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Abstract 

This paper is concerned with efficient and accurate indexing for target recognition in SAR images. We present a method 
that efficiently retrieves correct object hypotheses using the major axis of a pattern of scattering centers in SAR images 
and the Hausdorff distance measure. The features that we use are the locations of scattering centers in SAR returns. 
Experimental results show that indexing using major axis efficiently narrows down the number of candidate hypotheses 
and that the Hausdorff distance measure performs well in picking the correct hypothesis. These properties of the algorithm 
along with computational efficiency make our method a promising approach to target indexing in SAR images. 
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1. Introduction 

Automatic target recognition (ATR) from synthetic 
aperture radar (SAR) imagery is an important aspect 
of current vision research. Some of the representative 
work in ATR from SAR images includes (Dudgeon et 
al., 1994; Novak et al., 1993; Waxman et al., 1993). 
This work focuses on template matching techniques in 
which the templates are manually designed. However, 
few research works on target indexing using SAR im- 
ages have been reported in the literature. As compared 
to visible imagery, recognition of targets in SAR im- 
agery (Special issue, 1993; Bhanu et al., 1996) is a 
very challenging and difficult task because of the non- 
literal nature of SAR images. One has to understand 
the physics of SAR image formation to interpret them 
(Fitch, 1988). 

* Corresponding author. E-mail: bhanu@engr.ucr.edu. 

Indexing is one of the fundamental issues in model- 
based recognition that is concerned with how to accu- 
rately and efficiently narrow down the number of can- 
didate models to be matched without actually search- 
ing through all the models in a database. This research 
features accurate and efficient target indexing in SAR 
images given locations of scattering centers. 

In indexing, the feature correspondence and search 
of model database are replaced by a table look-up 
mechanism. This indexing table is computed off-line. 
A brief survey of some representative object recogni- 
tion systems that have employed geometric indexing 
or hashing techniques is given in Table 1. Performance 
of these systems cannot be compared directly because 
they have been developed based on different assump- 
tions. They perform in different scenarios using dif- 
ferent features to generate object hypotheses. More 
importantly, it is hard to compute complex structured 
features from point-like features that SAR returns al- 
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Table 1 
State-of-the-art techniques for indexing. Approaches using structured features are marked with *. 

System (year) Acq./Recogn. Input data Indexing key Comments w.r.t. SAR 
Yi and Chel- 3D/3D range image 
berg (1994) 

Califano and 2D/2D 2D drawing 
Mohan (1994) 

Rigoutsos and 2D/2D intensity image 
Hummel (1993) 

Beis and 2D/3D range image 
Lowe (1993) 

Stein and 2D/2D intensity image 
Medioni (1992b) 
Stein and 3D/3D range image 
Medioni (1992a) 

Flynn and 3D/3D range image 
Jain (1992) 

Lamdan et al. 2D/2D intensity image 
(1988) 

LSG (Local Surface Group) 

seven-dimensional global invariants 

coordinates of scene points computed 
in the coordinate system formed by an 
ordered pair of scene points 
three angles and ratio of the interior 
edge lengths from four straight-line 
segment chain 

super segments with several different 
cardinalities for edges 

3D super segments with several different 
cardinalities for edges and splashes 

two invariant feature values computed 
from a triple of scene surface patches 
that are simultaneously visible 

coordinates of scene points in the affine- 
transformed coordinate system formed by 
an ordered triplet of three scene points 

:¢ 

:g 

point set matching 
(no SAR) 

:¢ 

point set matching 
(no SAR) 

though those approaches marked with asterisk ( . )  in 
Table l are potentially applicable to the problem of 
ATR from SAR images. 

We have developed a computationally simple ap- 
proach that efficiently retrieves correct model hypothe- 
ses when objects are represented by a pattern of  point 
features. In the indexing table, model entries are in- 
dexed with the major axes of  the patterns of  scattering 
centers. We first index the input pattern of  scattering 
centers using its major axis and validate candidate hy- 
potheses using the Hausdorff distance measure. The 
Hausdorff distance is a method to determine the degree 
of  resemblance between two objects when an object 
is represented by a set of  point features. While there 
are other distance transforms (Paglieroni, 1992), the 
Hausdorff method is quite tolerant of  small position er- 
rors (Huttenlocher and Kedem, 1990; Huttenlocher et 
al., 1993), and is reliable in the presence of  noise, spu- 
rious features and some occlusion (Rucklidge, 1995). 
The Hausdorff distance will be described in Section 
3. Using the major axis indexing, candidate hypothe- 
ses whose major axes fall within some neighborhood 
of  the major axis computed from the input pattern are 
quickly retrieved. The retrieved hypotheses are then 
rank-ordered in the increasing order of  the Hausdorff 

distance measure and enter the verification stage in the 
order they are listed. Experimental results show that 
indexing using major axis is very efficient and that 
the Hausdorff distance measure performs very well 
in comparing positionally noisy patterns of  scattering 
centers, resulting in accurate retrieval of  the correct 
model hypothesis. 

Let us briefly overview our entire target object 
recognition system. Fig. 1 is a block diagram of  the 
computation in the system. The entire system is di- 
vided into two parts: off-line simulation of  SAR sig- 
natures of  model objects and construction of  indexing 
table and on-line recognition. In the off-line part, SAR 
images of  target models represented by CAD files are 
simulated with the XPATCH software (Andersh et 
al., 1994) for a set of  aspects (represented by depres- 
sion and azimuth angles). For each image, locations 
of  scattering centers are detected and its direction of  
major axis is computed. In the indexing table, model 
hypotheses represented by (model name, depression 
angle, azimuth angle, location of  scattering centers) 
are linked to indexing keys that are directions of  their 
major axes. At recognition time, scattering centers 
are extracted from the target chip. The major axis 
of  the pattern of  scattering centers is computed and 
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Fig. 1. System overview. 

models whose major axis is within -4-e ° (threshold) 
neighborhood of the input major axis are quickly col- 
lected from the indexing table. At this stage, we apply 
the Hausdorff distance measure to match the scatter- 
ing centers of the models and the target chip so as 
to validate the candidate hypotheses. We rank-order 
these hypotheses in the ascending order of Hausdorff 
distance and they enter the verification stage in the 
order they are listed. A metric is used here to verify 
the hypotheses for correct recognition result. 

The contribution of this work is an efficient and 
accurate model retrieval method for target recognition 
in SAR images using a combination of the major axis 
analysis and the Hausdorff distance measure. 

The following section presents the method to com- 
pute the major axis using the principal component 
analysis. Section 3 briefly describes the Hausdorff dis- 
tance measure. Finally, Section 4 reports experimental 
results for our current model database consisting of 
four armored vehicle targets, FRED, T72, T80 tanks 
and SCUD missile launcher. 

2. Computing major axis 

We employed the principal component analysis to 
compute the major axis of a pattern of scattering cen- 
ters. Principal component analysis is a well-known ex- 
ploratory data analysis and is frequently used to re- 

duce the dimensionality of a data set and extract new 
features from the original data which are uncorrelated. 
The use of this technique is specialized to two dimen- 
sions in this work, however, it can be used with input 
data of any dimensionality. 

Assume that the input data is expressed as a matrix 
X with each row i containing the coordinates of one 
of the scattering centers xi  = (x i ,  Yi): 

X =  

n // 

The following steps are performed using this input 
matrix: 

Step 1. The  sample mean is computed for x and 
y coordinates as /2x = (l/n)~-~i"=1 xi and /2y = 
( I / n )  ~_~inl Yi, respectively. A centered data matrix 
X* is constructed from X: 

[x,- xyl 1 X •  ~ • 

xn - ~Xx Yn ~-'~y 

Step 2. The sample covariance matrix R = 
( 1 / n ) [ X * ] T X  * is obtained and its eigensystem is 
computed, yielding two eigenvalue and eigenvector 
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pairs {(Vl, A1 ), (v2, ~.2)}. A s s u m e  that the two pairs 
are sorted so that 31 ~> A2. 

The two eigenvectors, vt and v2, span the 2D imag- 
ing plane and the eigenvector vl is the direction in the 
plane along which the data's sample variance is the 
larger (,tl is the sample variance along the direction). 
v2 is the direction orthogonal to vl with the larger vari- 
ance. The directionality of v i is an excellent estimate 
of the orientation of a scattering pattern. To resolve 
the 180 ° ambiguity, we use the direction that forms an 
acute angle with x axis as the direction of major axis. 

~ al 

I 
I 

h( A,B) I 
I 
I 
I 
I 

• b~ 

a2 • • b 2 
h( B,A ) 

A: • 

B: • 

H( A,B)=max(h( A,B),h( B,A ) ) 

=c6b, 

Fig. 2. An illustration of the Hausdorff distance. 

j-2 j-i  j j+l  j+2 

3. The Hausdorff  distance measure 

Given two finite point sets A = (al  . . . . .  ap} and 
B = {bl . . . . .  bq}, the Hausdorff distance is defined as 

H(A,  B) = max(h(A,  B),  h(B,  A) ), (1) 

where 

h ( A , B )  = max min I la  - bl[ (2) 
aEA bEB 

and tl " II is some underlying norm on the points of A 
and B. 

Fig. 2 illustrates the Hausdorff distance using two 
sets, A and B, consisting of two points. The function 
h ( A, B) is called the directed Hausdorff distance from 
A to B. It identifies the point a E A that is farthest 
from any point of B and measures the distance from 
a to its nearest neighbor in B (using the given norm 
II • I I ) ,  that is, h ( A , B )  in effect ranks each point of 
A based on its distance to the nearest point of B and 
then uses the largest ranked such point as the distance 
(the most mismatched point of A). Point of A must 
be within distance d of some points of B, and also 
there is some point of A that is exactly distance d from 
the nearest point of B (the most mismatched point). 
The Hausdorff distance H(A,  B) is the maximum of 
h (A, B) and h (B, A). Thus, it measures the degree of 
mismatch between two sets by measuring the distance 
of the point of A that is farthest from any point of B 
and vice versa. The notion of resemblance encoded by 
this distance measure is that each member of A be near 
some member of B and vice versa. Unlike most meth- 
ods of comparing shapes, there is no explicit pairing 
of points of A with points of B (for example, many 

i-2 

i-I 

i 

i+l 

i+2 

Fig. 3. Local neighborhood (filled region) that is used to detect 
scattering centers. 

points of A may be close to the same point of B). The 
function H(A,  B) can be trivially computed in time 
O(pq) for two point sets of size p and q, respectively, 
and this can be improved to O( (p + q) log(p + q) ) 
(Alt et al., 1991). Note that there are several modifi- 
cations of the Hausdorff distance (Rucklidge, 1995). 
We have used the most common definition since it is 
suited for our problem. 

4. Experimental results 

The current model database includes four armored 
vehicle targets, FRED tank, T72 tank, T80 tank and 
SCUD missile launcher. The radar signature predic- 
tions (at six inch resolution for all azimuths from 0 ° 
to 359 ° in 1 ° steps at 15 ° elevation) of these vehicle 
targets are generated using the XPATCH SAR simu- 
lation code. We use a total of 1440 images to build 
the model base, and use 2880 images to test the per- 
formance of our indexing approach. 

Note that the intensity noise originally generated 
from SAR imaging is called speckle noise and it is a 
multiplicative type of noise. The intensity value that 
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is logarithmically transformed is used for the interpre- 
tation of SAR data. Therefore, the noise of the log- 
arithmically transformed intensity image can be ap- 
proximated by additive Gaussian noise (Arsenault and 
April, 1976). We assumed (see below) that positional 
uncertainty of the scattering center is approximately 
Gaussian. 

We employ the following method to detect scatter- 
ing centers. Other, more complicated, methods can be 
used, as long as they produce locations of scattering 
centers. We consider current pixel location a candi- 
date scattering center if the magnitude of SAR return 
at the current pixel is a local maximum in the local 
neighborhood shown in Fig. 3. Current pixel location 
is considered a local maximum if the following four 
conditions are met: 

z ( i , j -  2) < z ( i , j -  1) < z ( i , j )  
> z ( i , j +  1) > z ( i , j + 2 ) ,  

z ( i -  2 , j )  < z ( i -  1, j )  < z ( i , j )  
> z ( i  + l , j )  > z ( i + 2 , j ) ,  

z ( i -  l , j  - l)  < z ( i , j )  > z ( i  + l , j  + l ) ,  

z ( i -  l , j  + l)  < z ( i , j )  > z ( i +  l , j - 1 ) ,  (3) 

where z (i, j )  represents the magnitude of the image 
at the current pixel location, (i, j ) .  The same method 
is used for detection of scattering centers during both 
off-line and on-line processes. Examples of scatter- 
ing centers detected using this method and major axes 
computed from these scattering centers are shown in 
Fig. 4 for the four vehicle targets at azimuth angle 
18 °. Corresponding target signatures are shown on the 
left side. For each image, top twenty scattering cen- 
ters in terms of magnitude are selected in these exper- 
iments. If  the number of scattering centers is less than 
twenty, all available scattering centers are used. After 
all scattering centers are identified, an indexing table 
is built where a model entry (model name, depression 
angle, azimuth angle, locations of scattering centers) 
is linked to a leaf node of the binary tree that spans 
a small range (e) of directions containing the major 
axis direction of the entry. 

We have used two sets of test data. One set of data is 
non-occluded data ( 1440 images) and the other is oc- 
cluded data ( 1440 images). The occluded data can be 
considered a bad real noisy situation. Data for all az- 
imuth angles from 0 ° to 359 ° are used as test data. To 

create the occluded data, we have cut 10% of each im- 
age from the right side. We add positional noise to lo- 
cations of scattering centers of non-occluded data and 
occluded data. We generate noisy locations of scatter- 
ing centers, (x + Nl(0 ,0-2) ,y  + N2(0,0-2)), using 
two Gaussian random noise generators, N1 and N2. 
(x, y) is a noiseless location of a scattering center and 
N(0, 0 -2) denotes Gaussian noise of mean 0 and stan- 
dard deviation 0-. We have employed a rather strict re- 
quirement for a successful indexing because we want a 
correct hypothesis to appear early in the candidate list 
from the rank-order filter using the Hausdorff distance 
measure. We consider an indexing result correct only 
when the first model entry ordered by the Hausdorff 
distance measure is the same as the input. This is the 
metric for correct indexing result that we use for the 
experiments reported in this paper. Figs. 5 (a) and (b) 
show the indexing performance of our method for non- 
occluded data and occluded data, respectively, as the 
amount of positional noise added to location of scat- 
tering centers varies. In the case of non-occluded data, 
we have found that correct hypotheses were always in 
the candidate list. As expected, the result shows that 
we need to use a larger value of e ° to retrieve model 
hypotheses when noise gets large. As can be seen in 
Fig. 5(a) ,  for 90% of the time, in the case of e = 5 °, 
the first entry in the ordered list was the correct hy- 
pothesis. For the occluded data, for 80% of the time, 
in the case of e = 5 °, the first entry in the ordered list 
was the correct hypothesis. Even though the amount 
of noise increases, the accuracy of indexing does not 
degrade significantly. 

5. Conclusions 

We have proposed an efficient method to retrieve 
object hypotheses using the major axis indexing and 
the Hausdorff distance measure. The major axis in- 
dexing technique efficiently narrows down the num- 
ber of candidate hypotheses. The Hausdorff distance 
measure performs well in picking the correct hypoth- 
esis and is quite tolerant of positional errors in lo- 
cations of scattering centers. These properties of the 
algorithm along with computational efficiency make 
the proposed method a promising approach to target 
indexing in SAR images and suggest that further eval- 
uations with real SAR imagery are warranted. 
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(a) FRED tank 

(b) T72 tank 

(c) T80 tank 

(d) SCUD missile launcher 

Fig. 4. Magnitude of SAR returns (left) and scattering centers marked with small dark squares (right) for (a) FRED tank, (b) T72 tank, 
(c) T80 tank and (d) SCUD missile launcher (down) at azimuth angle 18 ° and elevation angle 15 °. Only the target region taken from a 
256 × 256 target chip (6" resolution) is shown, and it is zoomed in for clear visualization of scattering centers on the target. The original 
sizes of images in (a), (b),  (c) and (d) are 85 x 45, 111 x 60, 60 × 40 and 110 x 54, respectively. 
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