GLTR [71] 87.0 78.5 96.3 93.7 86.0 95.5
DCGN [74] 89.6 81.8 95.4 93.1 78.5 90.8

PS-GNN [75] 87.1 76 95.9 93.1 89.3 95.5
USTR (Ours w/o uncertainty) 89.2 82.4 95.9 93.5 87.2 94.5
USTRU (Ours w/ uncertainty) 90.1 85.8 96.7 95.8 89.7 95.3
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TABLE VI
SPATIAL COMPONENT ANALYSIS ON ILIDS-VID, PRID, MARS AND

DUKEMTMC-VIDEOREID (DUKE) DATASETS.

Inputs Rank 1
iLIDs-VID PRID 2011 MARS Duke

RGB branch 81.2 89.1 82.6 92.6
Mask-RGB branch 83.4 90.7 83.7 93.0

USTRU 89.7 95.3 90.1 96.7

TABLE VII
TEMPORAL COMPONENT ANALYSIS ON TILIDS-VID, PRID, MARS AND

DUKEMTMC-VIDEOREID (DUKE) DATASETS.

Inputs Rank 1
iLIDs-VID PRID 2011 MARS Duke

average pooling 82.7 93.7 86.1 95.5
max pooling 81.9 92.7 85.1 94.8

RNN 80.5 92.5 84.3 94.2
BRNN 81.4 93.1 85.2 94.7

BLSTM 84.9 93.8 86.6 95.1
USTRU 89.7 95.3 90.1 96.7

model. For the PRID 2011 dataset, we get the second highest
rank 1 score of 95.3% compared to the best 95.5% (Table
II). For DukeMTMC-VideoReID dataset, our USTRU rank 1
score is in the third place (Table IV). Our model is capable in
handling the more challenging datasets, e.g, iLIDs-VID and
MARS datasets.

Note that not all the methods have been tested on all the
four datasets. Table V shows the comparison results for those
algorithms in Table I-IV with results across the four datasets.
We highlight the top two scores in red and orange colors,
respectively. There is no model that could get the best results
in all datasets. Our USTRU approach is relatively more stable
and could consistently demonstrate relatively good results on
different datasets (see Table V) for it achieves the best results
on all datasets except PRID 2011 (2nd), while the other
methods have bias on some specific datasets.
Evaluating the contribution of the spatial component of
the approach: The contributions of the masked foreground
image and original image information to the re-ID system.
The results of comparison shown in Table VI, from which we
make the following observations. The background information
contributes to re-ID. Rank-1 results drop by 6.3%, 4.6%,
6.4%, and 3.7% when only the masked foreground (second
row) is used without background information for iLIDs-VID,
PRID 2011, MARS, and DukeMTMC-VideoReID, respec-
tively. Modeling foreground and original image (that has
background) in two branches improves the results significantly.
The two-branch model reaches rank 1 accuracy of 89.7%,

TABLE VIII
PERFORMANCE OF DIFFERENT SEQUENCE LENGTHS ON ILIDS-VID,
PRID, MARS AND DUKEMTMC-VIDEOREID (DUKE) DATASETS.

Clips Rank 1
iLIDs-VID PRID 2011 MARS Duke

N = 2 84.6 94.1 87.4 95.3
N = 4 89.7 95.3 90.1 96.7
N = 8 88.3 94.9 88.8 96.2

surpassing the one branch model RGB by 8.5% for the most
challenging iLIDs-VID dataset.
Evaluating the contribution of the temporal component
of the approach: Compared to image-based person re-
identification, most video-based re-id methods encode the
temporal information either by applying the pooling layers
to summarize the features from the frames or by using RNNs
and their variants to embed the temporal information. We eval-
uate the results while applying different temporal embedding
components including average pooling, max pooling, RNN, bi-
directional RNN (BRNN) and bi-directional LSTM (BLSTM),
respectively. The results on MARS dataset are shown in
Table VII. Our USTRU with a bi-directional sparse attentive
backtracking model achieved the best results. We also find that
average pooling and max pooling perform better than RNN
and BRNN. The pooling operation captures and summarizes
the long-term information along the sequence, while the RNN
and BRNN are not good at learning long-term dependencies.
Further, both BLSTM and our model embed the self-attention
mechanism, while BLSTM is still inferior to our model due to
its inherent BPTT (backpropagation through time) backbone.

Additionally, to show the efficiency of our method, we pro-
vide an analysis of the runtime of our method. We implement
our model with PyTorch and train it end-to-end. For iLIDs-
VID dataset, It takes about 8.5 hours, 6 hours and 13.5 hours
to train USTRU (Our model), BRNN model and BLSTM
models, respectively, using the Nvidia GTX-1080 GPU. Our
model runs much faster than the BLSTM model due to the
complicated calculation of gaits in BLSTM. On the other hand,
our model runs a little slower compared to the BRNN model
since we add the attention mechanism. However, we achieved
89.7%. for rank 1 accuracy, which is 8.3% higher than the
compared BRNN model (81.4%) for that our model is capable
of selecting important frames for backtraking.
Evaluation for different sequence lengths of the approach:
In order to capture both the long-term and short-term infor-
mation, the video sequences are first divided into clips, where
each clip includes the adjacent T = 4 image frames. Then
our model selects the top N clips according to the attentive
weights for the backpropagation. We investigate the effect
of N on the performance. Table VIII shows the comparison
results for using different numbers of clips on three dataset.
When N = 4, our USTRU model achieves the best ranking
scores when 16 frames are selected.
Cross Dataset Generalization: Due to the various conditions
in the process of data collection, the data distributions of
different datasets may have a great bias. The performance of
the model trained on one dataset may drop a lot on another
one. To evaluate the generalization ability of the proposed
model, we conduct cross-dataset validation with the following
setting [82]: we use iLIDs-VID, MARS and DukeMTMC-
VideoReID datasets as the training sets, respectively and use
the PRID 2011 as the testing set. Table IX reports the results
for rank 1, 5, 20. Our USTRU model achieves approximately
best recognition rates among all the listed methods.
Visualization of attention weights for backpropagation: We
investigate the effects of the spatial and temporal cues in our
method. As shown in Fig. 8-11 the color of the bar under
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TABLE IX
CROSS DATASET MATCHING RESULTS ON PRID 2011 DATASET. THE FIRST ROW INDICATES THE TRAINING DATASET.

Training dataset iLIDs-VID MARS DukeMTMC-VideoReID
rank r=1 rank r=5 rank r=20 rank r=1 rank r=5 rank r=20 rank r=1 rank r=5 rank r=20

CNN-RNN [5] 28.0 57.0 81.0 - - - - - -
ASTPN [46] 30.0 58.0 85.0 - - - - - -

TPL [82] 29.5 59.4 82.2 35.2 69.6 89.3 - - -
SCAN [72] 42.8 71.6 88.9 46.0 69.0 91.0 - - -

USTRU (Ours) 43.1 69.7 91.3 48.6 71.7 94.3 45.2 68.5 92.1

Fig. 8. iLIDs-VID dataset: Visualization of attention weights for backpropagation. Three examples are chosen (Exp. 1, Exp. 2. and Exp. 3) In each row,
selected frames for the given video are listed. The number under each image represents the frame number from the original video and the color of the
rectangular box represents the attention weights for the sparse attentive backtracking. The darker the color is, the higher the weight is. The reference ruler
for the weight is shown on the bottom.

Fig. 9. PRID 2011 dataset: Visualization of attention weights for backpropagation. Three examples are chosen (Exp. 1, Exp. 2. and Exp. 3). In each row,
selected frames for the given video are listed. The number under each image represents the frame number from the original video and the color of the
rectangular box represents the attention weights for the sparse attentive backtracking. The darker the color is, the higher the weight is. The reference ruler
for the weight is shown on the bottom.

each image is an indicator of the attention weights for the
backtracking. As the color gets darker, the weight is higher.

a) iLIDs-VID Dataset: Fig. 8 shows three successful
examples for our method. The three target people are walking
in the lobby where they get occluded by different people and
other objects from time to time. Our method is able to assign
higher weights to the frames where there are fewer occlusions,

for example, frame 13, 14, 15 for the first person, frame 33,
34, 35 for the second person and frame 13, 14, 15 for the
third person. Also, the attention weights become lower when
the overlapping is more. For example in example 3, at the very
beginning, the first person is overlapped by a yellow board, the
given attention weight (frame 1, 2, 3) is just a little lower than
for frame 13, 14, 15. When the person is gradually blocked
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Fig. 10. MARS dataset: Visualization of attention weights for backpropagation. Three examples are chosen (Exp. 1, Exp. 2. and Exp. 3). In each row, selected
frames for the given video are listed. The number under each image represents the frame number from the original video and the color of the rectangular box
represents the attention weights for the sparse attentive backtracking. The darker the color is, the higher the weight is. The reference ruler for the weight is
shown on the bottom.

Fig. 11. DukeMTMC-VideoReID dataset: Visualization of attention weights for backpropagation. Three examples are chosen (Exp. 1, Exp. 2. and Exp. 3).
In each row, selected frames for the given video are listed. The number under each image represents the frame number from the original video and the color
of the rectangular box represents the attention weights for the sparse attentive backtracking. The darker the color is, the higher the weight is. The reference
ruler for the weight is shown on the bottom.

by the other people, the attention weights drop significantly
for frame 49, 50, 51 and frame 61, 62, 63.

b) PRID 2011 Dataset: Fig. 9 illustrates another three
correct instances. In general, the colors for this dataset has
a less diffused distribution than the other two datasets shown
in Fig. 8 and Fig. 10. The reason is that PRID 2011 dataset is
relatively simple and includes less complex background and
less instances of occlusions. The learned attention weights are
consistent with the degree of blurriness for the given frames.
For example, the leg of the second person is not very clear in
frames 69, 70, 71. Similarly, we could hardly see one leg of
the first person in frames 29, 30, 31.

c) MARS Dataset: Fig. 10 presents the other three detected
examples at their first attempt. The target person is obscured
by other interfering pedestrians as in the iLIDs-VID dataset.
If we check frames 17, 18, 19 and 21, 22, 23 for the second
example, the learned weights decrease as the target person is

gradually covered by the other guy. For the following frames
25, 26, 27, the weights increase when the other pedestrian
passes by.

d) DukeMTMC-VideoReID Dataset: Fig. 11 displays an-
other three right cases. The target pedestrians suffer a lot from
occlusions as in the iLIDs-VID and Mars dataset. Besides,
there are more frames in each tracklet than the other three
datasets. This indicates that the background changes a lot when
the target person is walking. For the first example, the person
walks on the flat ground in frame 1, 2, 3, and then goes up
the stairs in frame 41, 42, 43, and then walks on the grassland
in frame 125, 126, 127.

In summary, the proposed approach is capable to learn the
unbiased representation by focusing on the main parts of a
person (spatial unbiased representation) and finding the useful
frames (temporal unbiased representation) regardless of the
position where the frame is in a sequence.
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V. CONCLUSIONS

This paper proposed an unbiased spatio-temporal learning
framework to address video-based person re-id. The proposed
framework explicitly removed the background clutter by learn-
ing a two branch CNN network. Homoscedastic uncertainty is
used to balance the original and masked foreground branches.
In addition, the long term dependency issue is handled with
sparse attentive backtracking. Extensive experiments are con-
ducted on three person re-ID benchmark datasets, where the
proposed framework achieved favorable performance com-
pared with the recent state-of-the-art methods.
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