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MonoIndoor++: Towards Better Practice of
Self-Supervised Monocular Depth Estimation

for Indoor Environments
Runze Li , Member, IEEE, Pan Ji, Yi Xu , and Bir Bhanu , Life Fellow, IEEE

Abstract— Self-supervised monocular depth estimation has
seen significant progress in recent years, especially in outdoor
environments, i.e., autonomous driving scenes. However, depth
prediction results are not satisfying in indoor scenes where
most of the existing data are captured with hand-held devices.
As compared to outdoor environments, estimating depth of
monocular videos for indoor environments, using self-supervised
methods, results in two additional challenges: (i) the depth range
of indoor video sequences varies a lot across different frames,
making it difficult for the depth network to induce consistent
depth cues for training, whereas the maximum distance in
outdoor scenes mostly stays the same as the camera usually
sees the sky; (ii) the indoor sequences recorded with handheld
devices often contain much more rotational motions, which cause
difficulties for the pose network to predict accurate relative
camera poses, while the motions of outdoor sequences are
pre-dominantly translational, especially for street-scene driving
datasets such as KITTI. In this work, we propose a novel
framework-MonoIndoor++ by giving special considerations to
those challenges and consolidating a set of good practices for
improving the performance of self-supervised monocular depth
estimation for indoor environments. First, a depth factoriza-
tion module with transformer-based scale regression network
is proposed to estimate a global depth scale factor explicitly,
and the predicted scale factor can indicate the maximum depth
values. Second, rather than using a single-stage pose estimation
strategy as in previous methods, we propose to utilize a residual
pose estimation module to estimate relative camera poses across
consecutive frames iteratively. Third, to incorporate extensive
coordinates guidance for our residual pose estimation module,
we propose to perform coordinate convolutional encoding directly
over the inputs to pose networks. The proposed method is
validated on a variety of benchmark indoor datasets, i.e., EuRoC
MAV, NYUv2, ScanNet and 7-Scenes, demonstrating the state-of-
the-art performance. In addition, the effectiveness of each module
is shown through a carefully conducted ablation study and the
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good generalization and universality of our trained model is also
demonstrated, specifically on ScanNet and 7-Scenes datasets.

Index Terms— Monocular depth prediction, self-supervised
learning.

I. INTRODUCTION

MONOCULAR depth estimation has been applied in a
variety of 3D perceptual tasks, including autonomous

driving, virtual reality (VR), and augmented reality (AR).
Estimating the depth map plays an essential role in these appli-
cations, in helping to understand environments, plan agents’
motions, reconstruct 3D scenes, etc. Existing supervised depth
methods [1], [2] can achieve high performance, but they
require the ground-truth depth data during the training which
is often expensive and time-consuming to obtain by using
depth sensors (e.g., LiDAR). To this end, a number of recent
work [3], [4], [5] have been focused on predicting the depth
map from a single image using self-supervised manners and
they have shown advantages in scenarios where obtaining
the ground-truth is not possible. In these self-supervised
frameworks, photometric consistency between multiple views
from monocular video sequences has been utilized as the
main supervision for training models. Specifically, the recent
work [5] has achieved significant success in estimating depth
that is comparable to that by the supervised methods [2], [6].
For instance, on the KITTI dataset [7], the Monodepth2,
proposed by Godard et al. [5], achieves an absolute relative
depth error (AbsRel) of 10.6%, which is not far from the
AbsRel of 7.2% by the DORN which is a supervised model
proposed by Fu et al. [2]. However, most of these self-
supervised depth prediction methods [3], [4], [5] are only
evaluated on datasets of outdoor scenes such as KITTI, leaving
their performance opaque for indoor environments. There are
certainly ongoing efforts [8], [9], [10] which consider self-
supervised monocular depth estimation for indoor environ-
ments, but their performance still trail far behind the one on
the outdoor datasets by methods such as [3], [4], and [5]
or the supervised counterparts [2], [11] on indoor datasets.
In this paper, we concentrate on estimating the depth map from
a single image for indoor environments in a self-supervised
manner which only requires monocular video sequences for
training.

This paper investigates the performance discrepancies
between the indoor and outdoor scenes and takes a step
towards examining what makes indoor depth prediction more
challenging than the outdoor case. We first identify that the
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scene depth range of indoor video sequences varies a lot
more than in the outdoor and conjecture that this posits more
difficulties for the depth network in inducing consistent depth
cues across images from monocular videos, resulting in the
worse performance on indoor datasets.

Our second observation is that the pose network, which
is commonly used in self-supervised methods [4], [5], tends
to have large errors in predicting rotational parts of relative
camera poses. A similar finding has been presented in [12]
where predicted poses have much higher rotational errors
(e.g., 10 times larger) than geometric SLAM [13] even when
they use a recurrent neural network as the backbone to model
the long-term dependency for pose estimation. We argue that
this problem is not prominent on outdoor datasets, i.e., KITTI,
because the camera motions therein are mostly translational.
However, frequent cameras rotations are inevitable in indoor
monocular videos [14], [15] as these datasets are often cap-
tured by hand-held cameras or Micro Aerial Vehicles (MAVs).
Thus, the inaccurate rotation prediction becomes detrimental
to the self-supervised training of a depth model for indoor
environments.

Our third conjecture is that the pose network in existing self-
supervised methods is potentially suffering from insufficient
cues to estimate relative cameras poses between color image
pairs in different views. We argue that, rather than simply
inducing camera poses based on color information of image
pairs, encoding coordinates information can further improve
the reliability of pose network in inferring geometric relations
among changing views.

We propose MonoIndoor++, a self-supervised monoc-
ular depth estimation method tailored for indoor environ-
ments, giving special considerations for above problems. Our
MonoIndoor++ consists of three novel modules: a depth
factorization module, a residual pose estimation module, and
a coordinates convolutional encoding module. In the depth
factorization module, we factorize the depth map into a global
depth scale (for the target image of the current view) and
a relative depth map. The depth scale factor is separately
predicted by an extra module (named as transformer-based
scale regression network) in parallel with the depth network
which predicts a relative depth map. In such a way, the depth
network has more model plasticity to adapt to the depth scale
changes during training. We leverage the recent advances of
transformer [16] in designing the scale regression network to
predict the depth scale factor. In the residual pose estimation
module, we mitigate the issue of inaccurate camera rotation
prediction by performing residual pose estimation in addition
to an initial large pose prediction. Such a residual approach
leads to more accurate computation of the photometric loss [5],
which in turn improves model training for the depth prediction.
In the coordinates convolutional encoding module, we encode
the coordinates information (x, y) explicitly and incorporate
them with color information in the residual pose estimation
module, expecting to provide additional cues for pose pre-
dictions, which further consolidates residual pose estimation
model during training.

It should be mentioned that this paper is an extended
version of our previous conference paper [17], where we

propose an unsupervised learning framework for monocular
depth estimation in indoor environments. In this paper, we
i) add more technical details of our proposed method;
ii) present coordinate convolutional encoding module in the
framework for improved performance of monocular depth
prediction; iii) make a more clear explanation of our proposed
depth factorization module with transformer-based scale net-
work; iv) conduct extensive experiments and ablation stud-
ies on public benchmark datasets, i.e., EuRoC MAV [18],
NYUv2 [14], ScanNet [19] and 7-Scenes [20], and perform
detailed analysis to demonstrate the effectiveness and good
generalizability of our proposed framework in this journal
paper.

In summary, our contributions are:
• We propose a novel depth factorization module with a

transformer-based scale regression network to estimate a
global depth scale factor, which helps the depth network
adapt to the rapid scale changes for indoor environments
during model training.

• We propose a novel residual pose estimation module that
mitigates the inaccurate camera rotation prediction issue
in the pose network and in turn significantly improves
monocular depth estimation performance.

• We incorporate coordinates convolutional encoding in the
proposed residual pose estimation module to leverage
coordinates cues in inducing relative camera poses.

• We demonstrate the state-of-the-art performance of self-
supervised monocular depth prediction on a wide-variety
of publicly available indoor datasets, i.e., NYUv2 [14],
EuRoC MAV [18], ScanNet [19] and 7-Scenes [20].

The paper is organized as follows: Section II summarizes
related published works in the field; then in Section III,
we explain our proposed approach for monocular depth esti-
mation in indoor environments, the proposed approach consist-
ing of a depth factorization, a residual pose and a coordinates
convolutional encoding modules; and in Section IV, we present
experimental results and ablation studies on a variety of
benchmark indoor datasets; and lastly a conclusion of our work
is discussed in Section V.

II. RELATED WORK

Much effort has been expended for the depth estimation in
various environments. This paper addresses the self-supervised
monocular depth estimation for indoor environments. In this
section, we discuss the relevant work of depth estimation using
both supervised and self-supervised methods.

A. Supervised Monocular Depth Estimation

The depth estimation problem was mostly solved by using
supervised methods in early research. Saxena et al. [21]
proposed the method to regress the depth from a single image
by extracting superpixel features and using a Markov Random
Field (MRF). Schönberger et al. [22] presented a system for
the joint estimation of depth and normal information with
photometric and geometric priors. These methods employ
traditional geometry-based methods. Eigen et al. [23] proposed
the first deep-learning based method for monocular depth
estimation using a multi-scale convolutional neural network
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(CNN). Later on, deep-learning based methods have shown
significant progress on monocular depth estimation, specifi-
cally with massive ground-truth data during training the net-
works. One line of following work improves the performance
of depth prediction by better network architecture design.
Laina et al. [24] proposed an end-to-end fully convolutional
architecture by encompassing the residual learning to predict
accurate single-view depth maps given monocular images.
Bhat et al. [25] proposed a transformer-based architecture
block to adaptively estimate depth maps using a number of
bins. Another line of work achieves improved depth estimation
results by integrating more sophisticated training losses [2],
[11], [26], [27], [28], [29]. Besides, a few methods [30], [31]
proposed to use two networks, one for depth prediction and
the other for motion, to mimic geometric Structure-from-
Motion (SfM) or Simultaneous Localization and Mapping
(SLAM) in a supervised framework. However, ground-truth
depth maps with images are used to train these methods
and obtaining ground-truth data is often expensive and time-
consuming to capture. Some other methods then resorted to
remedy this problem by generating pseudo ground-truth depth
labels with traditional 3D reconstruction methods [32], [33],
such as SfM [15] and SLAM [13], [34], or 3D movies [35].
Such methods have better capacity of generalization across
different datasets, but cannot necessarily achieve the best
performance for the dataset at hand. Some other ongoing
efforts explore to improve robustness of supervised monoc-
ular depth estimation for zero-shot cross-dataset transfer.
Ranftl et al. [35] proposed robust scale-and shift-invariant
losses for training the model using data from mixed dataset
and testing on zero-shot datasets, and improved it further by
integrating vision transformer in network design [36].

B. Self-Supervised Monocular Depth Estimation

Recently, significant progress has been made in self-
supervised depth estimation as it does not require training with
the ground-truth data. Garg et al. [3] proposed the first self-
supervised method to train a CNN-based model for monocular
depth estimation by using color consistency loss between
stereo images. Zhou et al. [4] employed a depth network
for depth estimation and a pose network to estimate relative
camera poses between temporal frames, and used outputs to
construct the photometric loss across temporal frames to train
the model. Many follow-up methods then tried to propose new
training loss terms to improve self-supervision for training
models. Godard et al. [37] incorporated a left-right depth con-
sistency loss for the stereo training. Bian et al. [38] put forth
a temporal depth consistency loss to ensure predicted depth
maps of neighbouring frames are consistent. Wang et al. [39]
first observed the diminishing issue of the depth model
during training and proposed a normalization method to
counter this effect. Yin and Shi [40] and Zou et al. [41]
trained three networks (i.e., one depth network, one pose
network, and one extra flow network) jointly by enforcing
cross-task consistency between optical flow and dense depth.
Wang et al. [42] and Zou et al. [12] explored techniques to
improve the performance of pose network and/or the depth

network by leveraging recurrent neural networks, such as
LSTMs, to model long-term dependency. Tiwari et al. [43]
designed a self-improving loop with monocular SLAM and a
self-supervised depth model [5] to improve the performance
of each one. Among these recent advances, Monodepth2 [5]
significantly improved the performance over previous methods
via a set of techniques: a per-pixel minimum photometric loss
to handle occlusions, an auto-masking method to mask out
static pixels, and a multi-scale depth estimation strategy to
mitigate the texture-copying issue in depth. Watson et al. [44]
proposed to use cost volume in the deep model and a new
consistency loss calculated between a teacher and a student
model for self-supervision training. Unlike Monodepth2, this
method showed its advantages in using multiple frames during
the testing. We implement our self-supervised depth estimation
framework based on Monodepth2, but make important changes
in designing both the depth and the pose networks.

Most of the aforementioned methods were only evaluated
on outdoor datasets such as KITTI. Recent ongoing efforts
[8], [9], [45] focus on self-supervised depth estimation for
indoor environments. Zhou et al. [8] first observed existing
large rotations on most existing indoor datasets, and then used
a pre-processing step to handle large rotational motions by
removing all the image pairs with “pure rotation” and designed
an optical-flow based training paradigm using the processed
data. Zhao et al. [9] adopted a geometry-augmented strategy
that solved for the depth via two-view triangulation and then
used the triangulated depth as supervision for model training.
Bian et al. [10], [45] theoretically studied the reasons behind
the unsatisfying deep estimation performance in indoor envi-
ronments and argued that “the rotation behaves as noise during
training”. They proposed a rectification step during the data
pre-processing to remove the rotation between consecutive
frames and designed an auto-rectify network. We have an
observation similar to [8], [45], and [10] that large rotations
cause difficulties for training the network. However, we take a
different strategy. Instead of removing rotations from training
data during the data pre-processing, we progressively estimate
camera poses in rotations and translations via a novel residual
pose module in an end-to-end manner, and we validate the
effectiveness of the proposed method in predicting improved
depth on a variety of indoor benchmark datasets.

C. Transformer

We leverage the transformer in designing our scale regres-
sion network inspired by the recent advances [16], [46], [47]
of the attention mechanism. Self-attention in the transformer
was first used successfully in natural language processing
(NLP) to model long-term dependencies. Wang et al. [46]
proposed a non-local operations for computer vision tasks.
Recently, self-attention and its variants have been widely used
in transformer networks for high-level visions tasks such as
image classification [16] and semantic segmentation [48], [49].

D. Coordinates Encoding

Convolutional neural networks (CNNs) have achieved sig-
nificant success at many tasks, and it can be complemented

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 04,2023 at 07:47:54 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: MonoIndoor++: TOWARDS BETTER PRACTICE OF SELF-SUPERVISED MONOCULAR DEPTH ESTIMATION 833

with specialized layers for certain usage. For instance, detec-
tion models like Faster R-CNN [50] make use of layers to
compute coordinate transforms. Jaderberg et al. [51] proposed
a spatial Transformer module that can be included into a stan-
dard CNN model to provide spatial transformation capabilities.
Qi et al. [52], [53] designed the PointNet which took a set
of 3D points represented as (x, y, z) coordinates as well as
extra color features for 3D classification and segmentation.
Recently, coordinates encoding has been widely used in vision
transformers [16], [48], [49] and neural radiance fields (NERF)
representations [54], [55], [56]. Vision transformers [16] take
2D images as the input, reshape the image into a sequence
of flattened 2D patches and then employ self-attention blocks
for image classification, detection and segmentation. Posi-
tion embeddings are added to the patch embeddings as a
standard processing step to retain positional information.
Mildenhall et al. [54] proposed a method which took a 3D
location (x, y, z) and 2D viewing direction (θ, φ) as the
input for scene synthesis. Unlike in vision transformers where
positional encoding is utilized to provide discrete positions of
tokens in the sequence, in NERF, positional functions are used
to map continuous input coordinates into a higher dimensional
space for high frequency approximations. Liu et al. [57]
defined the CoordConv operation to provide extra coordi-
nates information as part of input channels to convolutional
filters for the convolutional neural networks. Most of pose
networks in monocular depth estimation pipelines [5], [37]
simply take two consecutive frames as the input and outputs
relative camera poses. We argue such designs infer rotational
and translational relations by only focusing on photometric
cues, but ignoring explicit coordinates cues. In our work,
we leverage coordinates encoding in the proposed residual
pose network.

E. Monocular Depth Estimation for the Circuits
and Systems for Video Technology

Depth estimation is one of the most fundamental tasks
in computer vision for the circuits and systems for video
technology, and it has made great progress in recent years.
Using deep learning techniques, efforts have been made to
estimate dense depth maps, given input images, in a supervised
manner. Cao et al. [29] formulated the estimation of depth as
a pixelwise classification problem with a fully convolutional
depth residual network. Song et al. [27] incorporated the
idea of the Laplacian pyramid into the depth decoder. During
the training, depth encoder features are fed into different
streams which are predefined by the decomposition of the
Laplacian pyramid for outputing the final depth map. Rather
than employing a fully supervised approach for monocular
depth estimation, Tian et al. [58] used quadtree constraint for
calculating the photometric and depth loss during the training
of a depth model. It leveraged the sparse depth informa-
tion as a part of the input during semi-supervised training.
To enable fully self-supervised training based on the standard
framework designed by Zhou et al. [4], Chen et al. [59]
incorporated additional losses derived from SURF features and
mapped point clouds. However, different from [27], [29] which

concentrated on supervised depth estimation, Tian et al. [58]
and Chen et al. [59] leveraged sparse depth information
from the visual odometry system and explored additional
supervisions for self-supervised monocular training but they
still suffered from unsatisfactory performance (AbsRel of
16.5% on NYUv2). In this paper, we proposed a novel
framework, MonoIndoor++, with three new modules, a depth
factorization module, a residual pose estimation module, and
a coordinates convolutional encoding module, which target
on solving existing problems, rapid scale changes in indoor
environments, inaccurate camera rotation prediction issue and
missing coordinates cues in inducing relative camera poses, for
self-supervised monocular depth estimation in indoor environ-
ments. Our model can be trained with standard photometric
loss derived from self-supervision and has established state-of-
the-art (SOTA) performance on a wide-range of challenging
benchmark indoor datasets.

III. METHOD

In this section, we present detailed descriptions of per-
forming self-supervised depth estimation using the proposed
MonoIndoor++. Specifically, we first give an overview of the
standard framework for the self-supervised depth estimation.
Then, we describe three core components including depth fac-
torization, residual pose and coordinates convolution modules,
respectively.

A. Self-Supervised Monocular Depth Estimation

Self-supervised monocular depth estimation is considered
as a novel view-synthesis problem which is defined in [4], [5]
and [12]. This key idea is to train a model to predict the target
image from different viewpoints of source images. The image
synthesis is achieved by using the depth map as the bridging
variable between the depth network and pose network. Both
the depth map of the target image and the estimated relative
camera pose between a pair of target and source images are
required to train such systems. Specifically, the depth network
predicts a dense depth map Dt given a target image It as the
input. The pose network takes a target image It and a source
image It � from another view and estimates a relative camera
pose Tt→t � from the target to the source. The depth network
and pose network are optimized jointly with the photometric
reprojection loss which can then be constructed as follows:

LA =
∑

t �
ρ(It , It �→t ), (1)

and

It �→t = It � �proj (Dt , Tt→t �, K )�, (2)

where ρ denotes the photometric reconstruction error
[4], [5]. It is a weighted combination of the L1 and Structured
SIMilarity (SSIM) loss defined as

ρ(It , It �→t )= α

2

(
1 − SSIM(It , It �→t )

)+(1 − α)�It , It �→t�1.

(3)

It �→t is the source image warped to the target coordinate frame
based on the depth of the target image which is the output
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Fig. 1. Overview of the proposed MonoIndoor++. Depth Factorization Module: We use an encoder-decoder based depth network to predict a relative
depth map and a transformer-based scale network to estimate a global scale factor. Residual Pose Estimation Module: We use a pose network to predict an
initial camera pose of a pair of frames and residual pose network to iteratively predict residual camera poses based on the predicted initial pose. Coordinates
Convolutional Encoding: We encode coordinates information along with the concatenated color image pairs as the input to the pose network and residual
pose network for predicting relative camera poses.

from the depth network. proj () is the transformation function
to map image coordinated pt from the target image to its pt �
on the source image following

pt � ∼ K Tt→t � Dt (pt)K
−1 pt , (4)

and �·� is the bilinear sampling operator which is locally
sub-differentiable.

In addition, an edge-ware smoothness term is normally
employed during training which can be written as

Ls = |∂xd∗
t |e−|∂x It | + |∂yd∗

t |e−|∂y It |, (5)

where d∗
t = d/d̄t is the mean-normalized inverse depth

from [39].
Further, inspired by [38], we incorporate the depth consis-

tency loss to enforce the predicted depth maps across the target
frame and neighbouring source frames to be consistent during
the training. We first warp the predicted depth map Dt � of the
source image It � by Equation (2) to generate Dt �→t , which
is a corresponding depth map in the coordinate system of
the source image. We then transform Dt �→t to the coordinate
system of the target image via Equation (4) to produce a
synthesized target depth map D̃t �→t . The depth consistency
loss can be written as

Ld = |Dt − D̃t �→t |
Dt + D̃t �→t

. (6)

Thus, the overall objective to train the model is

L = LA + τLs + γLd , (7)

where τ and γ are the weights for the edge-aware smoothness
loss and the depth consistency loss respectively.

As discussed in Section I, existing self-supervised monoc-
ular depth estimation models have been used widely in
producing competitive depth maps on datasets collected
in outdoor environments, e.g., autonomous driving scenes.

However, simply using these methods [5] still suffer from
worse performance in indoor environments, especially
compared with fully-supervised depth prediction methods.
We argue that the main challenges in indoor environments
come from the fact that i) the depth range changes a lot
and ii) indoor sequences captured in existing public indoor
datasets, e.g., EuRoC MAV [18] and NYUv2 [14], contain reg-
ular rotational motions which are difficult to predict. To handle
these issues, we propose MonoIndoor++, a self-supervised
monocular depth estimation framework, as shown in Figure 1,
to enable improved predicted depth quality in indoor environ-
ments. The framework takes as input a single color image
and outputs a depth map via our MonoIndoor++ which
consists of two core parts: a depth factorization module with a
transformer-based scale regression network and a residual pose
estimation module. In addition, when designing the residual
pose estimation, we incorporate coordinates convolutional
operations to encode coordinates information along with color
information as input channels explicitly. The details of our
main contributions are presented in the following sections.

B. Depth Factorization Module

Our depth factorization module consists of a depth predic-
tion network and a transformer-based scale regression network.

1) Depth Prediction Network: The backbone model of our
depth prediction network is based on Monodepth2 [5], which
employs an auto-encoder structure with skip connections
between the encoder and the decoder. The depth encoder
learns a feature representation given a color image I as input.
The decoder takes features from the encoder as the input
and outputs relative depth map prediction. In the decoder,
a sigmoid activation function is used to process features from
the last convolutional layers and a linear scaling function is
utilized to obtain the final up-to-the-scale depth prediction,
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which can be written as follows,

d = 1/(aσ + b), (8)

where σ is the outputs after the sigmoid function, a and b
are specified to constrain the depth map D within a certain
depth range. a and b are pre-defined as a minimum depth
value and a maximum depth value empirically according to
a known environment. For instance, on the KITTI dataset [7]
which is collected in outdoor scenes, a is chosen as 0.1 and b
as 100. The reason for setting a and b as these fixed values is
that the depth range is consistent across the video sequences
when the camera always sees the sky at the far point. However,
it is observed that this setting is not valid for most indoor
environments. For instance, on the NYUv2 dataset [14] which
include various indoor scenes, e.g., office, kitchen, etc., the
depth range varies significantly as scene changes. Specifically,
the depth range in a bathroom (e.g., 0.1m∼3m) can be very
different from the one in a lobby (e.g., 0.1m∼10m). We argue
that pre-setting depth range will act as an inaccurate guidance
that is harmful for the model to capture accurate depth scales
in training models. This is especially true when there are rapid
scale changes, which are commonly observed on datasets [14],
[18], [19] in indoor scenes. Therefore, to mitigate this problem,
our depth factorization module learns a disentangled repre-
sentation in the form of a relative depth map and a global
scale factor. The relative depth map is obtained by the depth
prediction network aforementioned and a global scale factor
is outputted by a transformer-based scale regression network
which is introduced in the next subsection.

2) Transformer-Based Scale Regression Network: We pro-
pose a transformer-based scale regression network (see
Figure 1) as a new branch which takes as input a color image
and outputs its corresponding global scale factor. Our intuition
is that the global scale factor can be informed by certain
areas (e.g., the far point) in the images, and we propose to
use a transformer block to learn the global scale factor. Our
expectation is that the network can be guided to pay more
attention to a certain area which is informative to induce the
depth scale factor of the target image of the current view in a
scene.

The proposed transformer-based scale regression network
takes the feature representations F ∈ R

D×H×W learnt from
the input image as the input and outputs the corresponding
global scale factor, where D is dimension, H and W are the
height and width of the feature map. Specifically, we project
input features F ∈ R

D×H×W to the query, the key and the
value output, which are defined as

ψ(F) = WψF ,
φ(F) = WφF ,
h(F) = WhF , (9)

where Wψ , Wφ and Wh are parameters to be learnt. The
query and key values are then combined using the function
GF = softmax (FT WT

ψWφF)h(F), giving the learnt self-
attentions as GF . Finally, the GF and the input feature repre-
sentation F jointly contribute to the output SF by using

SF = WSFGF + F . (10)

Once we obtain SF , we apply three residual blocks including
two convolutional layers in each, followed by three fully-
connected layers with dropout layers in-between, to output
the global scale factor S for the target image of current
view. We also use a 2D relative positional encoding [60] in
calculating attentions with considerations of relative positional
information of key features.

3) Probabilistic Scale Regression Head: The proposed
transformer-based scale regression network is designed is
to predict a single positive number given the input high-
dimensional feature map F ∈ R

D×H×W . Inspired by the stereo
matching work [61], we propose to use a probabilistic scale
regression head to estimate the continuous value for scale
factor. Specifically, given a maximum bound that the global
scale factor is within, instead of outputting a single number
directly, we first output a number of scale values S̃ as the
predictions of each scale s and then calculate the probability of
s via the softmax operation softmax(·). Finally, the predicted
global scale S is calculated as the sum of each scale s weighted
by its probability of predicted values as

S =
Dmax∑
s=0

s × softmax(S̃). (11)

Thus, the probabilistic scale regression head enables us to
resolve regression problem smoothly with a probabilistic
classification-based strategy (see Section IV-E2 for ablation
results).

C. Residual Pose Estimation

The principle of self-supervised monocular depth estimation
is built upon the novel view synthesis, which requires both
accurate depth maps from the depth network and camera poses
from the pose network. Estimating accurate relative camera
poses is important for calculating photometric reprojection loss
to train the model because inaccurate camera poses might
lead to wrong correspondences between the pixels in the
target and source images, positing problems in predicting
accurate depth maps. A standalone “PoseNet” is widely used
in existing methods [5] to take two images as the input and
to estimate the 6 Degrees-of-Freedom (DoF) relative camera
poses. On datasets in outdoor environments (e.g., autonomous
driving scenes like KITTI), we argue that the relative camera
poses are fairly simple because the cars which are used to
collect video data are mostly moving forward with large trans-
lations but minor rotations. This means that pose estimation
is normally less challenging for the pose network. In contrast,
in indoor environments, the video sequences in widely-used
datasets [14] are typically recorded with hand-held devices
(e.g., Kinect), so there are more complicated ego-motions
involved as well as much larger rotational motions. Thus, it is
relatively more difficult for the pose network to learn to predict
accurate relative camera poses.

To better mitigate the aforementioned issues, existing meth-
ods [8], [45] concentrate on “removing” or “reducing” rota-
tional components in camera poses during data preprocessing
and train their models using preprocessed data. In this work,
we argue these preprocessing techniques are not flexible in
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Fig. 2. Residual pose estimation. A single-stage pose can be decomposed
into an initial pose and a residual pose by virtual view synthesis.

end-to-end training pipelines, instead, we propose a residual
pose estimation module to learn the relative camera pose
between the target and source images from different views
in an iterative manner (see Figure 2 for core ideas).

Our residual pose module consists of a standard pose
network and a residual pose network. In the first stage, the pose
network takes a target image It and a source image It �0 as input
and predicts an initial camera pose Tt �0→t , where the subscript
0 in t �0 indicates that no transformation is applied over the
source image yet. Then Equation (2) is used to bilinearly
sample from the source image, reconstructing a warped target
image It �0→t of a virtual view which is expected to be the
same as the target image It if the correspondences are solved
accurately. However, it will not be the case due to inaccurate
pose prediction. The transformation for this warping operation
is defined as

It �0→t = It � �proj (Dt , T −1
t �0→t , K )�. (12)

Next, we propose a residual pose network (see Residual-
PoseNet in Figure 1) which takes the target image and the
synthesized target image of a virtual view (It �0→t ) as input
and outputs a residual camera pose T res

(t �0→t)→t , representing
the camera pose of the synthesized image It �0→t with respect
to the target image It . Then, we bilinearly sample from the
synthesized image as

I(t �0→t)→t = It �0→t �proj (Dt , T res −1
(t �0→t)→t

, K )�. (13)

Once a new synthesized image of a virtual view is obtained,
we can continue to estimate the residual camera poses for next
view synthesis operation.

We define the general form of Equation (13) as

It �i →t = It �i �proj (Dt , T res−1
t �i →t

, K )�, i = 0, 1, · · · . (14)

by replacing the subscript t �0 → t with t �1 to indicate that
one warping transformation is applied, and similarly for the
i th transformation.

To this end, after multiple residual poses are estimated, the
camera pose of source image I �

t with respect to the target
image It can be written as Tt→t � = T −1

t �→t where

Tt �→t =
∏

i

Tt �i →t , i = · · · , k, · · · , 1, 0 . (15)

By iteratively estimating residual poses using a pose net-
work and a residual pose network, we expect to obtain more

accurate camera pose compared with the pose predicted from a
single-stage pose network, so that a more accurate photometric
reprojection loss can be built up for better depth prediction
during the model training.

D. Coordinates Convolutional Encoding

For self-supervised monocular depth estimation, most of
existing methods are designed to induce relative camera poses
given a pair of color images. In this work, we propose
to incorporate coordinates information as a part of input
channels along with the color information explicitly to provide
additional coordinates cues for pose estimation.

We extend standard convolutional layers to coordinates
convolutional layers by initializing extra channels to process
coordinates information which is concatenated channel-wise
to the input representations (see Coordinates Convolutional
Encoding in Figure 1). Given a pair of 2D images, we encode
two coordinates x, y with color information (r, g, b), resulting
in the 8-channels input as (r1, g1, b1, r2, g2, b2, i, j) where
(r1, g1, b1) and (r2, g2, b2) are rgb values of color images,
respectively. The i coordinate channel is an h × w rank-1
matrix with its first row filled with 0’s, its second row
with 1’s, its third with 2’s, etc. The j coordinate channel
is similar, but with columns filled in with constant values
instead of rows. A linear scaling operation is applied over
both i and j coordinate values to encode them in the range
[−1, 1]. We adopt coordinates convolutional layers [57] in the
residual pose estimation module to process 8-channels input
for iterative pose estimation, and the pose estimation can be
written as follows:

Tt→t � = RP Module(�; Concat (It , It � , i, j)) (16)

where RP Module is the proposed pose estimation module,
� is the parameters of the module which are to be optimized.

IV. EXPERIMENTS

A. Implementation Details

We implement our model using PyTorch [62]. In the depth
factorization module, we use the same depth network as in
Monodepth2 [5]; for the transformer-based scale regression
network, we use a transformer module followed by two basic
residual blocks and then three fully-connected layers with a
dropout layer in-between. The dropout rate is empirically set
to 0.5. In the residual pose module, we let the residual pose
networks use a common architecture as in Monodepth2 [5]
which consists of a shared pose encoder and an indepen-
dent pose regressor. In the coordinates encoding module,
2D coordinates information (i, j) are directly concatenated
with (r, g, b) channels of color images as the input and the
convolutional layers are initialized with ImageNet-pretrained
weights. Each experiment is trained for 40 epochs using the
Adam [63] optimizer and the learning rate is set to 10−4 for
the first 20 epochs and it drops to 10−5 for remaining epochs.
The smoothness term τ is set as 0.001. The consistency term
γ are set as 0.1 for EuRoC MAV dataset, 0.035 for NYUv2,
ScanNet and 7-Scenes datasets, respectively.
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B. Datasets

1) NYUv2 [14]: The NYUv2 depth dataset contains
464 indoor video sequences which are captured by a hand-
held Microsoft Kinect RGB-D camera. The dataset is widely
used as a challenging benchmark for depth prediction. The
resolution of videos is 640 × 480. Images are rectified
with provided camera intrinsics to remove image distortion.
We use the official training and validation splits which include
302 and 33 sequences, respectively. We use officially provided
654 images with dense labelled depth maps for testing. During
training, images are resized to 320 × 256.

2) EuRoC MAV [18]: The EuRoC MAV Dataset contains
11 video sequences captured in two main scenes, a machine
hall and a vicon room. Sequences are categorized as easy,
medium and difficult according to the varying illumination and
camera motions. For the training, we use three sequences of
“Machine hall” (MH_01, MH_02, MH_04) and two sequences
of “Vicon room” (V1_01 and V1_02). Images are rectified
with provided camera intrinsics to remove image distortion.
During training, images are resized to 512 × 256. We use the
Vicon room sequence V1_03, V2_01, V2_02 and V2_03 for
testing where the ground-truth depths are generated by project-
ing Vicon 3D scans onto the image planes. During training,
images are resized to 512 × 256. In addition, we use V2_01
for ablation studies (see Section IV-E1 and Section IV-E2).

3) ScanNet [19]: The ScanNet dataset contains RGB-D
videos of 1513 indoor scenes, which is captured by handheld
devices. The dataset is annotated with 3D camera poses and
instance-level semantic segmentations and is widely on several
3D scene understanding tasks, including 3D object classifi-
cation, semantic voxel labeling, and CAD model retrieval.
We use officially released train-validation-test splits. The res-
olution of color images is 1296×968. During training, images
are resized to 320 × 256.

4) 7-Scenes [20]: 7-Scenes dataset contains a number of
video sequences captured in 7 different indoor scenes, i.e.,
office, stairs, etc. Each scene contains 500-1000 frames.
All scenes are recorded using a handheld Kinect RGB-D
camera at the resolution of 640×480. We use the official train-
test split. During training, images are resized to 320 × 256.

C. Evaluation Metrics

We use both error metrics and accuracy metrics proposed
in [23] for evaluation on all datasets, which include the
mean absolute relative error (AbsRel), root mean squared
error (RMS) and the accuracy under threshold (δi < 1.25i ,
i = 1, 2, 3). Following previous self-supervised depth esti-
mation methods [5], [9], [10], we multiply the predicted
depth maps by a scalar that matches the median with that of
the ground-truth because self-supervised monocular methods
cannot recover the metric scale. The predicted depths are
capped at 10m in all indoor datasets except the EuRoC MAV
dataset which one is set as 20m because it contains “Machine
hall” scenes with observed large depth scale.

D. Experimental Results

1) Results on NYUv2 Depth Dataset: In this sub-section,
we evaluate our MonoIndoor++ on the NYUv2 depth

TABLE I

COMPARISON OF OUR METHOD WITH EXISTING SUPERVISED AND
SELF-SUPERVISED METHODS ON NYUV2 [14]. BEST RESULTS

AMONG SUPERVISED AND SELF-SUPERVISED

METHODS ARE IN BOLD

dataset [14]. Following [9], [10], the raw dataset is firstly
downsampled 10 times along the temporal dimension to
remove redundant frames, resulting in ∼ 20K images for
training.

a) Quantitative results: Table I presents the quantita-
tive results of our model MonoIndoor++ and both SOTA
supervised and self-supervised methods on NYUv2. It shows
that our model outperforms all previous self-supervised SOTA
methods [5], [10], [38], [73], reaching the best results across
all metrics. Specifically, our method improves monocular
depth prediction performance significantly by reducing AbsRel
to 13.2% and increasing δ1 to 83.4%. Besides, compared with
the recent self-supervised methods by Bian et al. [10], [45]
which concentrating on removing rotations via “rectification”
as a data preprocessing step, our method gives the better per-
formance without additional data preprocessing. It is noted that
NYUv2 is very challenging and many previous self-supervised
methods [40] fail to get satisfactory results. In addition to that,
our model outperforms a group of supervised methods [1],
[26], [65], [66], [71] and closes the performance gap between
the self-supervised methods and fully-supervised methods
[2], [24]. When compared with our preliminary work [17],
our method can consistently improve depth estimation per-
formance on all metrics, especially the δ1, which is 83.4%
and is better that these fully-supervised methods [2], [24].
Ablation studies for the effectiveness of each core module on
NYUv2 are presented in Section IV-E1 and the ablation results
of design choices for the coordinates convolutional encoding
are shown in Section IV-E3.

b) Qualitative results: Figure 3 visualizes the predicted
depth maps on NYUv2. Compared with the results from the
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Fig. 3. Qualitative comparison on NYUv2 [14]. Images form the left to the right are: input, depth from [10] and [5], MonoIndoor++(Ours), and ground-
truth depth. Compared with both the baseline method Monodepth2 [5] and recent work [10], our model produces accurate depth maps that are closer to the
ground-truth.

baseline method Monodepth2 [5] and recent work [10], depth
maps predicted from our model (MonoIndoor++) are more
precise and closer to the ground-truth. For instance, looking
at the fourth column in the first row, the depth in the region
of cabinet predicted from our model is much sharper and
cleaner, being close to the ground-truth (the last column).
These qualitative results are consistent with our quantitative
results in Table I.

2) Results on EuRoC MAV Dataset: In this sub-section,
we present evaluation results of self-supervised monocular
depth estimation on the EuRoC MAV dataset [18]. As there are
not many public results on the EuRoC MAV dataset, excepting
for comparing between our MonoIndoor++ and the baseline
method Monodepth2 [5], we follow official implementations
of Bian et al. [38],1 P2Net [73]2 and Bian et al. [10]3 to
conduct experiments and make fair comparisons.

a) Quantitative results: We present quantitative results
of our model MonoIndoor++ and comparisons with other

1https://github.com/JiawangBian/SC-SfMLearner-Release
2https://github.com/svip-lab/Indoor-SfMLearner
3https://github.com/JiawangBian/sc_depth_pl

methods for the self-supervised monocular depth estimation
on all Vicon room testing sequences in Table II. It can be
observed that, when compared with recent self-supervised
methods [10], [38], [73], our model achieves the best per-
formance across all major evaluation metrics (AbsRel and δ1)
on various scenes including the “difficult” scene, i.e., “Vicon
room 203” (V2_03). Specifically, on the sequence V2_01, our
model improves self-supervised monocular depth estimation
performance significantly by reducing the AbsRel to 11.5%
and increasing the δ1 to 86.1%. Similar improvements can be
observed on other test sequences. Besides, compared with our
preliminary work [17], our method consistently and signifi-
cantly improves depth estimation performance across all test
sequences. In addition, ablation studies for the effectiveness of
each core module are presented in Section IV-E1 and ablation
experiments of the design choices for the scale network are
shown in Section IV-E2.

b) Qualitative results: We present the qualitative results
and comparisons of depth maps predicted by the baseline
method Monodepth2 [5] and our MonoIndoor++ in Figure 4.
There are no ground-truth dense depth maps on the EuRoC
MAV dataset. From Figure 4, it is clear that the depth maps

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 04,2023 at 07:47:54 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: MonoIndoor++: TOWARDS BETTER PRACTICE OF SELF-SUPERVISED MONOCULAR DEPTH ESTIMATION 839

TABLE II

QUANTITATIVE RESULTS AND COMPARISON BETWEEN OUR MONOINDOOR++ WITH EXISTING SELF-SUPERVISED METHODS ON
THE TEST SEQUENCES V1_03, V2_01 V2_02, V2_03 OF EUROC MAV [18]. BEST RESULTS ARE IN BOLD

Fig. 4. Qualitative comparison of depth prediction on EuRoC MAV. Our
MonoIndoor++ produces more accurate and cleaner depth maps.

generated by our model are much better than the ones by
Monodepth2. For instance, in the third row, our model can
predict precise depths for the hole region at the right-bottom
corner whereas such a hole structure in the depth map by
Monodepth2 is missing. These observations are also consistent
with the better quantitative results in Table II, proving the
superiority of our model.

c) Relative pose evaluation: In Table III, we evaluate
the proposed residual pose estimation module on all Vicon
room test sequences V1_03, V2_01, V2_02 and V2_03 of
the EuRoC MAV [18]. We follow [74] to evaluate rela-
tive camera poses estimated by our residual pose estimation
module. We use the following evaluation metrics: absolute
trajectory error (ATE) which measures the root-mean square

TABLE III

RELATIVE POSE EVALUATION ON EUROC MAV [15]. RESULTS SHOW THE
AVERAGE ABSOLUTE TRAJECTORY ERROR (ATE), AND THE RELATIVE

POSE ERROR (RPE) IN METERS AND DEGREES, RESPECTIVELY.
SCENE: TEST SEQUENCE NAME

error between predicted camera poses and ground-truth, and
relative pose error (RPE) which measures frame-to-frame rela-
tive pose error in meters and degrees, respectively. As shown in
Table III, compared with the baseline model Monodepth2 [5]
which employs one-stage pose network, using our method
leads to improved relative pose estimation across evaluation
metrics on most test scenes. Specifically, on the scene V1_03,
the ATE by our MonoIndoor++ is significantly decreased
from 0.0681 meters to 0.0557 meters and RPE(◦) is reduced
from 1.3237◦ to 0.5599◦. Similar observations are made on
the scene V2_02, where the ATE by our MonoIndoor++ is
significantly decreased from 0.0624 meters to 0.0517 meters.
When compared with our preliminary work [17], consistent
improvements can also be observed across almost all testing
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TABLE IV

COMPARISON OF OUR METHOD WITH EXISTING SUPERVISED AND
SELF-SUPERVISED METHODS ON SCANNET [19]. BEST RESULTS

AMONG SUPERVISED AND SELF-SUPERVISED

METHODS ARE IN BOLD

sequences, which can further validate the superiority of our
model for self-supervised monocular depth estimation.

3) Results on ScanNet Dataset: In this sub-section, we eval-
uate our MonoIndoor++ and compare its performance with
recent SOTA methods on the ScanNet dataset [19]. Referring
to [76], the raw dataset is firstly downsampled 10 times
along the temporal dimension and then ∼100K images are
randomly selected for training. During testing, ∼4K are sam-
pled from 100 different testing scenes to evaluate the trained
model. It should be mentioned that we have observed that
rarely research work have conducted thorough experiments
on ScanNet for self-supervised monocular depth estimation.
Instead, previous work [10], [73] simply conduct zero-shot
generalization experiments. In this paper, we first present self-
supervised depth estimation evaluation results, and second,
we show evaluations of the zero-shot generalization on depth
and relative pose estimation. As introduced in Section IV-D2,
we follow official implementations of Bian et al. [38],
P2Net [73] and Bian et al. [10] to conduct experiments and
make fair comparisons.

a) Self-supervised depth estimation evaluation: Table IV
presents the quantitative results of our model MonoIndoor++
and both SOTA supervised and self-supervised methods on
ScanNet. It shows that our MonoIndoor++ outperforms the
previous self-supervised methods [5], [10], [73], [78] in depth
estimation, reaching the best results across all metrics. For
instance, our model gives 11.3% of the AbsRel, which is
exceptionally competitive in indoor environments. When com-
pared with our preliminary work [17], our MonoIndoor++
consistently improves depth estimation performance on this
challenging dataset. In addition to that, our model outperforms
a group of supervised methods [30], [76]. Ablation studies
for the effectiveness of each core module are presented in
Section IV-E1.

b) Zero-shot generalization: We present the zero-shot
generalization results of self-supervised depth estimation on
ScanNet [19] in Table V, where we evaluate the proposed
MonoIndoor++ pretrained on NYUv2 dataset. From Table V,
it is observed that our NYUv2 pretrained model generalizes

TABLE V

ZERO-SHOT GENERALIZATION OF OUR METHOD FOR SELF-SUPERVISED
DEPTH ESTIMATION ON SCANNET [19]. BEST RESULTS ARE IN BOLD

TABLE VI

ZERO-SHOT GENERALIZATION OF OUR METHOD FOR RELATIVE POSE
ESTIMATION ON SCANNET [19]. BEST RESULTS ARE IN BOLD.

ROT: ROTATIONAL ERROR OF THE RELATIVE POSE.
TR: TRANSLATIONAL ERROR OF THE

RELATIVE POSE

better than other recent methods to new dataset. Besides,
we show the zero-shot generalization results of relative pose
estimation on ScanNet in Table VI. We follow [31], [73],
and [10] to use 2000 image pairs selected from diverse
indoor scenes for pose evaluation. It can be observed that our
method outperforms other self-supervised methods. Specifi-
cally, compared to Bian et al. [10], our method significantly
reduces translational error (tr (cm)) from 0.55 centimeters
to 0.27 centimeters and decreases camera rotational error
(rot (deg)) from 1.82 to 1.19. When compared with our
preliminary work [17], consistent improvements are observed
on depth and relative pose evaluation results. Both depth and
pose results validate the good zero-shot generalizability and
capability of our method.

4) Results on RGB-D 7-Scenes Dataset: In this sub-section,
we evaluate our MonoIndoor++ on the RGB-D 7-Scenes
dataset [20] under two settings, the zero-shot generaliza-
tion and the fine-tuning strategy, respectively. Following [45]
and [10], we extract one image from every 30 frames in each
video sequence. For fine-tuning, we first pre-train our model
on the NYUv2 dataset, and then fine-tune the pre-trained
model on each scene of 7-Scenes dataset.

Table VII presents the quantitative results and com-
parisons of our model MonoIndoor++ and latest SOTA
self-supervised methods on 7-Scenes dataset. It can be
observed that our model outperforms the baseline method
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TABLE VII

COMPARISON OF OUR METHOD TO LATEST SELF-SUPERVISED METHODS UNDER ZERO-SHOT GENERALIZATION AND
FINE-TUNING SETTINGS ON RGB-D 7-SCENES [20]. BEST RESULTS ARE IN BOLD

Monodepth2 [5] significantly on each scene. Further, com-
pared to the model [10], [45], our method achieve the best
performance on most scenes before and after fine-tuning
using NYUv2 pretrained models, which demonstrates better
generalizability and capability of our model. Moreover, the
results show that our method can perform well in a variety of
different scenes.

E. Ablation Studies

1) Effects of Each Proposed Module in MonoIndoor++:
In this sub-section, we perform ablation studies of each core
module in our proposed MonoIndoor++ on NYUv2 [14],
ScanNet [19] and EuRoC MAV [18] datasets in Table VIII.

Specifically, We first perform ablation study for the residual
pose estimation module. In Table VIII, from methods of the
“Monodepth2 [5] (Baseline)” and “MonoIndoor++ (Ours)”
with the “Residual Pose” column checked, improved perfor-
mance can be observed by using the proposed residual pose
estimation module. For instance, on NYUv2, the AbsRel is
decreased from 16% to 14.2% and δ1 is increased from 76.7%
to 81.3%; on ScanNet, the AbsRel is decreased from 18.9%
to 13.6% and the δ1 is increased from 70.9% to 83.3%; on
EuRoC MAV V2_01, the AbsRel is decreased from 15.7% to

14.1% and the δ1 is increased from 78.6% to 81.5% and similar
observations can be made on other test sequences as well.

Next, we experiment to validate the effectiveness of the
depth factorization module. Comparing with Monodepth2
which predicts depth without any guidance of global scales,
by adding the depth factorization module with a separate
scale network in our MonoIndoor++ (see “MonoIndoor++
(Ours)” with the “Residual Pose” and “Depth Factorization”
columns checked), we further observe improved performance
on all datasets. For instance, on NYUv2, the AbsRel is
decreased from 14.2% to 13.4% and δ1 is increased from
81.3% to 82.3%; on ScanNet, the AbsRel is decreased from
13.6% to 12.6% and the δ1 is increased from 83.3% to 83.9%;
on EuRoC MAV V2_01, the AbsRel is decreased from 14.1%
to 12.5% and the δ1 is increased from 81.5% to 84.0% and
similar observations can be made on other test sequences.

In addition, by using the residual pose estimation module
with both the proposed depth factorization module and coordi-
nates convolutional encoding module (see “MonoIndoor++
(Ours)” with all columns checked, the performance can be
improved consistently. For instance, on NYUv2, the AbsRel
is decreased to 13.2% and δ1 is increased to 83.4%; on
ScanNet, the AbsRel is decreased to 11.3% and the δ1 is
increased to 87.3%; on EuRoC MAV V2_01, the AbsRel is
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TABLE VIII

ABLATION RESULTS ON EACH CORE MODULE OF OUR MONOINDOOR++ AND COMPARISON WITH THE BASELINE METHOD ON THE NYUV2 [14],
SCANNET [19] AND EUROC MAV [18] DATASETS. BEST RESULTS ARE IN BOLD. RESIDUAL POSE: OUR RESIDUAL POSE ESTIMATION

MODULE. DEPTH FACTORIZATION: OUR DEPTH FACTORIZATION MODULE WITH SCALE NETWORK. COORDINATES

CONV. ENCODING: OUR COORDINATES CONVOLUTIONAL ENCODING MODULE

Fig. 5. Qualitative ablation comparisons of depth prediction on NYUv2. Our full model with both depth factorization and residual pose modules produce
better depth maps.

Fig. 6. Intermediate synthesized views on NYUv2.

decreased to 11.5% and the δ1 is increased to 86.1% and
similar observations can be made on other test sequences as
well. Our full model achieves the best performance by giving
competitive depth estimation results on these challenging
datasets. We argue that these ablation results clearly prove

the effectiveness of the each proposed module in our model,
MonoIndoor++.

We also present the exemplar depth visualizations by
our proposed modules on NYUv2 dataset in Figure 5.
In addition, we visualize intermediate and final synthesized
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TABLE IX

ABLATION RESULTS OF DESIGN CHOICES AND THE EFFECTIVENESS OF
COMPONENTS IN THE TRANSFORMER-BASED SCALE REGRESSION

NETWORK OF OUR MODEL (MONOINDOOR++) ON EUROC MAV
V2_01 [18]. PORB. REG.: THE PROBABILISTIC SCALE

REGRESSION BLOCK. NOTE: WE ONLY USE THE
RESIDUAL POSE ESTIMATION MODULE WHEN

EXPERIMENTING WITH DIFFERENT NETWORK

DESIGNS FOR THE DEPTH
FACTORIZATION MODULE

views compared with the current view on NYUv2 in the
Figure 6. Highlighted regions show that final synthesized
views are better than the intermediate synthesized views and
closer to the current view.

2) Effects of Network Design for Transformer-Based Scale
Regression Network: We perform ablation studies for our net-
work design choices for the transformer-based scale regression
network in depth factorization module on the test sequence
V2_01 of the EuRoC MAV dataset [18]. Firstly, we con-
sider the following designs as the backbone of our scale
regression network: I) a pre-trained ResNet-18 [79] followed
by a group of Convolutional-BN-ReLU layers; II) a pre-
trained ResNet-18 [79] followed by two residual blocks;
III) a lightweight network with two residual blocks which
shares the feature maps from the depth encoder as input. These
three choices are referred to as the ScaleCNN, ScaleNet and
ScaleRegressor, respectively in Table IX. Next, we validate
the effectiveness of adding new components into our backbone
design. As described in Section III-B, we mainly integrate two
sub-modules: i) a transformer module and ii) a probabilistic
scale regression block.

As shown in Table IX, the best performance is achieved by
ScaleRegressor that uses transformer module and probabilistic
scale regression. It proves that sharing features with the
depth encoder is beneficial to scale estimation. Comparing
the results of three ScaleRegressor variants, the performance
gradually improves as we add more components (i.e.., attention
and probabilistic scale regression (Prob. Reg.)). Specifically,
adding the transformer module improves the overall perfor-
mance over the baseline backbone; adding the probabilistic
regression block leads to a further improvement, which vali-
dates the effectiveness of our proposed sub-modules.

3) Ablation Results of Coordinates Convolutional Encod-
ing: We present ablation studies for the encoding position
of the coordinates convolutional encoding module on the
NYUv2 [14] and V2_01 of the EuRoC MAV [18] datasets
in Table X. It should be mentioned that, to fully explore
the effectiveness of using coordinates encoding technique,
we only run our MonoIndoor++ with the residual pose

TABLE X

ABLATION RESULTS OF ENCODING POSITION FOR COORDINATES
CONVOLUTIONAL WITH OUR MONOINDOOR++ ON NYUV2. INIT.:

INITIALIZATION OF WEIGHTS. NOTE: WE ONLY USE THE

RESIDUAL POSE ESTIMATION MODULE WHEN

EXPERIMENTING WITH DIFFERENT NETWORK DESIGNS
FOR THE COORDINATES CONVOLUTIONAL

ENCODING MODULE

estimation module. We perform coordinates convolutional
encoding with the following choices. Specifically, we first
encode coordinates information with the color image pairs and
extend coordinates convolutional layers to process combined
input data. Second, we perform coordinates encoding opera-
tions with the feature representations outputted from the pose
encoder and the processed features are taken as the input to
the pose decoder. Third, we incorporate coordinates encoding
operations with both input and features from pose encoder for
pose estimation.

From the Table X, it can be observed that, by using
coordinates convolutional encoding in residual pose estimation
module, performance can be improved. For instance, the
AbsRel is decreased to 13.9% from 14.2% and the δ1 is
improved from 81.7% to 82.1%. Besides, comparing with
encoding coordinates information with feature representations
after the pose encoder, applying the coordinates convolutional
encoding operation over the input image pairs directly gives
the best performance. Further, we test two different initializa-
tion methods for coordinates convolutional layers which are
with random initializations or ImageNet-pretrained [80] initial-
ization, respectively. The coordinates convolutional encoding
layers which are initialized with ImageNet-pretrained weights
give slightly improved performance compared to ones with
random weights. Given the above observations, we further
perform experiments under the same settings on EuRoC
MAV V2_01 sequence, significant improvements have been
observed for self-supervised monocular depth estimation by
using our residual pose estimation module with coordinates
convolutional encoding module, which can further validate
the effectiveness of the coordinates convolutional encoding
module.
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V. CONCLUSION

In this work, a novel monocular self-supervised depth
estimation framework, called the MonoIndoor++, has been
proposed to predict depth map of a single image in indoor
environments. The proposed model consists of three modules:
(a) a novel depth factorization module with a transformer-
based scale regression network which is designed to jointly
learn a global depth scale factor and a relative depth map
from an input image, (b) a novel residual pose estimation
module which is proposed to estimate accurate relative camera
poses for novel view synthesis of self-supervised training that
decomposes a global pose into an initial pose and one or a few
residual poses, which in turn improves the performance of the
depth model, (c) a coordinates convolutional encoding module
which is utilized to encode coordinates information explicitly
to provide additional cues for the residual pose estimation
module. Comprehensive evaluation results and ablation studies
have been conducted on a wide-variety of indoor datasets,
establishing the state-of-the-art performance and demonstrat-
ing the effectiveness and universality of our proposed methods.
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