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Abstract— The world of sports intrinsically involves fast and
complex events that are difficult for coaches, trainers and players
to analyze, and also for audiences to follow. In fast paced
team sports such as soccer, keeping track of all the players
and analyzing their performance after every match are very
challenging. Current scenarios for identifying the best talents
in soccer involve word-of-mouth and coaches/recruiters scouring
through hours of manually annotated videos. This is a very
expensive and laborious process and also biased by the nature of
the recruiters. To alleviate these problems, this paper proposes
an automated system that can detect, track, classify the teams
of multiple players and identify the player controlling the ball
in a video. The system generates three very important tactical
statistics for a player: 1) duration of ball possession, 2) number
of successful passes and 3) number of successful steals. This
is done by training Convolutional Neural Networks (CNNs) to
(a) localize and track the players on the field, (b) classify the
team of a detected player, (c) identify the player controlling the
ball and (d) pooling all the information extracted from (a), (b),
and (c) to generate the statistics of players. To overcome the
problem that the features learned from specific soccer matches
do not necessarily generalize across different soccer matches,
the paper proposes minimal amount of match-specific annotation
and data augmentation, using a variant of Deep Convolutional
Generative Adversarial Networks (DCGAN) to improve the
accuracy. Experimental results and ablation studies show that the
proposed approach outperforms the state-of-the-art approaches
in terms of accuracy and processing speed.

Index Terms— Convolutional neural networks, video analysis,
sports analytics, player statistics.

I. INTRODUCTION

IN RECENT years, automatic interpretation of sports has
gained a keen interest. It is a challenging task especially

when it involves rapid changes and long-term dynamics.
To date most of the applications for providing sports analysis
and player training from videos are carried out manually. This
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TABLE I

STATISTICS OF THE NUMBER OF MALE AND FEMALE SOCCER PLAYERS IN

HIGH SCHOOL, NCAA* AND MLS* [2]

requires lots of hours spent watching videos and annotating
them. Computer vision and machine learning play a key role
in the world of sports in areas such as player detection, player
tracking, action recognition and player analysis.

Soccer is one of the most popular sports played by high
school students in the USA. According to a survey conducted
by Ranker.com [1] and Statista.com [2] 846,844 (456,362 boys
and 390,482 girls) high school students played soccer during
the year 2017/18. From this only 9% of the boys and 11.9%
of the girls receive scholarship to go to college which makes
it extremely competitive.

Table I shows the statistics of the number of male and
female soccer players in high school, the National Colle-
giate Athletic Association (NCAA) and the Major League
Soccer (MLS) for the years 2011 - 2019. After graduating
from high school, less than 6% of soccer players get qualified
for the NCAA. The NCAA consists of three tiers namely:
Division 1, Division 2 and Division 3. Most of the Major
League Soccer (MLS) recruiters seek out only the players in
Division 1 and Division 2 and less than 100 of them qualify
to become pros in the MLS every year.

The most common reason for players not qualifying for
the NCAA or other soccer clubs is that coaches do not have
enough time to observe the performance of every player.
To alleviate this problem, we propose an automated system
that can analyze the performance of all the soccer players,
identify the player controlling the ball in a video and generate
the tactical statistics of each player.

In team-based sports, such as soccer, talent identification
is a complex process due to the different qualities associated
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with performance; they include technique, tactics, fitness and
psychological attributes [3].

Technique involves a player’s style such as dribbling and
how offensive/defensive the player plays.

Tactics involve attributes such as how well a player is able
to control the ball and play with the team-mates.

Fitness involves attributes such as the fatigue, stamina level
of the player and history to injuries.

Psychological involves the emotional intelligence of a
player and how a player deals with interpersonal and intrap-
ersonal conflicts.

In this paper, we focus on generating directly from the
video, three very important tactical statistics for a soccer
player namely: (i) duration of ball possession, (ii) number
of successful passes and (iii) number of successful steals.
To the best of our knowledge this is the first paper in
the field of computer vision and circuits and systems for
video technology that can generate tactical statistics for
individual soccer players directly from a video.

A. Importance of Tactical Statistics

Ball possession is a very important statistic (stat) for a
player as it is has an influence on other statistics such
as the number of successful shots at the goal and number
of tackles won/lost [4]. The number of successful passes
made by a player is very important because the number of
overall attempted passes and number of successful passes are
important factors in achieving better results leading to winning
a match [5]–[7]. It has been shown that the accuracy of
successful passes increases significantly five minutes before
scoring [8]. The number of successful steals within the 6 yard
area has been shown to increase the number of shots at the
goal [9]. Interestingly, unsuccessful teams tend to play more
within their half of the soccer field which increases the chances
of the opposition to steal the ball which in turn increases their
chances for shots at the goal [10].

In order to develop an automated system to compute the
tactical statistics for players we collected a dataset that consists
of 49,950 images of high school soccer players which are
annotated into two classes namely: “Players with the ball”
(12,585) images and “Players without the ball” (37,365)
images. The first step in our system involves detecting the
players using the YOLOv2 framework [11] and tracking
them using the DeepSort algorithm [43]. Next, the detected
players are passed through a Triplet-Convolutional Neural
Network (CNN) that extracts fine-grained features which are
used for predicting the team of the player and finding out
if the player is controlling the ball. While trying to solve
this problem, we also address two key issues: Speed Vs.
Performance and Generalizability.

B. Speed vs. Performance

In the field of sports analytics, the speed at which algorithms
perform without sacrificing accuracy is very important. For
example, on the COCO dataset [12] the algorithms with the
best performance are rather slow [13], [14], while the real-
time algorithms have lower accuracy [11], [15]. In this paper,

we experiment with different architectures of CNNs and show
that during inference, our approach is computationally more
efficient as compared to the state-of-the-art approaches while
not sacrificing too much accuracy. It should be noted that
our system is not intended to run real-time but instead to be
used as a tool for post-match analysis.

C. Generalizability

A significant problem is the lack of generalizability, whose
origin is at least two fold in sports video analysis: intersport
variability, and intrasport variability. It is currently too
ambitious to hope for a universal system that can perform
accurate player analysis on any sports video, which underlines
the need for developing sports-specific models. Besides, even
within videos from a single sport, some play conditions may
change from one match to the next, such as the outfits of the
teams and environmental conditions in the case of outdoor
sports such as soccer. Fast algorithms may be less robust to
such variations, which might make them non-reusable from
one match to the next.

Rather than trying to unify all of these conditions within a
single network, it is more appropriate to re-train the network
for every match in order to adjust to the conditions [16].
To achieve this we experiment with different soccer matches
played by different teams and find the least amount of images
that need to be annotated in order to achieve a robust perfor-
mance. Another problem that arises is that how do we annotate
images for a match that has not yet been played? To solve
this we annotate images of matches that have been previously
played by the same teams and then re-train our models and
evaluate them on the match that is to be played.

In summary, the contributions of this paper are as
follows:

• Tactical Statistics: Unlike previous research in the field of
computer vision, sports analysis and circuits and systems
for video technology (see Table II), this is the first
paper that can automatically generate three quantifiable
tactical statistics (duration of ball possession, number of
successful passes, and steals) of individual soccer players
from a video. In addition, an ablation study is carried
out to show how different combinations of the individual
modules affect the generation of tactical statistics at a
match level and an individual player level.

• Generation of fine-grained synthetic images: This paper
designs a novel Triplet CNN-DCGAN architecture for
generating fine-grained synthetic images of soccer players
controlling the ball. The paper also performs an ablation
study to show how data augmentation helps to improve
the generation of tactical statistics.

• Minimum annotation for robust performance: This
paper shows that features learned from a specific soc-
cer match do not generalize across all soccer matches.
To overcome this problem, the proposed approach
requires only 100 annotated images per class (Player
with/without the ball) from any given soccer match to
achieve a robust performance.

• Performance evaluation and comparison of individ-
ual modules: This paper performs extensive evaluation,
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TABLE II

SUMMARY OF THE RELATED WORK

ablation studies, and comparison of the individual mod-
ules used in the proposed approach with the state-of-the-
art using a dataset consisting of 49,950 images which are
collected from different soccer matches.

This rest of this paper is organized as follows. Section II
describes the related work and technical approach is explained
in Section III. Experimental results and ablation studies are
shown and discussed in detail in Section IV. Finally, Section V
concludes the paper.

II. RELATED WORK

In this section, we describe various state-of-the-art
approaches that have been used in sports for detecting and
tracking players, identifying teams and events, and player
analysis. Table II shows a summary of the related work. In con-
trast to the state-of-the-art approaches described in Table II our
work is significantly different in the following aspects:

• Generating Tactical Statistics: To the best of our
knowledge, there exists no other work that can generate
quantified tactical statistics for soccer at a match, team,
and individual player level directly from a video.

• Team Identification: Unlike previous approaches that use
clustering based techniques such as [18], [22], [28] and
ad hoc histogram based matching such as [29], [30], [52]
which are susceptible to the player pose and environ-
mental conditions, we evaluate three different approaches
using Siamese and Triplet CNNs and show that our
approach is more robust and outperforms the state-of-
the-art approaches in Table II by 26%.

• Player Analysis: Prior work done by Theagarajan
et al. [30] shows that regular CNNs have trouble in
detecting minute details such as the soccer ball in low
resolution images which is important for differentiating

between a player with and without the ball. To over-
come this problem, we extract fine-grained features using
a Triplet CNN trained on only 100 images per class
(Player with/without the ball) and show that our approach
outperforms the state-of-the-art by at least 14% and has
significantly reduced number of parameters.

• Generation of Fine-grained Synthetic Images: This
paper shows that regular Generative Adversarial Net-
works (GANs) often overlook minute details such as the
soccer ball when generating synthetic images. To over-
come this problem, this paper designs a Triplet CNN-
DCGAN for generating fine-grained images of soccer
players controlling the ball and performs an ablation
study to show the improvement in generating tactical
statistics with and without data augmentation.

III. TECHNICAL APPROACH

In this section, we explain the overall framework and its
individual modules of our approach shown in Fig. 1. The input
video first passes through the player detection module where
the soccer players are detected, tracked and cropped. Next,
the cropped images are passed through a player classification
module which consists of two Triplet CNNs trained to extract
fine-grained features and 1) predict the team of the players
and 2) identify the player controlling the ball. Next we pool
together the outputs of the player detection and classification
modules for the entire video to generate the tactical statistics
for all the individual players.

A. Localization and Tracking

1) Localization of Soccer Players: As the number of high
school soccer players keeps increasing every year as shown
in Table I, the demand for coaches to provide feedback to the
players increases significantly. It has been shown that during
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Fig. 1. Overall architecture of our approach.

high school soccer season, 39 hours of videos are uploaded
every minute on the Hudl online platform for processing [60].
It is a very laborious task to analyze all the videos manually.
Hence, it is important to have a system that can automat-
ically detect soccer players in the video at a reasonably
fast speed without sacrificing too much accuracy. In our
approach, we evaluated four different object detectors that
achieve state-of-the-art performance on the COCO dataset [12]
(see Table IV). YOLOv2 [11] achieved a detection accuracy
of 84.81% and Mask R-CNN [14] outperformed YOLOv2 by
1.87% in accuracy. However, YOLOv2 operates 10x faster (at
17.2 FPS) than Mask R-CNN. This is very important since it
is unreasonable for a coach to wait 30 - 40 minutes to process
a 2-minute video at 30 FPS using Mask R-CNN compared
to waiting for 3 - 4 minutes using YOLOv2 for a very small
trade-off in accuracy.

YOLOv2 initially divides the input frame into a 11 × 11
grid. Each grid predicts B bounding boxes and the confidence
score associated for each bounding box. Formally, the confi-
dence is defined as Pr(object) * IOU, where Pr(object) is the
probability of an object present and IOU is the Intersection
Over Union between the predicted bounding box and the
ground-truth bounding box. This probability is conditioned
on the grid cell containing one object meaning that if there
is no object present on the grid cell, the loss function will
not penalize the CNN for a wrong class prediction. The
network was trained on the COCO 2016 key points challenge
dataset [12]. This dataset consists of diverse images for the
class “Person” which also includes sports players and the
images in this dataset have different scale variations, and
occlusions which are similar to the scenario of a soccer
field. For a given frame, the bounding boxes belonging to
the class “Person” with probability greater than a given
threshold are considered to be the locations of the soccer
players for that frame. In our approach we set the threshold
to be 0.5.

2) Tracking of Soccer Players: In broadcast videos of
soccer league matches, the camera operator is located at least
100 feet away from the side lines of the soccer field at a
reasonable height. This provides a wide Field-of-View (FoV)
for the camera operator and there is very small amount of pan
and tilt. In these kinds of videos when a player is moving

on the field, the camera operator also pans the camera very
gradually such that the Cartesian coordinates of the soccer
player in the video has minimal change. In high school soccer
videos such as our dataset, due to the availability of limited
space, the camera operator is located just 20 - 30 feet from
the side lines of the soccer field at a height of 15 feet. This
creates a very narrow FoV for the camera operator which leads
to a large amount of pan, tilt and zoom even when the soccer
players are not running very fast.

Based on these constraints, we experimented with five
state-of-the-art tracking algorithms (including algorithms pro-
posed in [44]) and found that DeepSORT proposed by
Wojke et al. [43] performs the best in our scenario. The
reason for this is that, unlike the other algorithms [44] that
solely rely on the features extracted from object detectors,
DeepSORT also uses 8-dimensional state space vector which
is given as input to a Kalman filter. This state space vector
contains the information such as velocity and direction in
which a player is moving relative to the camera. Assuming
that a player usually moves at a constant velocity relative
to the camera that is located at a distance and the tracklets
of a player always follow a linear model (a player cannot
arbitrarily appear at different locations in consecutive frames),
the Kalman filter is able to track the individual players more
consistently. In the case of soccer videos if a group of
players of the same team are close to one another, it would
cause association problems if the tracking algorithm solely
relied on the features extracted from an object detector.
DeepSORT is able to handle these kind of situations with
much ease compared to the other methods [44] because it
uses the combination of an object detector and a state space
Kalman filter that assumes that players move linearly in
a video.

In our approach the CNN used for detecting the players is
YOLOv2 [11] and the 8-dimensional state-space vector is rep-
resented by (u, v, γ , h, u’, v’, γ ’, h’) where, (u, v) is the image
coordinate of the center of the bounding box, γ is the aspect
ratio, h is the height of a bounding box and (u’, v’, γ ’, h’)
are their respective velocities in the image coordinate. Finally,
the features extracted by YOLOv2 and the state-space motion
vector are concatenated and passed as the input to a Hungarian
algorithm [45].
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Fig. 2. Architecture of the siamese CNN.

It should be noted that our system does not perform any
camera calibration and the camera operator is allowed to freely
pan, tilt and zoom the camera depending on where the action
is happening on the soccer field. Due to this if a player moves
out of the field-of-view of the camera and re-appears after a
while, the algorithm labels the player as a new person. In this
situation our approach will treat such players as new players
and continue to generate the statistics. It is very challenging
to track players under such conditions using state-of-the-art
long-term tracking and re-identification algorithms and it is a
problem of its own. In the case of soccer videos, it is more
challenging because players belonging to the same team wear
the same jersey and they visually look very similar from the
camera’s perspective.

B. Team Identification

In this sub-section we propose three different approaches
(TI-1, TI-2, and TI-3) for predicting the team of the players
and compare their pros and cons individually.

1) TI-1: Cross Dataset Transfer Learning and Feature
Matching Using Siamese CNN: In soccer, since players
belonging to the same team wear the same color of jersey,
we can formulate the task of player team identification as a
person re-identification problem. In this approach we train
a Siamese CNN on the Town Center subset of the PETA
dataset [47] for the task of pedestrian re-identification with two
output classes “Same person” and “Different person”. Fig. 2
shows the architecture of the Siamese CNN. In Fig. 2 Conv(x,
y, z) represents the dimension of the filter (x), stride of the
filter (y), and padding (z). We used the Siamese loss function
for training and it is given by:
LossSiamese = (1 − Y )

1

2
D2

W + Y
1

2
{max(0, m − DW )}2 (1)

In Eq. (1), DW is the Euclidean distance between the outputs
of the Siamese networks, m is the margin and is chosen as 1.
If the inputs are from the same class, then the value of Y
is 0, otherwise Y is 1. After training the Siamese CNN on
the PETA dataset [47], we evaluated the CNN on our dataset.
Initially we select 10 template images for each team. Next,
we pass the detected player through the Siamese CNN and
we extract a feature vector M . Similarly, we also extract the
feature vectors of the 10 template images of each team Ni

where i = 1 to 10. Next, we compute the average Euclidean
distance between M and Ni for both the teams and the team
with the least average Euclidean distance is taken as the final
prediction. The advantage of this approach is that it requires
only training the CNN on a publicly available dataset and is
the most generalizable approach.

2) TI-2: Fine Tuning and Feature Matching Using Siamese
CNN: This approach is similar to TI-1 except that after pre-
training on the PETA dataset [47] we further fine tune the
Siamese CNN with images from our dataset as well. This
helps the CNN to learn features specific to the match being
played which improves the performance of prediction. During
testing similar to TI-1, we select 10 template images from each
team and compute the average Euclidean distance between the
feature vector of the detected player M and the feature vector
of the template images Ni for both the teams and the team
with the least average Euclidean distance is taken as the final
prediction. Experimental results (see Table VII) show that this
approach performs better than TI-1.

3) TI-3: Fine-Grained Feature Extraction Using Triplet
CNN: Triplet CNNs are known for extracting fine-grained fea-
tures while maximizing the interclass variance and minimizing
the intraclass variance at the same time [48]–[51]. In this
approach we use the same CNN architecture as in Fig. 2 and
the only change is that we replaced the final fully connected
layer (FC Layer 2) with two output nodes for “Team A” and
“Team B”. We use both the Triplet loss Eq. (2) and binary
cross entropy loss Eq. (3) for training the Triplet CNN. During
testing, this approach does not require any template images for
matching.

LossT rip = Max(0,−Y ∗ (G(X1) − G(X2)) + m) (2)

LossBC E = −1

n

n∑

i=1

yi ∗ log(pi) + (1 − yi ) ∗ log(1 − pi) (3)

Loss = α1 × LossT rip + α2 × LossBC E (4)

In Eq. (2), X1 and X2 are the two anchor images, m = 1
is the margin, and G(X) is the pairwise distance between
the feature extracted by Triplet CNN for the localized player
image and the anchor image. If Y = 1 it indicates that the
anchor image X1 belongs to the same class as the localized
player image, whereas, Y = −1 indicates that the anchor
image X2 belongs to the same class as the localized player
image.

In Eq. (3), yi is the ground-truth label, pi is the output
probability score for the respective classes, and n is the batch
size. In Eq. (4), α1 and α2 are constants and are chosen to
be 0.5. The advantage of this approach compared to TI-1
and TI-2 is that, this approach does not require any template
images during inference and gives us the highest accuracy.

C. Identifying the Player Controlling the Ball

To generate player statistics and visual analytics for soccer,
we need to identify the player who is in control of the ball at
any given point of time. To achieve this, we trained another
Triplet CNN with the same architecture used in Section III B.3
(the two CNNs do not share the same weights) to classify a
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given cropped image of the soccer player as either a “Player
with the ball” or “Player without the ball”. The cropped
images of the soccer players are resized to size 160 × 100.
We chose this size because the normal aspect ratio of a
human body is between 0.6 - 0.7. We chose a mini-batch
size of 256 Triplet pairs and during every epoch the training
data is randomly shuffled and randomly horizontally flipped.
We used a combination of both the Triplet loss and binary
cross entropy loss as shown in Eq. (2) - (4) to train the Triplet
CNN. Furthermore, we separated a part of our training data
as the validation dataset for finding the best training hyper
parameters. The validation dataset is used only for finding the
best hyper parameters and it is never used for training. More
details about the dataset and data partition can be found in the
experimental results in Section IV.

We performed random hyper parameter search to obtain the
best learning rate, momentum and weight decay. This is done
by training and validating the network with random values
within a range for each hyper parameter for 5 epochs, and the
combination of hyper parameters that resulted in the highest
accuracy at the end of 5 epochs were chosen as the best. Based
on this we chose the learning rate = 2 ×10−2, momentum =
0.7 and weight decay = 4 ×10−3. Finally, the networks were
optimized using the stochastic gradient descent algorithm.

D. Data Augmentation Using Triplet CNN-DCGAN

In this sub-section, we explain on how we performed data
augmentation to our dataset. The purpose of data augmentation
is to determine if adding more variability to the training dataset
helps to improve the generation of tactical statistics. To achieve
this we trained the Deep Convolutional Generative Adversarial
Network (DCGAN) [40]. It consists of two deep convolutional
neural networks, a generator G and a discriminator D trained
against each other. The generator takes a randomly sampled
Gaussian noise vector, z, and returns an image, Xgen = G(z).
The discriminator takes a real or a generated image X, and
outputs a log probability P(S|X) = D(X) over the two image
sources S. The optimization function V is given by:
min

G
max

D
V (D, G) = EX∼pdata (X)

[
log D(X)

]

+EX∼pz(z)
[
log (1 − D(G(z)))

]
(5)

In Eq. (5), log(D(X)) is the log probability of the output of
the discriminator and D is trained to maximize the probability
of assigning the correct label (i.e. is the image original or gen-
erated) while G is simultaneously trying to minimize it. The
significance of Eq. (5) is that by doing a minimax optimization,
we are pitting the generator against an adversary that detects
if an image is a counterfeit or not. This encourages G to learn
the original distribution and generate images that resemble the
dataset. The final objective is that the two networks converge
to an equilibrium so that D is maximally confused and G
generates samples that resemble the training data (in our case
“Players with the ball”).

1) Fine-Grained Synthetic Image Generation: After training
the DCGAN, we observed that after the generator and discrim-
inator have reached an equilibrium the generator was able to
generate images of the soccer player but, most of these images

Fig. 3. Architecture of the triplet CNN-DCGAN.

did not have the soccer ball in it. Generating the soccer ball
with the player is the most important feature for distinguishing
a “Player with the ball” from a “Player without the ball”.
In our novel approach, we solve this problem by introducing a
regularizer CNN. The task of the regularizer CNN is to classify
the generated images and if the image is classified as a “Player
without the ball”, the generator is penalized more. So now the
task of the generator is not only to fool the discriminator but
also generate images that resemble a “Player with the ball”.
In our approach we used the Triplet CNN trained to identify
the player controlling the ball as the regularizer CNN. Fig. 3
shows the Triplet CNN-DCGAN architecture.

In Fig. 3, it should be noted that the regularizer CNN (i.e.,
Triplet CNN) is pre-trained to classify between the two classes
“Player with the ball” and “Player without the ball” and its
parameters are frozen after pre-training. This means that we do
not update the weights of the regularizer CNN while training
the generator. In this new architecture, we use the regular
DCGAN loss [40] along with the binary cross entropy loss
of the Triplet CNN in Eq. (3).

We included the regularizer CNN in the loop only after
the generator and discriminator have already reached an equi-
librium. The reason for this is that initially while training
the DCGAN, the generator does not generate realistic images
and if we pass these unrealistic images to the Triplet CNN,
it would not be able to recognize the images, resulting in
mis-classifications leading to an erroneous back propagation.
Hence after the discriminator and generator have reached an
equilibrium and the generator is able to generate realistic
images of soccer players, only then we include the Triplet
CNN in the loop. Fig. 4(a) shows images generated using
the regular DCGAN approach [40] and Fig. 4(b) shows
images generated using our fine-grained Triplet CNN-DCGAN
approach. In Fig. 4(b) the red bounding box indicates the
location of the soccer ball in the image.

E. Tactical Statistics Generation

In this sub-section we explain our algorithm for generating
the tactical statistics of the soccer players in the video. We pool
together the outputs of the player detection module and player
classification modules shown in Fig. 1 for the entire video as
inputs to our statistics generation module. The outputs of the
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Fig. 4. Generated images of the class “Player with the ball” using
(a) DCGAN [40] and (b) triplet CNN-DCGAN.

statistics generation module are the duration of ball possession,
number of successful passes and number of successful steals
for every player in the video. The pseudo code for generating
the tactical statistics is given below. In the pseudo code i is
the frame number and j is the number of players detected
in frame i. ID[i][j] contains the tracking IDs of all j players
in frame i. This information is obtained as the output from
the player detection module. x[i] contains the tracking ID
of the player controlling the ball in frame i and y[i] contains
the team name of the player controlling the ball in frame i.
This information is obtained as the output from the player
classification module.

IV. EXPERIMENTAL RESULTS

We trained and evaluated our approach on a dataset col-
lected from high school soccer matches. The framework of
our approach is implemented using 2 TITAN X GPUs.

A. Dataset

We collected a dataset from three different soccer matches.
The matches played by the teams were recorded using a single
Canon XA10 video camera. The camera was installed at a
height of 15 feet and 20 feet away from the horizontal baseline
of the soccer field. The resolution of the recorded video is
1280 × 720. The camera operator was allowed to pan and
zoom depending on where the action is happening on the
soccer field in order to collect high resolution and good quality
images with enough pixels on a player’s body. To the best of
our knowledge, the only other dataset that has annotations of
soccer players in the video, was done by Pettersen et al. [46].
The authors used three stationary wide angle cameras installed
inside the control room behind the audience in the Alfheim
stadium in Norway. Since the control room is very far away
from the soccer field (at least 100 feet) the resulting videos
have very small number of pixels on the soccer player and even
fewer pixels on the soccer ball making it difficult to distinguish
the player controlling the ball. Hence we could not use this
dataset.

Pseudo Code for Generating the Tactical Statistics
Inputs: 1) List of tracking IDs (ID[i][j]), 2) Player with
ball dictionary(x[i]), 3) Team dictionary (y[i]) where, i is
the frame number of the video and j is the ID of the tracked
player in frame i.
Outputs: Ball possession dictionary[], successful passes
dictionary[], and successful steal dictionary[].
Initialize all the key-value pairs for the ball possession,
successful passes and successful steal dictionary to 0
Initialize Players_tracked list to be empty
For i = 1 to N frames in the video

do
% This block keeps track of new incoming players
For j = 1 to length (ID[i])

if (ID[i][j] does not belong in Players_tracked):
Append ID[i][j] to Players_tracked
ball possession dictionary[ID[i][j]] = 0
successful passes dictionary[ID[i][j]] = 0
successful steal dictionary[ID[i][j]] = 0

% This block computes the statistics
while (i>1 and i <= N):

% Is the ID of the player controlling the ball in frame i
and frame i − 1 different?

if (x[i] is not equal to x[i−1]): % Yes
% Are the two players in the same team?
if (y[i] is equal to y[i−1]): % Yes

% It’s a successful pass
successful passes dictionary[x[i−1]] + = 1
ball possession dictionary[x[i]] + = 1

else: % No, they belong to different teams
% It’s a successful steal
successful steal dictionary[x[i]] + = 1
ball possession dictionary[x[i]] + = 1

else: % No, it’s the same player controlling the ball
ball possession dictionary[x[i]] + = 1

end
end

1) Ground-Truth for Training Data: Our dataset consists of
49,950 images, and it is annotated into two classes namely:
“Players with the ball” (12,585 images) and “Players without
the ball” (37,365 images). The dataset was annotated by five
experts (initials of the annotators: RT, FP, XZ, YZ, AS) and
the final label for a given image is obtained by taking the
majority vote of the five annotators. The dataset is comprised
of three teams whose jersey colors are white, red and blue. Out
of the 49,950 images, the white team constitutes 27.95% of
the dataset (13,960 images), the red team constitutes 34.82%
(17,390 images) and the blue team constitutes 37.24% of the
dataset (18,600 images). Within the two classes, the white,
red and blue team constitute 26.12%, 16.16% and 57.73% for
the class “Players with the ball” and 28.58%, 41.26% and
30.16% for the class “Players without the ball”, respectively.
Table III shows the distribution of the two classes in our
dataset, Fig. 5(a) and Fig. 5(b) shows example images of
“Players with the ball” and “Players without the ball” from
our dataset, respectively.
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TABLE III

DATA DISTRIBUTION FOR THE TWO CLASSES WITH
RESPECT TO THE TEAMS

Fig. 5. Examples of players in our dataset for the class: (a) “Player with
the ball” and (b) “Player without the ball”.

It should be noted that in our approach we are
not generating tactical statistics for the goal keeper. The
reason for this is that a goal keeper is evaluated based
on the number of goal shots saved and since we are not
generating that statistic we ignore the goal keeper and did
not annotate any images of goal keepers in our dataset.

From Table III it can be seen that the dataset is highly
unbalanced which makes it challenging. The reason for this is
that for every frame of the video only one player can control
the ball which leaves 21 other players without the ball. But as
the camera is being panned and zoomed not all 22 players are
present in a single frame all the time, resulting in 25.66% of
the data constituting for the class “Players with the ball” and
74.34% of the data constituting for the class “Players without
the ball”.

2) Detailed Ground-Truth Generation for Testing Videos of
Varying Complexities: It should be noted that the dataset con-
sisting of the 49,950 images does not have any annotations of
player’s positions in the video or their tactical statistics. Hence,
in order to evaluate the performance of the player detection,
tracking and tactical statistics generation module, we annotated
seven highlight test videos for evaluation/testing only (initials
of the annotators: FP, RT). Six of these highlight videos
were extracted from matches played between the Red jersey
Vs. White jersey categorized into three different complexities
namely: Low (2 video clips), Moderate (2 video clips) and
Severe (2 video clip). The duration of these six videos ranges
from approximately 90 to 180 seconds. Since our approach
uses only a single un-calibrated camera, we selected these
six highlight videos such that the camera was not moving
(pan, tilt, or zoom) faster than the players on the field.
We also ensured that the FoVs of the camera in the highlight
videos were large enough such that we do not have players
entering/exiting the FoV of the camera for a long duration and

then re-appearing elsewhere in the video. The 7th highlight
video is publicly available on the internet and the match was
played between a white and blue jersey team. The duration of
this video is 31 seconds and it contains small segments of the
Low, Moderate, and Severe complexity. This video contains
segments where the players are entering/exiting the FoV of
the camera and the tracking algorithms cannot associate them
if the duration of entering/exiting is longer than 5 seconds.
In order to evaluate the tracking algorithms in a fair manner,
we consider the players who exit/enter after 5 seconds in the
video to be new players. It should also be noted that these
highlight videos were not used for training the CNNs.

We have carefully chosen these seven videos such that
each video shows some level of complexity during different
segments of the match. We chose the videos in the Low
complexity when there are 4 - 5 players of the same team
passing the ball among themselves and they are widely spread
out. We can see this kind of play in a match when a team
is trying to stall the opposing team. It is relatively easy to
predict the statistics in this Low complexity case as compared
to the Moderate and Severe complexity cases. In the Moderate
complexity case we chose the videos where the mid-fielders
are trying to penetrate the oppositions defense by passing
the ball between their team mates while the opposition mid-
fielders are trying to steal the ball. This scenario causes a lot
of occlusion as there are usually 6 - 10 players in a small
area as compared to the Low complexity case that makes it
even more challenging to generate statistics. In the Severe
complexity case, the offensive players try to aim for a shot
at the goal while trying to avoid the opposition defenders and
mid-fielders simultaneously. This scenario involves significant
occlusion because usually there are several offensive players
from the same team who pass the ball among themselves while
there are at least 2 defenders and more than 2 mid-fielders from
the opposition trying to steal the ball within a very narrow area
of the field. This scenario causes the most occlusion leading to
a significant drop in performance of generated statistics (see
Table XIII). In summary, these seven videos are representative
and the results from our approach demonstrate how the overall
system will perform under different segments of a match.

The ball possession for these highlight videos was annotated
by identifying the player controlling the ball in all of the
frames of all videos. The number of passes and steals made
by each player in a video were annotated by observing the
video and identifying the tracking ID of the players and the
frame numbers of the video when the ball was passed/stolen.

B. Results for the Player Detection Module

In this sub-section we evaluate the performance of the player
detection and tracking algorithms using the seven highlight test
videos described above.

1) Localization Results and Their Comparisons: We evalu-
ated four state-of-the-art object detection algorithms namely:
YOLOv2 [11], Single Shot Detection (SSD) [15], Open-
Pose [39], and Mask R-CNN [14] for detecting the soccer
players in video. We used Intersection Over Union (IOU)
between the ground truth and predicted bounding box and
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TABLE IV

PERFORMANCE METRICS OF DIFFERENT APPROACHES FOR DETECTING
THE SOCCER PLAYERS

TABLE V

PERFORMANCE COMPARISON OF TRACKING ALGORITHMS

the speed of performance during inference in Frames Per
Second (FPS) as metrics. Since we do not have any annotated
training data with the soccer players position we trained all the
above localization approaches on the COCO dataset [12] and
then evaluated them on our highlight test videos. We chose
the COCO dataset because it has a lot of diverse images
for the class “Person”. Table IV shows the detection results
on the seven highlight test videos.

All the approaches in Table IV were evaluated using two
TITAN X GPUs. From Table IV it can be observed that
YOLOv2 [11] had the highest average speed of performance
with 17.2 FPS and average IOU accuracy of 84.68% while
OpenPose had the least average IOU accuracy of 69.53%. SSD
had a similar speed of performance compared to YOLOv2 but
fell short in its average IOU accuracy. Mask R-CNN [14] had
the highest average IOU of 86.47%, but had the least speed
of performance of only 1.7 FPS making it impractical to use
in our approach compared to YOLOv2.

2) Tracking Results and Their Comparisons: We evaluated
three deep learning based [41], [41], [43] and two hand-
crafted features based [21], [22] long-term tracking algorithms.
Table V shows the average Multi Object Tracking Accuracy
(MOTA), Mostly Tracked (MT), and processing speed of each
algorithm evaluated on our 7 highlight videos. MOTA is the
accuracy of assigning the correct tracking ID to a player during
all the frames the player is detected. MT is the accuracy
of assigning the correct tracking ID to a player for at least
70% of their tracking duration. In Table V since we are only
comparing the performance of tracking algorithms, for fair
comparison we replaced the object detection in [21] and [22]
with YOLOv2 [11] and used [41] and [42] as proposed in their
paper.

From Table V it can be observed that DeepSORT
had the best MOTA and MT with a speed of 17.2 FPS.

The hand-crafted approaches of [21] and [22] had the worst
MOTA and MT but had the best processing speed. Most of
the errors for the 5 different approaches occurred in Severe
complexity cases when multiple players overlap with each
other, causing the detector to detect them as a single player.
This kind of situation arises when a player approaches close
to the opposition team aiming for a shot at the goal.

We currently do not account for any camera calibration and
the players are tracked based on the Euclidean coordinates of
the video frame and not the actual coordinates of the soccer
field. As a result, when the camera changes its focus from one
part of the field to another, some players do not appear in the
video for a while and when they re-appear, they are detected
and tracked as new players. It is very challenging to track
re-appearing players if the duration between disappearing and
re-appearing is very large. Possible solutions to eliminate this
problem are:

Player Re-Identification: 1) We can a use a player
re-identification framework to associate the players when they
re-appear, but the challenge with this is that, the players are
wearing the jersey of the same color which makes it difficult to
re-identify them under all situations. 2) We can associate the
soccer players by recognizing their jersey numbers as proposed
by Liu et al. [26], but this is possible only when the soccer
player is displaying the jersey number to the camera.

Additional Hardware: 1) We can use multiple static cameras
on opposite sides of the soccer field such that the collective
FoV of the cameras spans the entire soccer field [61]. 2) We
can use unique GPS trackers attached to the jersey of the soc-
cer players along with camera calibration to get the physical
location of the players on the soccer field.

C. Results for the Player Classification Module

1) Team Classification Results and Their Comparisons: In
this sub-section we evaluate and compare the performance of
our three different team identification algorithms (TI-1, TI-2,
TI-3) as described in Section III B. For the TI-1 approach,
we trained the Triplet CNN on the Town Center subset of
the PETA dataset [47] and then evaluated the CNN on all
of the 49,950 images from our dataset. For the TI-2 and
TI-3 approaches, we randomly split our dataset consisting
of 49,950 images evenly based on the number of images
in our dataset for each team into 65% for training, 10%
for validation and 25% for testing. The validation dataset
was selected randomly and fixed for all of the experiments
for team identification. We used the validation dataset only
for finding the best hyper parameters. Table VI shows the
distribution of the training, validation and testing datasets and
Table VII shows the results and comparison of the four-fold
cross validation for team identification.

In order to evaluate the approach of Theagarajan et al. [30],
we randomly selected 10 template images from the dataset
for each team and evaluated the performance on all of the
remaining images from our dataset. We can observe from
Table VII that our approach (TI-3) outperforms all of the state-
of-the-art methods. Otsu’s method [52] had the least accuracy
followed by Theagarajan et al. [30] because even within the
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TABLE VI

DATA DISTRIBUTION FOR TRAINING, VALIDATION AND TESTING
DATASETS FOR TEAM IDENTIFICATION

TABLE VII

RESULTS AND COMPARISON FOR TEAM IDENTIFICATION

same match if the pose of the detected player is in the profile
view and the templates consists of images that are frontal/back
view of the player, the histograms will look very different and
it is not realistic to collect new templates dynamically during
a match.

From Table VII in the TI-1 setting, we trained the Siamese
CNN on the Town Center subset of the PETA dataset [47]
for the task of pedestrian re-identification. After training the
CNN, we evaluated it on our dataset by extracting features
of the detected player and matching it with the features for
the template images. This approach achieved an accuracy
of 83.56% and did not require any knowledge of the soccer
match making it generalizable to other soccer matches.

The TI-2 setting is similar to the TI-1 setting except that
after pre-training on the subset of the PETA dataset [47],
we further fine tune the Siamese CNN with our soccer dataset
which helps to improve the accuracy to 93.17%.

In the TI-3 setting, we train the Triplet CNN using both the
Triplet loss and the binary cross entropy loss. The difference
between TI-1, TI-2 and TI-3 is that TI-3 does not require any
template images for matching the features and it provides
the highest accuracy of 97.46%. In TI-3 we need to train
the Triplet CNN for every single match, making it less
generalizable compared to TI-1. Although the TI-3 setting is
less generalizable compared to the TI-1 setting, in applications
such as sports analytics, coaches and fans of the sport prefer
to have a system that provides the highest accuracy compared
to having a generalizable system that provides a significantly
lower accuracy.

2) Results for Identifying the Player With the Ball and
Comparison of Algorithms: In this sub-section we evaluate and
compare the performance of our Triplet CNN for identifying
the player controlling the ball using the prediction accuracy
and speed of performance during inference as the performance
metrics. For this purpose, we split the dataset evenly based
on the number of images for the two classes from our

TABLE VIII

DATA DISTRIBUTION FOR TRAINING, VALIDATION AND TESTING FOR
IDENTIFYING THE PLAYER CONTROLLING THE BALL

TABLE IX

RESULTS OF THE FOUR-FOLD CROSS VALIDATION FOR IDENTIFYING THE
PLAYER CONTROLLING THE BALL

dataset into 65% for training, 10% for validation and 25% for
testing. Table VIII shows the data distribution for the training,
validation and testing datasets and Table IX shows the results
and comparison of the four-fold cross validation for identifying
the “Player with the ball”. Similar to Table VI, the validation
dataset was used only for finding the best hyper parameters
and was never used for training.

From Table IX it can be observed that our approach had the
highest accuracy and speed of performance compared to the
state-of-the-art. Moreover, our CNN performs at least 2x faster
with less than 16x the number of parameters than the state-of-
the-art. The reason for this is that most of the state-of-the-art
CNNs are built for more generalized tasks such as classifying
the ImageNet dataset [56] which has more than 1,000 classes
requiring more number of parameters and computation time.
On the other hand, our approach for generating statistics of
soccer players is for a specific and time-critical task which
requires a Triplet CNN to extract fine-grained features for
achieving higher accuracy with less number of parameters.
Moreover, as shown in Theagarajan et al. [30] regular CNNs
have trouble in detecting minute details such as the soccer
ball in low resolution images which is the only feature that
distinguishes between a player with and without the ball.
By using a Triplet CNN, the CNN is able to learn fine-grained
features that help in distinguishing a “Player with the ball” and
further improves the accuracy.

D. Generalization Across Different Matches

1) Results on Generalizability and Comparison With Other
Algorithms: In this sub-section we evaluate and compare
our approach for its generalizability across different matches.
Generalizability is a very important metric for determining
a classifier’s robustness. Many studies have shown that a
classifier that is generalizable across multiple domains does
not necessarily have the best performance on all of the
domains, similarly a classifier that has the best performance
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TABLE X

RESULTS ON THE GENERALIZABILITY ACROSS DIFFERENT MATCHES FOR
IDENTIFYING THE PLAYER CONTROLLING THE BALL

in one domain does not necessarily generalize across multiple
domains [57], [58].

To evaluate the generalizability we trained the CNNs on all
the training images (32,468 images) in our dataset as shown
in Table VIII and evaluated them on soccer matches played
by different teams that were never included in our dataset.
We selected four high school soccer matches where two
matches were played by Pink jersey Vs Black jersey and two
matches were played by Green jersey Vs Black jersey. In order
to validate the performance, we annotated 100 images per
team per match for the two classes “Player with the ball” and
“Player without the ball”, resulting in a total of 800 images.
Table X shows the results and comparison of different CNNs
for their generalizability across different soccer matches.

From Table X it can be seen that all the CNNs fell short in
their performance compared to Table IX. This indicates that
the features learned from one match do not necessarily transfer
over to another match played by two different teams. This is
similar to the findings reported by the authors of [30], [35] and
[59]. Moreover, it is not feasible to collect data that resembles
all the different conditions to train the network, hence, it is
more appropriate to re-train the CNNs for every match with
as minimal annotation as possible.

E. Match Specific Annotation for Robust Performance

In this sub-section we use a minimum number of images
annotated for specific matches in varying proportions to fine
tune the different CNNs and observe the performance. In order
to validate the match specific performance, a problem that
arises is that how do we annotate images for a match that
has not yet been played? To solve this we annotate images of
matches previously played by the same teams for training our
models and evaluate it on the match that is to be played.

As mentioned in the previous sub-section, we annotated
100 images per team per class (Player with/without the ball)
from four different matches, where two matches were played
by Pink jersey Vs Black jersey and two matches were played
by Green jersey Vs Black jersey. We took the two matches
played by the same teams and used one match for training
and the other match for testing. Based on this we perform
two-fold cross validation. Table XI and XII shows the match
specific performance for the different CNNs.

From Table XI and XII it can be seen that, as we fine
tune the CNNs on images for a specific match, we can
observe an increase in performance. Comparing Table X with

TABLE XI

MATCH SPECIFIC PERFORMANCE OF DIFFERENT CNNS FOR THE GAME
PLAYED BETWEEN Pink Jersey vs. Black Jersey

TABLE XII

MATCH SPECIFIC PERFORMANCE OF DIFFERENT CNNS FOR THE GAME

PLAYED BETWEEN Green Jersey vs. Black Jersey

Table XI and XII we can observe an increase in performance
across all CNNs, but our approach significantly outperforms
the state-of-the-art CNNs. One possible reason for this is that
although the training dataset consists of only 100 images per
class (Player with/without the ball), we can create more than
75,000 Triplet pairs and train the Triplet CNN to learn fine-
grained features by increasing the inter-class variance and
decreasing the intra-class variance. Furthermore, this finding
is consistent with the works reported by the authors of [48]
- [51], wherein Triplet networks are able to outperform regular
CNNs in the presence of very limited data.

F. Ablation Study for Generating the Tactical Statistics

1) Generating Match Level Tactical Statistics: In this sub-
section we perform an ablation study to observe how using
different combinations of player detectors and classifiers for
identifying the team and player controlling the ball affects
the generation of match level statistics. We do not need
any tracking algorithm for generating match level statistics,
hence we use only the outputs of the player detector and
classifier for identifying the team and player controlling the
ball. Table XIII shows the performance and comparison of our
approach with the state-of-the-art approaches for generating
match level statistics with and without data augmentation.
Additionally, there is no other work that can directly provide
the tactical statistics for the number of passes and steals
from a video, hence, we cannot compare the state-of-the-
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TABLE XIII

ABLATION STUDY FOR COMPARING THE PERFORMANCE OF OUR SYSTEM FOR GENERATING THE TACTICAL STATISTICS AT A MATCH LEVEL ON THE
MODERATE AND SEVERE COMPLEXITY HIGHLIGHT VIDEOS. ACC. IS ACCURACY

TABLE XIV

ABLATION STUDY FOR COMPARING THE PERFORMANCE OF OUR SYSTEM FOR GENERATING THE TACTICAL STATISTICS ON AN INDIVIDUAL LEVEL FOR

A 45 SECOND CLIP FROM A VIDEO OF MODERATE COMPLEXITY. THE TRIPLET CNNS PROPOSED IN THIS PAPER ARE USED FOR IDENTIFYING
THE TEAM AND THE “Player With the Ball”

art approaches in Table XIII with our work for these sta-
tistics. The accuracy of the ball possession is calculated by
identifying the correct player controlling the ball in all of
the frames in the videos. Based on this we can observe
from Table XIII that using our approach for classification
outperforms all other approaches for computing the match
level ball possession accuracy. Additionally, it is observed that
using Mask R-CNN [14] as the detector slightly improves the
accuracy for ball possession compared to using YOLOv2 [11].

Effect of Data Augmentation: From, the data distribution
shown in Table III, we can observe that the class “Player with-
out the ball” has 3x more training data than the class “Player
with the ball”. In order to observe the effect of data aug-
mentation for generating the tactical statistics, we generated
and augmented 20,000 synthetic images for the class “Player
with the ball” to our dataset using our Triplet CNN-DCGAN
approach explained in Section III D.1. Next, we trained all the
classifier approaches in Table XIII using the augmented dataset
and compared their results without any data augmentation.
Based on this we can observe that performing data aug-
mentation helped improve the performance of all approaches
in Table XIII. We were able to improve the performance for
our approach by 2.59% and 4.43% using YOLOv2 [11] and
Mask R-CNN [14], respectively.

Our approach was able to successfully detect 7/8 passes
and 2/3 steals in the Moderate complexity and 3/5 passes
and 1/3 steals in the Severe complexity. There is a drop in

performance in the Severe complexity because the players are
too close to each other and since we are using only one camera,
it causes a lot of occlusions. Hence, it is difficult for the
network to identify which player is controlling the ball leading
to a drop in performance.

2) Generating Individual Level Tactical Statistics: In this
sub-section we perform an ablation study to observe the per-
formance in generating individual player level tactical statistics
using different combinations of player detector and tracking
algorithms and fixing our approach for predicting the team
and player controlling the ball. For this purpose, we selected a
45 second clip from a video (recorded at 30 FPS) of moderate
complexity where Players ID # 6 and 10 belonging to the
white team were passing the ball between them while Player
ID # 13 belonging to the red team was trying to steal the ball.
Towards the end of the video Player ID # 13 successfully
stole the ball from Player ID # 10. Table XIV shows the
performance and comparison of our approach with the state-of-
the-art approaches for generating individual player statistics.
In Table XIV, the duration of ball possession is shown in
frames, this can be converted into time by dividing it by the
frame rate of the video.

From Table XIV, we can observe that using DeepSORT
achieves better performance in generating the statistics with
the highest processing speed using two TITAN X GPUs.
Although, Mask R-CNN [14] outperformed YOLOv2 [11] by
3 frames in predicting the duration of ball possession for
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Player ID #13, there is no other significant change. On the
contrary using YOLOv2 had the highest processing speed
of 16.9 FPS which is a 10x improvement compared to Mask
R-CNN. This is significant because, although our approach
is offline it is unreasonable for a user to wait 10x longer
to analyze a video using Mask R-CNN compared to using
YOLOv2 for a very small trade off in accuracy.

It can also be observed that the algorithm proposed by
Feichtenhofer et al. [41] did not detect a pass of Player ID
# 6 and also had a false negative in predicting the steals of
Player ID #10. The reason for this is that the algorithm had an
identity flip for that player during which the pass was made
leading to incorrect stats.

G. Discussion of Results and Application to Internet of
Things (IoT) Environment

1) Discussion of Results: In this sub-section we analyze the
results and provide high level conclusions of the individual
modules for generating the tactical statistics.

a) Player detection and tracking: In our approach we
evaluated various player detection and tracking algorithms
and found the best combination for detecting and tracking
players are YOLOv2 [11] and DeepSORT [43], respectively.
Although the Mask R-CNN [14] approach was able to slightly
outperform YOLOv2 in terms of IOU, YOLOv2 has a 10x
improvement in processing speed. This is a very important
trade-off in terms of processing speed. In terms of tracking
we observed that deep learning based approaches proposed
by [41]–[43] outperform some of the hand-crafted approaches
described in [44]. The reason for this is that the approaches
proposed in [44] are not very generalizable across different
matches and do not handle player occlusions well.

b) Team Identification: We proposed three different team
identification algorithms (TI-1, TI-2, and TI-3) and found that
TI-3 outperformed all state-of-the-art approaches as shown
in Table VII. A drawback of TI-3 is that we require an anno-
tated dataset for training the CNN making it less generalizable.
A solution for this problem is that since team jerseys do not
often change, we can choose a match that was played in the
past by the same teams and annotate those images for training
the CNN. In cases where datasets are not available we can
still use TI-1 which is the most generalizable approach for a
slight trade off in performance.

c) Identifying the player controlling the ball: We pro-
posed to use a Triplet CNN for identifying the player con-
trolling the ball throughout all the frames in a video. Prior
work done by [30] showed that regular CNNs often over-
look minute details such as soccer balls which is the most
important feature for identifying the player controlling the
ball. We empirically showed that by training Triplet CNNs
to extract fine-grained features our approach outperforms the
state-of-the-art classifiers for this task. A general drawback
of all the approaches shown in Table IX is that, they do
not generalize to matches beyond the dataset. Our approach
solves this problem by requiring only 100 annotated images
per class (Player with/without the ball) per match in order to

achieve a reasonable performance and it outperforms the other
approaches shown in Tables XI and XII.

2) Application to IoT: Internet of Things (IOT) is an
environment where individual devices sense and collect data
which is shared through the internet where the data can be
processed and interpreted in real time. This technology has
been widely used in areas such remote monitoring, healthcare
and recently in sports [60]. In our case the proposed approach
can be integrated into a multi-camera system in order to
generate more robust statistics and usually this would create a
bottleneck problem in terms of processing speed. This kind of
problem can be solved by moving heavy computations onto a
cloud based IOT-environment as shown in [60]. Additionally,
in order to make the tracking more robust, we can attach
cheap GPS tracking sensors on the jerseys of the players which
transmit the data to a cloud server where all of the data are
being collectively processed in real-time.

V. CONCLUSION

We proposed and designed a system for analyzing the
performance of soccer players and generating three tactical
statistics of each player (except goal keeper) from a video.
We collected a dataset consisting of 49,950 images from high
school soccer matches and performed exhaustive evaluation
and comparison of algorithms on the dataset and our approach
achieved the best performance in terms of accuracy and
computation time. Moreover, we observed that although our
approach achieves the best performance on matches played
between teams in our training dataset, the features learned do
no generalize well across matches played by teams that are
not in our dataset. To solve this we employed a minimum
amount of match specific annotations using a novel Triplet
CNN-DCGAN architecture and showed that by fine tuning
the network with only 100 annotated images per class (Player
with/without the ball) we can obtain robust performance.
Finally, we performed an ablation study that showed how
individual modules of our proposed approach and data aug-
mentation affect the generation of tactical statistics at a match
level and individual player level. The Future work will include
using multiple wide lens stationary cameras and GPS trackers
in an IOT based cloud environment which will provide real-
time performance. Additionally we will integrate more actions
in our system such as shots on the goal, dribbling detection
and player style classification [38] which will be used for gen-
erating a more comprehensive performance characterization of
an individual soccer player.
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