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Abstract—In this paper, a data assimilation network is pro-
posed to tackle the challenges of domain generalization for
person re-identification (ReID). Most of the existing research
efforts only focus on single-dataset issues, and the trained
models are difficult to generalize to unseen scenarios. This paper
presents a distinctive idea to improve the generality of the
model by assimilating three types of images: style-variant images,
misaligned images and unlabeled images. The latter two are often
ignored in the previous domain generalization ReID studies. In
this paper, a non-local convolutional block attention module is
designed for assimilating the misaligned images, and an attention
adversary network is introduced to correct it. A progressive
augmented memory is designed for assimilating the unlabeled
images by progressive learning. Moreover, we propose an at-
tention adversary difference loss for attention correction, and
a labeling-guide discriminative embedding loss for progressive
learning. Rather than designing a specific feature extractor that
is robust to style shift as in most previous domain generalization
work, we propose a data assimilation meta-learning procedure to
train the proposed network, so that it learns to assimilate style-
variant images. It is worth mentioning that we add an unlabeled
augmented dataset to the source domain to tackle the domain
generalization ReID tasks. Extensive experiments demonstrate
that our approach significantly outperforms the state-of-the-art
domain generalization methods.

Index Terms—Person re-identification, data assimilation, at-
tention correction, progressive augmented memory.

I. INTRODUCTION

Person re-identification is a core task in video analysis and
understanding, aiming to match people across disjoint camera
views. Most current research focuses on solving the inherent
problems in person re-identification caused by changes in
background, illumination, posture, angle, etc. in a single-
dataset. Although they have achieved excellent results, these
models trained in the single-dataset tend to be inefficient on a
new dataset.

There are mainly two ways to solve such a cross-dataset
problem: unsupervised domain adaptation (UDA) and domain
generalization (DG). UDA methods [1–8] train models in
the source domain to adapt to the target domain, but they

Copyright c©2022 IEEE. This work was completed during visit to Uni-
versity of California, Riverside. It is supported by National Natural Science
Foundation of China (No. 61973066), Distinguished Creative Talent Program
of Liaoning Colleges and Universities (LR2019027), and Fundamental Re-
search Funds for the Central Universities (N182608004, N2004022).

Y. Liu and Y. Zhang are with College of Information Science and
Engineering, Northeastern University, Shenyang, China (e-mail: liuyixiuas-
d130@gmail.com; zhangyunzhou@mail.neu.edu.cn).

B. Bhanu is with the Visualization and Intelligent Systems Laboratory (VIS-
Lab), University of California, Riverside, USA (e-mail: bhanu@ee.ucr.edu).

S. Coleman and D. Kerr are with the Intelligent Systems Research Centre,
Ulster University, Magee Campus, Londonderry BT48 7JL, U.K. (e-mail:
sa.coleman@ulster.ac.uk; d.kerr@ulster.ac.uk).

light  quality tone

occlusionincompleteposition

2 11 17 30 43 55

7 7 12 12

? ? ? ? ? ?

St
yl

e-
va

ri
an

t 
im

ag
e

s
M

is
a

lig
n

ed
 im

ag
es

U
nl

ab
e

le
d 

im
ag

e
s

225 61

7 12 23 23 23

?? ?

Fig. 1: Sample images that are challenging but valuable for DG person ReID.

still require further updating using the unlabeled data in the
target domain. Compared with UDA, DG is more challenging
because the target domain is completely unseen. Our approach
is dedicated to DG person ReID. There are very few prior
studies [9–15] on this topic. Among them, some method-
s aim at learning domain-invariant feature representations,
such as multi-dataset feature generalization network (MMFA-
AAE) [9], multi-scale deep attention network (MuDeep) [10],
instance normalization and batch normalization (DualNorm)
[12], style normalization and restitution (SNR) [13], and
camera-based batch normalization (CBN) [14]. Some methods
focus on learning a universal mapping between a person image
and its identity classifier, such as domain-invariant mapping
network (DIMN) [11], or a universal matching between a
person image and its deep feature maps, such as query-
adaptive convolution (QAConv) [15]. Different from previous
DG studies, this paper presents a distinctive idea to tackle this
issue by data assimilation. “Data assimilation” means forcing
the data with different characters to play the same role in the
current model.

In this paper, we force three kinds of images to join the
training to improve the generality of the model. These three
types of images are style-variant images, misaligned images
and unlabeled images, as shown in Fig. 1. Style-variant images
refer to the images with different illumination (light/dark),
quality (high/low), and tone (cold/warm). The images be-
tween different datasets change significantly in style. Even
in the same dataset, the style often changes due to different
shooting conditions. In existing person ReID datasets, most
bounding boxes of pedestrian images are manually calibrated,
which consumes a lot of human resources. However, when
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using automatic detection algorithms, such as DPM [16] and
Faster RCNN [17], to obtain the bounding box, they are
often cropped incorrectly. For these misaligned images, the
pedestrian is often not in the middle of the bounding box,
and some of them are even incomplete or occluded. We can
foresee that the style-variant and misaligned cases are also
ubiquitous in the target domain. Besides, we think that the
unlabeled images are also very valuable resources. It should
be noted that the unlabeled images here do not come from
the target domain, which is exactly different from the UDA
approaches. Nevertheless, they may still contain some plots or
clues similar to the images in the target domain. Based on the
above explanation, we believe that the generality of the model
can be improved by assimilating the three types of images
shown in Fig. 1.

The existing DG methods mainly focus on style-variant
images, while the misaligned and unlabeled images are often
ignored. In this paper, we consider three types of images
simultaneously during training. More importantly, as far as
we know, we are the first to tackle the DG person ReID
task using the unlabeled images. In this paper, MSMT17 [18]
dataset serves as the unlabeled augmented dataset in the source
domain.

A non-local convolutional block attention module (NL-
CBAM) and an attention adversary network (AAN) are de-
signed for assimilating the misaligned images. Different from
the previous attention modules [19, 20], our NL-CBAM is
only superimposed on the last convolutional block of bockbone
instead of all/multiple convolutional blocks, which greatly
reduces the complexity of the model. Excessive complexity
will result in overfitting of the model in the source domain, and
the generality in the target domain will be reduced accordingly.
In addition, NL-CBAM can capture the remote dependence of
each position in the feature maps, and the global alignment
features are obtained by the subsequent global average pooling
(GAP). The global alignment features are constantly improved
as AAN corrects NL-CBAM. An attention adversary differ-
ence loss is proposed for attention correction. Most previous
alignment methods [21–23] are based on body patch matching.
They often perform poorly for the incomplete and occlusion
cases shown in Fig. 1, because some body patches are missing.
In contrast, the technique that improves global alignment
features by attention correction is more universal, and it is
more conducive to tackle the diverse misalignment scenarios
in the target domain.

A progressive augmentation memory is designed for as-
similating the unlabeled images. It encapsulates pseudo la-
bel estimation internally. It is very suitable for real-world
DG scenario due to its scalability. Unlike the pseudo label
estimation methods [2–4, 8] in UDA, once new unlabeled
samples are added to the training, all the pseudo labels will
be re-estimated. The progressive augmentation memory retains
the last state of estimation, so that the pseudo labels of new
unlabeled samples can be estimated based on the current state.
The reliable pseudo samples are fed back as labeled samples,
so as to augment the style-variant and misaligned samples to
achieve progressive learning. A labeling-guide discriminative
embedding loss is proposed for progressive learning. With the

increase of assimilated unlabeled images, the generality of the
model will be improved accordingly.

Instead of designing a specific feature extractor that is robust
to style shift as in most previous DG methods [9, 10, 12–14],
we use the existing ResNet50 as the backbone for appear-
ance modeling, and propose a data assimilation meta-learning
(DAML) procedure to train the proposed network, making it
learn to assimilate style-variant images. The proposed DAML
procedure is inspired by meta-learning domain generalization
(MLDG) [24]. MLDG proposes to split each mini-batch into
a meta-train set and a meta-test set, and simulates train/test
domain shift on them to improve the generality. Although it is
a homogeneous DG method, we can still use labeled samples
and reliable pseudo samples with the same label to simulate
domain shift. In this paper, we use the same batch split as
MLDG. Different from MLDG, considering the interaction
among the components, the back propagation of the network
adopts a piecewise optimization strategy.

Our contributions can be summarized as the following:
• We propose a data assimilation network to tackle the DG

person ReID task by assimilating three types of images.
In particular, we add an unlabeled augmented dataset to
the source domain to tackle this task.

• We design the NL-CBAM for assimilating the misaligned
images, and introduce the AAN to correct it. The global
alignment features are constantly improved as AAN cor-
rects NL-CBAM. An attention adversary difference loss
is proposed for attention correction.

• We design a scalable progressive augmentation memory,
which enables the network to assimilate the unlabeled
images by progressive learning. A labeling-guide dis-
criminative embedding loss is proposed for progressive
learning.

• We form a DAML procedure to train the network, making
it learn to assimilate the style-variant images. In order to
optimize each component of the network more reason-
ably, back propagation is implemented with a piecewise
optimization strategy.

II. RELATED WORK

A. Single-Dataset Person ReID

Recent single-dataset person ReID approaches are dominat-
ed by the fully supervised models [20–23, 25–31]. They are
trained and tested on the same dataset. These methods are
dedicated to eliminating the adverse effects of view [25, 30],
misalignment [20–23, 31], deformation [26–29], etc. on person
ReID in a single-dataset. Some of them can even eliminate
multiple adverse effects. For example, Liu et al. [32] propose
a multi-scale triplet network to tackle the image variations
such as low resolution, pose changes, occlusion, and so on.
It is gratifying that they have achieved outstanding results.
However, the gap between different datasets is large, especially
in image style, which can be seen from the top of Fig.
1. Therefore, these state-of-the-art models often generalize
poorly when applied directly to a new dataset without fine-
tuning. This had led to the research directions of cross-dataset
UDA and DG person ReID.
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TABLE I
SUMMARY OF THE DG METHODS.

Methods Categories Comments*
MMFA-AAE [9] Multi-dataset Introduces a MMD measure to align the distributions across multiple domains
DIMN [11] Multi-dataset Designs a DIMN to produce a classifier using a single shot
DualNorm [12] Multi-dataset Jointly normalizes style and content statistics by IN and BN
SNR [13] Single-dataset Filters out style variations by IN, and then restitutes the removed information
CBN [14] Single-dataset Forces the data to fall onto the same subspace with the camera-based BN
MuDeep [10] Single-dataset Learns discriminative appearance features at multiple spatial scales and locations
QAConv [15] Single-dataset Formulates person image matching directly in deep feature maps
This paper Both of them Proposes a data assimilation network to assimilate three types of images to improve generality

*Abbreviations: MMD: maximum mean discrepancy, IN: instance normalization, BN: batch normalization.

B. Cross-Dataset UDA Person ReID

UDA approaches assume that massive unlabeled data can
be obtained from the target domain. The information extract-
ed from these unlabeled data can help the model trained
in the source domain adapt to the target domain. Among
them, both [7] and [33] use generative adversarial networks
(GANs) to generate additional training images for style trans-
fer between different domains. Unlike [7], [33] decomposes
the complicated cross-domain transfer into sub-transfers by
factors, including illumination, resolution and camera view etc.
[1, 5, 6] are committed to learning domain invariant features.
[1] decomposes feature invariance into exemplar-invariance,
camera-invariance and neighborhood-invariance, [5] unifies a
local one-hot classification and a global multi-class classifi-
cation into a deep network, and [6] proposes a Dissimilarity-
based Maximum Mean Discrepancy (D-MMD) loss to learn
domain invariant features. Moreover, some methods [2–4, 8]
focus on pseudo label estimation. They assign pseudo labels
to unlabeled samples through different clustering approachs,
which increases the diversity of labeled samples in the source
domain. For example, [4] proposes an augmented discrimina-
tive clustering (AD-Cluster) method to increase the diversity
of sample clusters, which greatly improves the discrimination
capability of ReID model. Compared with DG methods, UDA
approaches are relatively poor in practicability, because they
still need to collect unlabeled images from the target domain.

C. Cross-Dataset DG Person ReID

Previous DG person ReID methods mainly fall into two
categories according to the number of datasets in the source
domain. One is the multi-dataset DG methods [9, 11, 12],
and the other is the single-dataset DG methods [10, 13–
15]. The former trains the model on 5 large-scale datasets
(CUHK02 [34], CUHK03 [35], CUHK-SYSU PersonSearch
[36], Market1501 [37] and DukeMTMC-reID [38]), and tests
on 4 small benchmarks (VIPeR [39], PRID [40], GRID [41]
and i-LIDS [42]). The latter is mainly the transfer between
3 large-scale datasets (Market1501 [37], DukeMTMC-reID
[38] and MSMT17 [18]). The principles of these methods
are summarized in Table I. In this paper, we considers both
multi-dataset and single-dataset cases. Our solution is quite
different from the existing DG methods. We focus on three
types of images that are challenging but valuable for DG

person ReID, and improve the generality by assimilating them.
Besides, we add an unlabeled augmented dataset (MSMT17)
to the source domain to prove the feasibility of assimilating
unlabeled images to improve generality.

III. DATA ASSIMILATION NETWORK

A. Overview
The training model of the proposed network in the source

domain is shown in Fig. 2, while there are no AAN and
progressive augmentation memory when testing in the target
domain. The data flow in the network is as follows: three
types of images are simultaneously loaded into the network
and pass through backbone and NL-CBAM in sequence.
Then, the style-variant data and misaligned data pass through
AAN, and finally the possibility vectors are obtained via
the classifier. The unlabeled data is stored in progressive
augmentation memory. After pseudo label estimation, reliable
pseudo samples can be used to augment the style-variant
images and misaligned images. The training of the network
follows the DAML procedure.

In Fig. 2, Lc and R are calculated for appearance modeling
of labeled and unlabeled images, respectively. Laad is calculat-
ed for attention correction, and Llde is calculated for progres-
sive learning. Lc is the cross-entropy loss, Lc = −yT log ŷ,
and R is the entropy-based regularization, R = ŷT ln ŷ. ŷ
denotes the output possibility vector of the classifier. For the
training of labeled images, Llde = 0, and R = 0. For the
training of unlabeled images, Lc = 0, and Laad = 0.

Traditional optimization loss is often defined as the weight-
ed sum of all losses:

Ltotal = Lc + λ1Laad + λ2Llde + λ3R, (1)

where {λ1, λ2, λ3} are the weighting coefficients of losses
{Laad, Llde, R}. In this work, the back propagation of the
model adopts a piecewise optimization strategy. We use Gb,
Ga and Gm to represent the parameters of backbone, NL-
CBAM+AAN and progressive augmentation memory, respec-
tively. Gm = {α, α′, β}. From the three feedforward branches
shown in Fig. 2, it can be clearly seen that the backbone
is shared among the three branches, while NL-CBAM+AAN
and progressive augmentation memory are independent. Based
on the interaction among the components, the optimization
losses corresponding to [Gb, Ga, Gm] are expressed as [Ltotal,
λ1Laad, λ2Llde].
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B. NL-CBAM and AAN

In this section, we design the NL-CBAM based on existing
CBAM [19], making it more adapted to our DG task, and
introduce the AAN to constantly correct NL-CBAM to further
improve the global alignment features.

1) NL-CBAM: It consists of a channel attention agent
and a non-local spatial attention agent. Spatial attention is
concatenated behind channel attention.

Channel attention focuses on different channels of the
images. It re-weights the channels of feature maps by selecting
more informative ones and suppressing less useful ones. A
detailed architecture of the channel attention agent is shown
at the top of Fig. 3(a). The feature maps are squeezed by
global average pooling (GAP) and global max pooling (GMP)
on space axis, and then activated by a shared bottleneck fully-
connected block. Here, we replace the multi-layer perception
(MLP) [19] in CBAM with the bottleneck structure to limit
model complexity. Finally, we add the activated two and get

the channel attention through non-linear mapping. Given the
feature maps X ∈ R(H×W×C), where C denotes the channel
and H ×W is the spatial size, the channel attention AC can
be expressed as

AC = σ(WC
2 max(0,WC

1 XGAP ) +WC
2 max(0,WC

1 XGMP )), (2)

where XGAP and XGMP are the squeezed feature maps of
X by GAP and GMP, respectively. WC

1 ∈ RC
r ×C and WC

2 ∈
RC×Cr are the parameters of two FC layers, respectively. The
first FC layer reduces the input dimension C by a ratio r,
while the second FC layer restores the dimension. Besides,
max(0, ·) is the ReLU activation function that exists in the
first fully-connected layer. σ(·) denotes the sigmoid function.
Channel attention AC acts on the feature maps X via channel-
wise multiplication X ′ = X �AC .

Non-local spatial attention focuses on the position and
the dependence between any two positions in the feature map.
It guides the model to focus on most salient regions in the
feature maps and discard irrelevant information. To capture the
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remote dependence between any two positions to enhance the
generality of spatial attention, we embed non-local operation
[43] into spatial attention, replacing the convolution operation
in original CBAM. A detailed architecture of the non-local
spatial attention agent is shown at the bottom of Fig. 3(a).
First, the feature maps are squeezed by two GAP and one
GMP on channel axis, following by a flattening operation.
One GAP branch passes through a bottleneck fully-connected
block, while the other two pass through a shared bottleneck
fully-connected block. The dimension reduction rate r of the
above two bottleneck blocks is the same as that in channel
attention. Then non-local operation is performed, and finally
we obtain the non-local spatial attention. Given the feature
maps X ′, the non-local operation and the non-local spatial
attention AS can be expressed as follows

A = σ(WS
2 max(0,WS

1 XGAP )),
B = σ(WS

2 max(0,WS
1 XGMP )),

C = σ(WS
4 max(0,WS

3 XGAP )),
S = softmax(ATB),
AS = SC,

(3)

where WS
1 ,W

S
3 ∈ R

H×W
r
×(H×W ), WC

2 ,W
S
4 ∈ R(H×W )×H×W

r

are the parameters of FC layers which are similar to that in
channel attention. A,B,C, S are intermediate variables. The
non-local spatial attention AS encodes the salient information
of feature maps X ′ via element-wise production X ′′ = X ′ �
AS .

2) Attention Adversary Network: AAN is composed of
a competition mechanism and an attention adversary agent.
There is an attention branch and an adversary branch in the
competition mechanism. The former is backbone+NL-CBAM,
and the latter is backbone. They are alternately trained so that
they can promote each other. Attention adversary agent is used
to produce attention adversary difference loss Laad to correct
NL-CBAM.

Competition mechanism. The detailed competition mech-
anism is shown at the top of Fig. 3(b). The input image is
classified by the model through attention branch and adversary
branch. Once the branch with high accuracy wins, then the
parameters of the other branch will be optimized by the
corresponding loss, so that it can win in the next competition.
We split the above process into the following two stages:
• Stage 1: if the adversary branch wins, freeze Gb, optimize
Ga using λ1Laad.

• Stage 2: if the attention branch wins, freeze Ga, optimize
Gb using Ltotal.

The parameter Gb in two branches is shared during training.
Generally speaking, at the beginning of training, the adver-
sary branch behaves better because of its lower complexity.
Later, attention branch behaves better because of its stronger
recognition ability for the misaligned images.

Attention adversary agent is designed to evaluate the
difference between the refined feature map Aat and class
activation map (CAM) Aad of the adversary, and produce
the attention adversary difference loss Laad to correct NL-
CBAM in stage 1. Because both Aat and Aad locate the
salient image regions on the feature maps, the saliency of

these regions should be consistent as soon as possible in the
competition. The detailed architecture of attention adversary
agent is shown at the bottom of Fig. 3(b). Aat, Aad, and Laad
can be expressed as

Aat = X̄ �AC �AS ,
Aad = CAM(X),
Laad = (σ(Aat +Aad))

T (σ|Aat −Aad|),
(4)

where X̄ denotes the average of the feature maps on channel
axis. CAM(·) denotes the CAM operation. It identifies the
importance of the image regions by projecting the fully-
connected weights between the output feature and the desired
category back to the feature maps. The 1 × 1 × c convolu-
tion kernel parameters implied in CAM operation are also
optimized by Laad, where c is the number of classes. The
detailed derivation of CAM can be found in Reference [44].
|Aat − Aad| is the absolute deviation between Aat and Aad,
and Aat + Aad increases this deviation in salient regions of
both Aat and Aad.

C. Progressive Augmentation Memory

In this section, we will explain how progressive augmen-
tation memory stores useful information and how to achieve
progressive learning.

4 6 8 1 7 2 8 1 5 6

k
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FC-2045

fM

lM
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Unlabeled samples

Iteration 100

Iteration 200

 '  
FC-2045

' 

lde lde

k  

Fig. 4: The structure of memory and the pipeline of pseudo label estimation.

The structure of progressive augmentation memory and
the pipeline of pseudo label estimation is shown in Fig.
4. The memory consists of a labeled memory M and an
unlabeled memory M ′. M is composed of a labeled feature
memory Mf that stores features and a label memory M l that
stores the corresponding labels. Similarly, M ′ is composed of
an unlabeled feature memory M ′

f that stores features and
a pseudo label memory M ′

l that stores the corresponding
pseudo labels. The number of slots of M and M ′ are s1 and
s2, respectively.

During training, the information (features, labels) of labeled
samples are written to M , and the information (features,
pseudo labels) of unlabeled samples are written to M ′. The
pseudo labels are estimated from M , and updated as M
changes. A labeling-guide discriminative embedding loss Llde
is proposed to improve pseudo label estimation. It guides
M to retain the information of labeled samples useful for
estimation, and M ′ to retain the information of reliable pseudo
samples. The reliable pseudo samples are fed back as labeled
samples, so as to augment the style-variant and misaligned

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 24,2022 at 01:00:20 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3153348, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 6

samples to achieve progressive learning. In this work, we
utilize Least Recently Used Access (LRUA) [45] to refine s1
labeled samples useful for pseudo label estimation from all
labeled samples, and write their information to M , refine s2
reliable pseudo samples from all unlabeled samples, and write
their information to M ′.

Writing into labeled memory. LRUA specifies that the
information is written to (1) the last used slot, updating the
memory with newer, possibly more relevant information, or (2)
the least-used slot, preserving recently encoded information.
For the t-th labeled sample, its feature kt and label yt are
written to Mf

t and M l
t respectively via the following weights.

The usage weight Wu
t and the least-used weight W lu

t are used
to control the write options mentioned above. The evaluation
weight W e

t is used to evaluate the importance of each slot of
Mf
t to kt. The write weight Ww

t is used to write kt to Mf
t .

The derivation of writing is explained in detail below.
The usefulness of a slot is determined by the write and

evaluation operations, and is also affected by the previous
state. So Wu

t is defined as

Wu
t = κ1W

u
t−1 +W e

t +Ww
t , (5)

where κ1 is the decay factor. We regard the slot that is least
important to kt as the least-used slot, so W lu

t is defined as

W lu
t (i) =

{
1
0

if Wu
t (i) = min(Wu

t )
otherwise

. (6)

W e
t evaluates the importance of each slot by calculating the

distance between kt and each unit of Mf
t , and then find the

index of M l
t where yt is written. W e

t and the write index I
are expressed as

W e
t (i) =

exp(cos(kt,M
f
t (i)))

s1∑
i=1

exp(cos(kt,M
f
t (i)))

,

I = find(max(W e
t ),M l

t),

(7)

where cos(·) denotes the cosine distance. max(·) returns the
maximum value of a vector. find(a, b) returns the index of b
that meets the condition a. Ww

t should consider not only the
importance of each slot of Mf

t , but also the write options.
Ww
t is defined as

Last used slotLeast-used slot

(a) σ(α) and σ(α′)

0 500 1000 1500 2000 2500 3000 3500 4000
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0.8
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lu

e

β

(b) β

Fig. 5: The schematic curve of σ(α), σ(α′), and the variation curve of β
training in Market1501 dataset.

Ww
t = σ(α)W e

t−1 + (1− σ(α))W lu
t−1, (8)

where σ(α) = 1
1+e−α , and α is a learnable scalar to interpolate

between the weights. Its effect on write options is shown in

Fig. 5(a). The new content tends to be written either to the
last used slot (σ(α) → 1) or the least-used slot (σ(α) → 0).
Before writing into M , the least-used slots are cleared. The
clearing operation is as follows

Mf
t (i) = Mf

t−1(i) · (1−W lu
t−1(i)), ∀i,

M l
t(i) = M l

t−1(i) · (1−W lu
t−1(i)), ∀i.

(9)

Finally, kt and yt are written into Mf
t and M l

t , respectively.

Mf
t (i) = Mf

t−1(i) +Ww
t (i)kt, ∀i,

M l
t(i) =

{
yt, ∀i, i = I
M l
t−1(i), ∀i, i 6= I

.
(10)

Writing into unlabeled memory. Before writing k′t to
M ′

f
t , we first obtain its pseudo label y′t from the label

memory M l
t via the retrieval weight W r

t . We find the index
Ir where the stored feature is most similar to k′t in Mf

t , and
then assign the label with index Ir in M l

t to y′t. The above
process can be expressed as

W r
t (i) =

exp(cos(k′t,M
f
t (i)))

s1∑
i=1

exp(cos(k′t,M
f
t (i)))

,

Ir = find(max(W r
t ),M l

t),

y′t = M l
t(I

r).

(11)

We have similar weights and write index (W ′ut , W ′lut , W ′et ,
W ′

w
t and I ′) to write k′t and y′t to M ′ft and M ′lt, respectively.

The writing process is similar to Eq. (5)∼(10). It should be
noted that the definition of W ′et is slightly different. Here W ′et
is defined as

W ′
u
t = κ2W

′u
t−1 + βW ′

e
t +W ′

w
t , (12)

where κ2 is the decay factor, similar to κ1. β is a learnable
confidence factor that represents the trust in the pseudo
labels stored in M ′

l
t. Its variation curve during training is

shown in Fig. 5(b). It can be seen that with the increase of
training samples, the credibility of the pseudo labels increase
correspondingly, and finally approaches the real labels. The
schematic curve of σ(α′) is also shown in Fig. 5(a), which is
similar to σ(α).

Progressive learning. After writing, the information of
labeled samples useful for pseudo label estimation is retained
in M , while the information of the reliable pseudo samples
is retained in M ′. Once new unlabeled samples are added to
the training, their pseudo labels can be estimated based on the
current state of M , and M ′ is updated accordingly. In order
to improve the pseudo label estimation to further improve the
progressive learning, Llde is proposed based on the following
two considerations:

(1) We should ensure that the inter-class distance of the
features in Mf is large enough, so that the pseudo label
estimation is meaningful. When assigning pseudo label y′t to
k′t, we divide the samples stored in M into positive samples
and negative samples according to their similarity to k′t. The
samples labeled y′t in M are regarded as positive samples,
and the others as negative samples. Accordingly, we construct
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a positive set P and a negative set N as follows

P = {i|M l
t(i) = y′t, ∀i},

N = {i|M l
t(i) 6= y′t, ∀i}.

(13)

(2) Some previously written pseudo labels are obviously
wrong, which is not conducive to progressive learning. They
have the same pseudo label as k′t, but their features are not
sufficiently similar to k′t. Or they have the different pseudo
label from k′t, but their features are sufficiently similar to
k′t. Thereby, we construct a false positive set FP and a false
negative set FN as follows

FP = {j|M ′lt(j) = y′, W ′
e
t (j) /∈ max(W ′

e
t , n)},

FN = {j|M ′lt(j) 6= y′, W ′
e
t (j) ∈ max(W ′

e
t , n)},

(14)

where n is the number of pseudo samples labeled y′ in M ′.
max(v, n) returns the largest n elements in vector v. Before
writing to M ′, the slots that store these false pseudo samples
are cleared by M ′ft (j) = 0,M ′

l
t(j) = 0,∀j ∈ FP ,FN .

Then we formulate the labeling-guide discriminative em-
bedding loss as

Llde = − log
P

P +N
− β log

FP

FP + FN

, (15)

where 
P = 1

|P|
∑

i∈PW
r
t (i),

N = 1
|N|

∑
i∈N W

r
t (i),

FP = 1
|FP |

∑
j∈FP

W ′
e
t (j),

FN = 1
|FN |

∑
j∈FN

W ′
e
t (j).

(16)

The first term of Eq. (15) increases the discrimination
of the features in M , which is conducive to pseudo label
estimation, while the second term reduces the error rate of
estimation, which makes the pseudo samples retained in M ′

more reliable. Since the pseudo labels are estimated according
to the similarity between the features of unlabeled samples and
the features in M , the discrimination of the features in M ′

are also increased accordingly. The improvement of feature
discrimination can be seen clearly from Fig. 4.

D. Data Assimilation Meta-Learning

The DAML procedure enables the network to learn to
assimilate the style-variant images by simulating the style shift
within each mini-batch. Here, each mini-batch can be regarded
as a DG subtask. To produce more subtasks that contain differ-
ent styles of images, all the datasets (including MSMT17) in
the source domain are fused together, the samples are shuffled
between each epoch, and the number of epochs is set relatively
larger than that of conventional convolutional neural networks
(CNN).

During training, the mini-batch S is equally split into a
meta-train set S and a meta-test set S̃, each of which has
Nm samples. Accordingly, each iteration is divided into two
stages: meta-train and meta-test. In this work, we follow the
meta-optimization objective calculation and parameter update
in MLDG [24], and implement back propagation with our
proposed piecewise optimization strategy. Since MLDG is a
homogeneous DG method, we put the feedback reliable pseudo
samples and the labeled samples with the same class into S̃ and

S respectively, so as to simulate the style shift in a mini-batch.
The parameters [Gb, Ga, Gm] are optimized by the losses
[Ltotal, λ1Laad, λ2Llde] in each iteration. The procedure of
DAML is shown in Algorithm 1. The meta-optimization

Algorithm 1: Data Assimilation Meta-Learning Procedure
Require: Source domain DS

1: Init: Meta-parameters Gb, Ga, Gm.
Hyperparameters r, s1, s2, κ1, κ2, λ1, λ2, λ3, η, δ1, δ2.

2: for ite in iterations do
3: split: mini-batch S → S and S̃
4: meta-train:
5: Compute the losses L(S;Gb), L(S;Ga), L(S;Gm)

6: Update Gb
′

← ∂
∂GbLtotal

7: Update Ga
′
← ∂

∂Gaλ1Laad
8: Update Gm

′
← ∂

∂Gmλ2Llde
9: meta-test:

10: Compute the losses L(S̃;Gb
′
), L(S̃;Ga

′
), L(S̃;Gm

′
)

11: Update Gb ← ∂

∂Gb′
Ltotal

12: Update Ga ← ∂
∂Ga′ λ1Laad

13: Update Gm ← ∂
∂Gm′ λ2Llde

14: end for

TABLE II
NOTATION DEFINITION OF META-PARAMETERS AND HYPERPARAMETERS.

Gb training weight of ResNet50 backbone

Ga
training weight of NL-CBAM and AAN
including WS

1 ∼WS
4 ,W

C
1 ,W

C
2 in NL-CBAM,

and FC parameters in AAN
Gm learnable scalar α, α′, and confidence factor β
c, N number of classes and images
r dimension reduction ratio of NL-CBAM

s1, s2 number of slots of M and M ′

κ1, κ2 decay factor of usage weights in M and M ′

λ1, λ2, λ3 coefficient of loss Laad, Llde and regularization R
η balance parameter of meta-optimization objective

δ1, δ2 step size of meta-train and meta-test

objective in each mini-batch is formulated as

argmin
G

=

meta−train loss︷ ︸︸ ︷
1

Nm

Nm∑
i=1

L(G) +η

meta−test loss︷ ︸︸ ︷
1

Nm

Nm∑
i=1

L(G′)

= 1
Nm

Nm∑
i=1

(L(G) + ηL(G′))

, (17)

where L represents the losses that appear in Algorithm 1, such
as L(S;Gb), while G represents the meta-parameters, such as
Gb. η is the balance parameter between the two stages. The
parameters in meta-train stage and meta-test stage are updated
with the stochastic gradient descent (SGD) optimizer

G′ = G − δ1L′(G),

G = G − δ2 ∂(L(S,G)+ηL(S̃,G
′))

∂G ,
(18)

where δ1 and δ2 are the step size of meta-train and meta-test,
respectively. The meta-parameters and hyperparameters used
in Algorithm 1 are listed in Table II.
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TABLE III
CHARACTERISTICS OF THE DATASETS USED IN THIS PAPER.

Datasets Identities Cameras Images Labeled method Description
CUHK02 [34] 1816 10 7264 Hand The image quality is relatively good.

CUHK03 [35] 1467 10 13164 Hand/DPM Person detection quality is relatively good.

CUHK-SYSU PersonSearch [36] 8432 - 18184 Hand It mimics the real scenario of person search.

Market1501 [37] 1501 6 32217 Hand/DPM Bounding box quality is worse than CUHK03.

DukeMTMC-reID [38] 1812 8 36441 Hand It is a heavily labeled (full frames) dataset.

VIPeR [39] 632 2 1264 Hand Most challenging zero-shot dataset.

PRID [40] 934 2 24541 Hand Some trajectories are not well-synchronized.

GRID [41] 1025 8 1275 Hand The image quality is fairly poor.

i-LIDS [42] 300 2 42495 Hand It has extremely heavy occlusion.

MSMT17 [18] 4101 15 126441 Faster RCNN It contains lots of complicated scenarios.

IV. EXPERIMENTS

A. Datasets and Evaluation Protocols

Datasets. The datasets in the source domain should be
large enough to contain a variety of style-variant, misaligned
and unlabeled images. In this way, the trained DG model
has robust generality. To make the test more convincing, the
selected datasets in target domain should also have similar
style-variant and misaligned scenarios. The characteristics of
each dataset used in this paper are summarized in Table III,
which presents information about the number of identities and
images, the number of cameras, the labeled method and a
brief description. Among them, MSMT17 dataset serves as
the unlabeled augmented dataset in the source domain.

Evaluation protocols. For source/target split, the difference
between our method and the existing DG methods [9, 11–15]
is that our source domain contains an unlabeled augmented
dataset MSMT17. The images of MSMT17 dataset in the
source domain are unlabeled, and the others are labeled.
To thoroughly measure our model and other baselines, we
adopt the cumulative matching characteristic (CMC) and mean
average precision (mAP) as the evaluation metrics.

B. Implementation

Model. The ImageNet pre-trained ResNet50 is selected as
the backbone of our model. The input images are resized
to 224 × 224. The dimension reduction ratio r in attention
branch is set to 12. The last layer of the backbone outputs
a 2048 dimension vector, of which 2045 dimension is stored
as the key in the feature memory Mf or M ′f , and other 3
are learnable scalars α1, α2, and confidence factor β. The
number of slots s1 and s2 are set according to the empirical
value. In this work, 9000 and 5500 are empirical values given
for parameter analysis. The decay factor of usage weights κ1
and κ2 are equal to 0.99. The weighting coefficients of losses
{Laad,Llde,R} are set to {0.6, 0.5, 0.2}. The dropout rate
and the batch size are set to 0.5 and 64, respectively, and
the model is trained for 500 epochs. The proposed network is
implemented using the Pytorch framework on a server with 4
GeForce RTX 3090 GPUs and 96G RAM.

Optimization. The model training follows DAML proce-
dure. The SGD optimizer is used with a momentum of 0.9

and the weight decay is set to 0.0005. We adapt a warm-
up strategy to bootstrap the network to learn smoothly. The
meta-train and meta-test step sizes δ1, δ2 at the t epochs are
computed as:

δ1, δ2 =


10−4 × ( t

4
+ 1), 0 ≤ t ≤ 50

10−3, 50 < t ≤ 200
10−4, 200 < t ≤ 350
10−5, 350 < t ≤ 500

(19)

The balance parameter η between meta-train and meta-test
loss is set to 1.0.

C. Comparison Against State-of-the-art Methods

To fully prove the superiority of our DG model, we conduct
various experiments to compare with three kinds of methods:
DG, UDA and fully supervised (S) methods. It should be
noted that the latter two cannot be our direct competitors,
because they grasp more information of the target domain.
They are used to contextualize our results and set off the
superiority of our model. Since previous DG methods have
never used unlabeled images to train the models, in order to
make fair comparisons with them, we also train our proposed
network without (w/o) MSMT17 dataset, and the progressive
augmentation memory is removed accordingly.

1) Comparison With DG Methods: Firstly, we compare the
proposed method with the multi-dataset DG methods, and the
comparison results are shown in Table IV. Our method (w/o
MSMT17) follows the source/target domain split of methods
[9, 11, 12]. The datasets in the source domain are CUHK02,
CUHK03, Market1501, DukeMTMC-reID and CUHK-SYSU
PersonSearch. The datasets in the target domain are VIPeR,
PRID, GRID and i-LIDS. Our method (with MSMT17) has
one more unlabeled MSMT17 dataset in the source domain. It
can be seen that our method is obviously superior to the other
three studies. The proposed method (w/o MSMT17) attains a
0.3% to 2.3% increase in Rank1 accuracy, only falls behind
MMFA-AAE [9] by 8.2% when tested on i-LIDS dataset.
In addition, it outperforms DIMN [11] on PRID (+23.5%
Rank1) and GRID (+18.4% Rank1) datasets by a large margin.
This success proves that it is effective to improve generality
by assimilating style-variant and misaligned images. Besides,
after data augmentation with the unlabeled MSMT17 dataset,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 24,2022 at 01:00:20 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3153348, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

TABLE IV
COMPARISON WITH THE MULTI-DATASET DG METHODS ON VIPER, PRID, GRID AND I-LIDS (%). R: RANK. -: NO REPORT. THE FIRST/SECOND BEST

RESULTS ARE MARKED IN RED/BLUE.

Method Venue VIPeR PRID GRID i-LIDS
R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP

MMFA-AAE [9] TIP21 58.4 - - - 57.2 - - - 47.4 - - - 84.8 - - -
DIMN [11] CVPR19 51.2 70.2 76.0 60.1 39.2 67.0 76.7 52.0 29.3 53.3 65.8 41.1 70.2 89.7 94.5 78.4
DualNorm [12] arXiv19 53.9 - - - 60.4 - - - 41.4 - - - 74.8 - - -
Ours (w/o MSMT17) This paper 59.1 70.7 77.8 60.4 62.7 77.1 84.6 67.9 47.7 62.0 71.4 53.5 76.6 91.2 95.4 81.7
Ours (with MSMT17) This paper 62.4 74.3 80.7 61.6 66.4 84.9 90.3 71.1 50.8 65.4 74.0 57.7 80.9 93.2 96.8 83.1

TABLE V
COMPARISON WITH THE SINGLE-DATASET DG METHODS ON MARKET1501 (M) AND DUKEMTMC-REID (D) (%). R: RANK. -: NO REPORT. THE

FIRST/SECOND/THIRD BEST RESULTS ARE MARKED IN RED/BLUE/GREEN.

Methods Venue Source Target: DukeMTMC-reID Source Target: Market1501
R1 mAP R1 mAP

MuDeep [10] TPAMI20 M 47.6 27.7 D - -
SNR [13] CVPR20 M 55.1 33.6 D 66.7 33.9
CBN [14] ECCV20 M 58.7 38.2 D 72.7 43.0
QAConv [15] ECCV20 M 54.4 33.6 D 62.8 31.6
Ours (w/o MSMT17) This paper M 59.2 39.1 D 74.3 44.6
Ours (with MSMT17) This paper M 64.8 43.3 D 77.0 47.2

TABLE VI
COMPARISON WITH THE UDA METHODS ON MARKET1501 (M) AND DUKEMTMC-REID (D). (%). R: RANK. U: UNLABELED DATA. THE

FIRST/SECOND/THIRD BEST RESULTS ARE MARKED IN RED/BLUE/GREEN.

Method Venue Source Target: D Source Target: M
R1 mAP R1 mAP

SNR+MAR [13] CVPR20 M+D (U) 76.3 58.1 D+M (U) 82.8 61.7
AD-Cluster [8] CVPR20 M+D (U) 72.6 54.1 D+M (U) 86.7 68.3
DAL [7] TCSVT20 M+D (U) 75.2 57.3 D+M (U) 86.4 68.6
DCML [4] ECCV20 M+D (U) 79.3 63.5 D+M (U) 88.2 72.3
JVTC [5] ECCV20 M+D (U) 75.0 56.2 D+M (U) 83.8 61.1
D-MMD [6] ECCV20 M+D (U) 63.5 46.0 D+M (U) 70.6 48.8
ECN [1] CVPR19 M+D (U) 63.3 40.4 D+M (U) 75.1 43.0
PAST [2] ICCV19 M+D (U) 72.4 54.3 D+M (U) 78.4 54.6
SSG [3] ICCV19 M+D (U) 73.0 53.4 D+M (U) 80.0 58.3
Ours This paper M+D (U) 80.0 63.9 D+M (U) 86.6 70.8

Rank1 accuracy of our method is improved by 3.1% to 4.3%.
It proves that assimilating unlabeled images is also helpful to
improve generality.

Secondly, we also compare the proposed method with the
single-dataset DG methods, and the comparison results are
shown in the Table V. The trained models are generalized
from Market1501 to DukeMTMC-reID, or from DukeMTMC-
reID to Market1501. Our method (w/o MSMT17) follows
the source/target domain split of methods [13–15], while an
unlabeled MSMT17 dataset is added to the source domain in
the “with MSMT17” setting. It can be seen that the accuracy
of our method is slightly higher than the others. The proposed
method (w/o MSMT17) surpasses the third best CBN [14]
0.5% (Rank1) and 0.9% (mAP) when test on DukeMTMC-
reID dataset, and 1.6% (Rank1) and 0.6% (mAP) when test
on Market1501 dataset. Due to the lack of various style-variant
and misaligned scenarios, the improvement of our method in
the single-dataset domain generalization is obviously less than
that in multi-dataset domain generalization. Besides, Rank1
accuracy of our method is improved by 2.7% to 5.6% after
data augmentation. It once again proves the feasibility of
assimilating unlabeled images to improve generality.

2) Comparison With UDA Methods: We follow the UDA
experimental settings and compare the proposed method with
the UDA methods [1–8, 13] in Market1501 and DukeMTMC-
reID datasets. The comparison results are shown in Table VI.
In fact, it is a bit unfair to us because our model is designed
on the assumption that unlabeled data is not in the target
domain. Influenced by this assumption, we deliberately reduce
the complexity of the model. Nevertheless, our method still
achieves the best results when tested on DukeMTMC-reID
dataset, outperforming the sub-optimal DCML [4] by a small
margin (+0.7% Rank1, +0.4% mAP). Moreover, our method
is significantly better than the methods [1–3, 5, 6, 13], and
only falls behind the best DCML [4] by 1.6% and 1.5% in
Rank1 and mAP when tested on Market1501 dataset. This
proves that the idea of assimilating three kinds of images is
also applicable to UDA tasks.

3) Comparison With Supervised Methods: Recently, some
supervised methods have achieved outstanding results on some
large-scale datasets, such as Market1501 and DukeMTMC-
reID, but still perform poorly on small datasets. We compare
our method with these state-of-the-art supervised methods
[21–23, 25–29] (labeled S in Table VII) on four small datasets:
VIPeR, PRID, GRID and i-LIDS. Some of them have achieved

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 24,2022 at 01:00:20 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2022.3153348, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 10

TABLE VII
COMPARISON WITH THE FULLY SUPERVISED (S) METHODS ON FOUR SMALL DATASETS (%). R: RANK. -: NO REPORT. THE FIRST/SECOND BEST RESULTS

ARE MARKED IN RED/BLUE.

Type Method Venue VIPeR PRID GRID i-LIDS
R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP R1 R5 R10 mAP

S SSM [27] CVPR17 53.7 - 91.5 - - - - - 27.2 - 61.2 - - - - -
S OneShot [29] CVPR17 34.3 - - - 41.4 - - - - - - - 51.2 - - -
S SpindleNet [23] CVPR17 53.8 74.1 83.2 - 67.0 89.0 89.0 - - - - - 66.3 86.6 91.8 -
S MTDnet [26] AAAI17 47.5 73.1 82.6 - 32.0 51.0 62.0 - - - - - 58.4 80.4 87.3 -
S JLML [28] IJCAI17 50.2 74.2 84.3 - - - - - 37.5 61.4 69.4 - - - - -
S GOG [22] CVPR16 49.7 79.7 88.7 - - - - - 24.7 47.0 58.4 - - - - -
S CMDL [25] TPAMI16 66.4 90.3 95.9 - - - - - 30.9 56.9 67.8 - 45.1 66.7 79.2 -
S SRR MSTC [21] ICCV15 55.0 83.5 91.8 - - - - - 26.6 46.3 56.2 - - - - -

DG Ours (w/o MSMT17) This paper 59.1 70.7 77.8 60.4 62.7 77.1 84.6 67.9 47.7 62.0 71.4 53.5 76.6 91.2 95.4 81.7
DG Ours (with MSMT17) This paper 62.4 74.3 80.7 61.6 66.4 84.9 90.3 71.1 50.8 65.4 74.0 57.7 80.9 93.2 96.8 83.1

very high accuracy. The Rank1 of CMDL [25] on VIPeR
dataset attains 66.4%, and SpindleNet [23] on PRID dataset
attains 67.0%. Although they are unfair to our more challeng-
ing DG setting, our method is comparable to them and even
surpass them on GRID and i-LIDS datasets. Here we just use
S methods as references to set off the performance of our
proposed network.

4) Comparison of Model Complexity and Time Cost: In
addition to accuracy, we also compare the complexity and
time cost of the models. The comparison results are shown
in Table VIII. The compared models include the backbone
(ResNet50), CBN and QAConv. Among them, CBN uses the
same backbone as us, while QAConv uses the more com-
plex ResNet152. We obtain the GFLOPs (Giga Floating-point
Operations Per Second) and average training time (s/epoch)
when training in Market1501 dataset. It can be seen that the
proposed model has the highest complexity and the longest
training time. Although we design the NL-CBAM and AAN,
they are only superimposed on the last convolutional layer of
the network, and the complexity will not increase drastically.
We think that the complexity of the model mainly lies in the
operations inside the progressive augmented memory, such as
calculating the similarity of features.

TABLE VIII
COMPARISON OF MODEL COMPLEXITY AND TIME COST WHEN TRAINING

IN MARKET1501 DATASET.

Method GFLOPs s/epoch
ResNet50 5.267 32.609
CBN [14] 6.233 41.061

QAConv [15] 16.718 79.654
Ours 24.534 137.908

D. Ablation Study

1) The Effect of NL-CBAM and AAN on Generality:
To verify the effectiveness of NL-CBAM and AAN, we
compare the incomplete models with the full model in the
generalization experiment from Market1501 to DukeMTMC-
reID. The models are trained w/o MSMT17 dataset, and their
mAP curves are shown in Fig. 6. It can be seen that the
full model (B+NL-CBAM+AAN) achieves the best results
and performs much better than B (Backbone), which explains
the role of NL-CBAM+AAN in assimilating the misaligned

100 200 300 400 500
Epoch

15

20

25

30

35

40

m
AP

 (%
)

B
B+SA
B+NL
B+NL-CBAM
B+CBAM+AAN
B+NL-CBAM*+AAN
B+NL-CBAM+AAN

Fig. 6: Analysis of the effect of NL-CBAM and AAN components on
generality.

images. Comparing the B+NL curve and the B+S curve, it can
be seen that the generality of non-local operation is better than
that of spatial attention (SA), which inspires us to embed non-
local operation into attention module. Judging from the trend
of the curves in Fig. 6, the full model is obviously better than
B+CBAM+AAN, which proves that CBAM embedded with
non-local operation is more suitable for DG tasks. Compared
with the model without reducing the complexity (B+NL-
CBAM*+AAN), the generalization performance of the full
model has slight advantages, indicating the rationality of
reducing the complexity of the model in DG tasks. Moreover,
we can conclude that attention correction with Laad plays an
important role in domain generalization by comparing the full
model curve with the B+NL-CBAM curve.

2) The Scalability and Stability of Progressive Augmenta-
tion Memory: In order to prove the stability and scalability
of progressive augmentation memory, we feed the unlabeled
images of MSMT17 dataset to the network in increasing
proportions (p = 0, 0.25, 0.5, 0.75 and 1). The experimental
results on Market1501 and DukeMTMC-reID datasets are
shown in Fig. 7. The models trained at p = 0 and p = 1
proportions are the proposed models set at “w/o MSMT17”
and “with MSMT17”, respectively. As we can see from Fig.
7, with the increase of unlabeled data, the accuracy increases
accordingly. The mAP accuracy of Fig. 7(a) and (b) has
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Fig. 7: Evaluation of scalability and stability of progressive augmentation memory for generalizable person ReID.

TABLE IX
ANALYSIS OF THE EFFECT OF BATCH SPLIT AND PIECEWISE OPTIMIZATION IN DAML ON GENERALITY (%). R: RANK. BS: BATCH SPLIT. PO:

PIECEWISE OPTIMIZATION.

Method BS PO VIPeR PRID GRID i-LIDS
R1 mAP R1 mAP R1 mAP R1 mAP

DAML1 44.1 45.8 46.9 50.3 33.6 37.4 58.8 64.7
DAML2 X 59.9 58.5 64.8 69.1 47.5 53.6 76.7 78.0
DAML3 X X 62.4 61.6 66.4 71.1 50.8 57.7 80.9 83.1
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Fig. 8: Analysis of the effect of key hyperparameters on generality.
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Fig. 9: Visualization of attention heat maps. (Top): original images. (Middle): heat maps generated by CBAM. (Bottom): heat maps generated by our
NL-CBAM+AAN. The misaligned cases in Fig. 1 are framed in red.
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(a) M , Iteration 500 (b) M , Iteration 1000 (c) M ′, Iteration 500 (d) M ′, Iteration 1000

Fig. 10: t-SNE visualization of the features stored in M (a, b) and M ′ (c, d). Points of the same color represent features from the same identity.

been improved 4.2% and 2.6%, respectively. It shows that the
memory is scalable, and the generality of the model improves
steadily with the increase of assimilated unlabeled images.

3) The Effect of Batch Split and Piecewise Optimization
in DAML: To verify the effectiveness of batch split (BS) in
MLDG [24] and the proposed piecewise optimization (PO)
for our DG task, we have tried three settings of DAML to
train the network (with MSMT17). The comparison results on
VIPeR, PRID, GRID and i-LIDS datasets are shown in Table
IX. DAML1 updates the parameters with the conventional
SGD and optimizes the network directly with the total loss
Ltotal. Both DAML2 and DAML3 split the mini-batch into a
meta-train set and a meta-test set, and update the parameters
with Eq. (18). DAML2 optimizes the network directly with the
total loss Ltotal, while DAML3 optimizes the components of
the network with the piecewise loss [Ltotal, λ1Laad, λ2Llde].
DAML3 is the training setting of this work. As can be seen
from Table IX, the results of DAML2 are far better than those
of DAML1, which confirms that batch split in MLDG is very
suitable for our DG task. DAML3 outperforms DAML2 by
2% to 5.1% in mAP accuracy, which proves that our proposed
piecewise optimization strategy is more reasonable.

E. Parameter Analysis

In this section, we analyze the impacts of key hyperparame-
ters on generality. The corresponding experimental results are
shown in Fig. 8, where 8(a)∼(e) are the generalization experi-
ments from Market1501 to DukeMTMC-reID dataset, and Fig.
8(f) is the generalization experiment from DukeMTMC-reID
to Market1501 dataset. The source domain contains MSMT17
dataset in all the above experiments.

1) The Impact of Loss Coefficients λ1, λ2, and λ3: The
coefficients λ1, λ2, and λ3 assign weights to losses Laad, Llde,
andR respectively, representing their contribution. The impact
of their different values on generality are shown in Fig. 8(a),
(b), and (c). Here is how we determine their optimal values:
first, we fix λ2, and λ3 to 1, and then try different values of λ1
until we find the optimal one for generalization performance.
Next, we fix λ3 as 1, λ1 as the obtained optimal value, and try
different values of λ2 to find the optimal one. After that, we get
the optimal λ3 in the same way. Finally, we get λ1 = 0.6, λ2 =
0.5, λ3 = 0.2. At this point, the generalization performance
is the best, Rank1=64.8%, mAP=43.3%. We conclude that the
contribution of Laad is the largest, followed by Llde, a little
bit smaller than Laad, and R is the smallest.

2) The Impact of Dimension Reduction Ratio r: r is an
important parameter of the bottleneck structure. It improves
the generality of NL-CBAM by limiting model complexity.
We choose different values of r in the experiment to explain
its impact on domain generalization. The experimental results
are shown in Fig. 8(d). When r = 12, the generalization
performance of the model reaches the best. However, its
impact is not very significant. When r changes from 1 to 20,
the fluctuations of Rank1 and mAP are within 8.3% and 7.0%
respectively.

3) Are Slot Numbers s1 and s2 Sensitive to Generality?:
In theory, s1 and s2 are sensitive to generality, because they
limit the number of labeled samples useful for pseudo label
estimation and the number of reliable pseudo samples, respec-
tively. Although the memory is scalable, the performance of
the model can not be improved infinitely with the increase of
capacity. Because as long as the memory can hold enough
useful information, useless information tends to be cleared
and replaced with useful information. This is proved by the
generalization experiments on Market1501 and DukeMTMC-
reID datasets. As can be seen from Fig. 8(e) and (f), when
s1 < 9000 and s2 < 5500, as the memory capacity increases,
the generality increases but the sensitivity decreases. When
s1 ≥ 9000 and s2 ≥ 5500, the generality is basically not
affected by s1 and s2. Here, s1 = 9000 and s2 = 5500 are
empirical values, which may be slightly larger than the actual
value because our RAM is sufficient. The values of s1 and s2
depend on the number of labeled and unlabeled images in the
source domain.

F. Visualization

1) Attention Visualization: To qualitatively evaluate the su-
periority of NL-CBAM and AAN for DG tasks, we randomly
select some test images from two target datasets and draw
the heat maps, as shown in Fig. 9. These selected images
cover all the misaligned cases in Fig. 1. By observing the heat
maps obtained by our method and original CBAM method,
we can intuitively see that our method focuses more on the
pedestrian body and less on the occlusion or background. This
improvement should be attributed to the bottleneck structure,
non-local operation, and attention correction by AAN. It also
proves that our designed NL-CBAM+AAN is more suitable
for DG tasks than the original CBAM.

2) t-SNE Visualization: To further understand the effect of
Llde on the discrimination of features in M and M ′, we
utilize t-SNE [46] to visualize the stored feature vectors of
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M and M ′ by plotting them to the 2-dimension map. The t-
SNE maps shown in Fig. 10 are obtained from the test dataset
Market1501. From the changes Fig. 10(a)→(b) and (c)→(d),
it can be observed that the features labeled as the same class
in M and M ′ are gradually clustered together (from iteration
500 to iteration 1000), which proves that the discrimination of
the features stored in M and M ′ increases with the training.

V. CONCLUSION

We propose a data assimilation network to tackle the domain
generalization ReID task. We focus on three different types of
images that are challenging for our DG task: style variants,
misaligned and unlabeled images. Thereby we design the NL-
CBAM, AAN and a progressive augmentation memory, and
form a DAML procedure. Extensive experiments demonstrate
that our proposed network achieves higher performance than
the state-of-the-art DG methods, which proves that the idea of
assimilating these three types of images to improve generality
is very feasible. In the future, we will continue to mine the
important information of unlabeled images to improve the
generality of the model. Besides, we will extend this work
to the fields of face recognition and vehicle re-identification,
where the DG problem is prevalent.
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