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Abstract-Image segmentation is an old and difficult problem. 
One of the fundamental weaknesses of current computer vision 
systems to be used in practical applications is their inability to 
adapt the segmentation process as real-world changes occur in 
the image. We present the first closed loop image segmentation 
system which incorporates a genetic algorithm to adapt the 
segmentation process to changes in image characteristics caused 
by variable environmental conditions such as time of day, time 
of year, clouds, etc. The segmentation problem is formulated as 
an optimization problem and the genetic algorithm efficiently 
searches the hyperspace of segmentation parameter combinations 
to determine the parameter set which maximizes the segmentation 
quality criteria. The goals of our adaptive image segmentation 
system are to provide continuous adaptation to normal envi- 
ronmental variations, to exhibit learning capabilities, and to 
provide robust performance when interacting with a dynamic 
environment. We present experimental results which demonstrate 
learning and the ability to adapt the segmentation performance 
in outdoor color imagery. 

I. INTRODUCTION 
MAGE segmentation is typically the first, and most dif- I ficult, task (also known as an ill-defined problem) of 

any automated image understanding process. It refers to the 
grouping of parts of an image that have “similar” image 
characteristics. All subsequent interpretation tasks including 
object detection, feature extraction, object recognition, and 
classification rely heavily on the quality of the segmentation 
process. Despite the large number of segmentation techniques 
presently available [2], [lo], [15], no general methods have 
been found that perform adequately across a diverse set of 
imagery. Only after numerous modifications to an algorithm’s 
control parameter set can any current segmentation technique 
be used to process the wide diversity of images encountered in 
real world applications such as the operation of an autonomous 
robotic land vehicle or aircraft, automatic target recognizer, or 
a photointerpretation task. 

When presented with an image from one of these application 
domains, selecting the appropriate set of algorithm parameters 
is the key to effectively segmenting the image [6]. The image 
segmentation problem can be characterized by several factors 

which make the parameter selection process very difficult. 
First, most of the powerful segmentation techniques available 
today contain numerous control parameters which must be 
adjusted to obtain optimal performance. As an example, the 
Phoenix segmentation algorithm [19], [26] used in our exper- 
iments contains 14 separate control parameters that directly 
affect the segmentation results. The size of the parameter 
search space in these systems can be prohibitively large, 
unless it is traversed in a highly efficient manner. Second, 
the parameters within most segmentation algorithms typically 
interact in a complex, non-linear fashion, which nnakes it 
difficult or impossible to model the parameters’ behavior in an 
algorithmic or rule-based fashion. Thus, the multi-dimensional 
objective function defined using the various parameter combi- 
nations cannot generally be modeled in a mathematical way. 
Third, since variations between images cause changes in the 
segmentation results, the objective function that represents 
segmentation quality varies from image to image. The search 
technique used to optimize the objective function must be 
able to adapt to these variations between images. Finally, 
the definition of the objective function itself can be a subject 
of debate because there are no single, universally accepted 
measures of segmentation performance available with which 
to uniquely define the quality of the segmented image. 

Hence, a need exists to apply an adaptive technique that 
can efficiently search the complex space of plausible parameter 
combinations and locate the values which yield optimal results. 
The approach should not be dependent on the particular 
application domain nor should it have to rely on detailed 
knowledge pertinent to the selected segmentation algorithm. 
Genetic algorithms (GAS), which are designed to efficiently 
locate an approximate global maximum in a search space, 
have the attributes described above and show great promise 
in solving the parameter selection problem encountered in the 
image segmentation task. 

Fig. 1 illustrates the adaptive image segmentation task. 
Fig. l(a) shows the original image that must be segmented 
by the system. Fig. l(b) indicates the “ideal” segmentation 
of the image in which the wooden gates on either side of 
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Fig. 1. Example of the adaptive image segmentation task. (a) Outdoor image, in which wooden gates adjacent to road must be segmented. (b) “Ideal” 
segmentation result obtained manually. (c) Initial, undersegmented result. (d) Second, more refined result which still lacks sufficient detail. (e)  Third, 
oversegmented result. (0 Final result with gates properly extracted and other key image regions correctly segmented. 

been obtained. The final result, shown in Fig. l(f), eliminates 
most of the small regions while leaving the gate regions intact. 
This example illustrates the iterative, convergent nature of the 
genetic process towards ideal segmentation results. 

The key elements of the adaptive image segmentation 
system described in this paper are: 

A closed-loop feedback control technique which provides 
an adaptive capability. The feedback loop consists of 
a genetic learning component, an image segmentation 
algorithm, and a segmented image evaluation component. 
A genetic learning system which optimizes segmentation 
performance on each individual image and accumulates 
segmentation experience over time to reduce the effort 
needed to optimize succeeding images. 
Image characteristics and external image variables are 
represented and manipulated using both numeric and 
symbolic forms within the genetic knowledge structure. 
Segmentation control parameters are represented and pro- 
cessed using a binary string notation. 
Image segmentation performance is evaluated using mul- 
tiple measures of segmentation quality. These quality 
measures include global characteristics of the entire im- 
age as well as local features of individual object regions 
in the image. The global and local quality measures can 
be used separately or in combination. 
The adaptive segmentation system is very fundamental in 
nature and is not dependent on any specific segmentation 
algorithm or type of sensor data (visible, infrared, laser, 
etc.). The adaptive image segmentation system does not 
need to know the inside details of a segmentation al- 

gorithm except for the segmentation parameters and the 
range of values of these parameters so that they can 
be suitably represented in the genetic algorithms. The 
adaptive segmentation system adapts the segmentation 
parameters based on the quality of segmentation achieved 
using these parameter values. In this sense, the system 
is independent of the segmentation algorithm. There is 
nothing intrinsic to the system that is dependent on the 
type of images that need to be processed. As long as 
we can supply the quality measures for the segmented 
images, the adaptive segmentation system will optimize 
the quality measures. So, if there is an evaluation system 
for the segmented images, the adaptive system can be 
applied. However, a segmentation algorithm has a strong 
relationship with the type of images. In other words, it 
makes sense to apply a segmentation algorithm only to 
a particular class of images. For example, the Phoenix 
algorithm is useful for the segmentation of color images. 

The focus of our work is not to develop yet another 
specialized segmentation algorithm that works only in a very 
limited domain on a few images, but is directed towards 
adapting the performance of a well known existing segmen- 
tation algorithm [19], [24], [26] across a wide variety of 
environmental conditions that cause changes in the image 
characteristics. While there are threshold selection techniques 
[22], [25], [28] that adapt to local image properties in an image 
for local image segmentation, these techniques do not adapt 
to changes in images caused by variations in the environ- 
mental conditions and do not accomplish any learning from 
experience to improve the performance of the system over 
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Fig. 2. Conceptual design of the multi-level computer vision process. 

time. To date, no segmentation algorithm has been developed 
which can automatically generate an “ideal” segmentation 
result in one pass (or in an open loop manner) over a range 
of scenarios encountered in practical outdoor applications. 
Any technique, no matter how “sophisticated” it may be, 
will eventually yield poor performance if it cannot adapt to 
the variations in outdoor scenes. Therefore, in this paper we 
attempt to address this fundamental bottleneck in developing 
“useful” computer vision systems for practical scenarios by 
developing a closed-loop system that automatically adapts 
the segmentation algorithm’s performance by changing its 
control parameters and will be valid across a wide diversity 
of image characteristics and application scenarios. It should 
be noted that the performance of the adaptive algorithm will 
be limited by the capabilities of the segmentation algorithm, 
but the results will be optimal for a given image based on our 
evaluation criteria. 

Further, the adaptive image segmentation system presented 
in this work is designed to be a part of an overall approach 
to computer vision [3], [23] as shown in Fig. 2. The adaptive 
segmentation technique provides a segmented image that can 
be utilized at the intermediate level of the vision process 
to perform region labeling and feature extraction. Once this 
data is available, it is then passed to the object recognition 
stage where the objects of interest in the image are located 
and identified. By maximizing the segmentation quality at 
the lowest level of the vision process, we can increase the 
performance of the higher levels and improve the robustness 
of the overall vision process. 

While it is true that the segmentation process shown in 
Fig. 2 (and described in this paper) is by itself a bottom- 
up segmentation process, some vision systems may require a 
top-down approach to image segmentation [21]. However, the 
objective in this work is to achieve the optimal segmentation 
of the image before the results are passed to higher-level 
processes. For example, if recognition or feature extraction 
results are unsatisfactory, a new segmentation algorithm can 
be used or the criteria for segmentation evaluation can be 
modified in this dynamic system. Although the segmentation 
and the interpretation processes are interlinked, in this paper 
we focus on improving the segmentation performance alone, 
without subjecting the adaptive segmentation process to the 

outcome of any higher-level interpretation process. Thus, this 
paper concentrates on the first part of Fig. 2, which is the 
adaptive image segmentation component. 

The next section of this paper argues about the genetic algo- 
rithm (GA) as the appropriate search technique for the segmen- 
tation problem. Section I11 presents an overview of the GA- 
based approach, including previous applications in computer 
vision research. Following this review, Section IV describes 
the baseline adaptive image segmentation process that we have 
developed. We explain the choice of a particular segmentation 
algorithm as well as the manner in which segmentation quality 
is measured. Section V presents the experimental results on a 
sequence of outdoor images. It also describes different varia- 
tions of the algorithm and discusses comparison results with 
other non-adaptive segmentation techniques. Finally, Section 
VI provides the conclusions of this paper. 

11. SEGMENTATION AS AN OPTIMIZATION PROBLEM 

We previously highlighted some of the characteristics of 
the segmentation problem such as the size of the parameter 
search space, the complexity of the objective function, and 
variations in the objective function caused by changes in the 
imagery as well as the accepted definition of the function itself. 
Fig. 3(a) provides a generalized representation of an objective 
function that is typical for the image segmentation process. The 
figure depicts an application in which only two segmentation 
parameters are being varied, and the corresponding segmen- 
tation quality obtained for any pair of algorithm parameters. 
Because the algorithm parameters interact in complex ways, 
the objective function is multimodal and presents problems for 
many commonly used optimization techniques. Further, since 
the surface is derived from an analysis of real world imagery, 
it may be discontinuous, may contain significant amounts of 
noise, and cannot be described in closed form. Fig. 3(b) shows 
the actual segmentation quality surface derived for the outdoor 
image in Fig. l(a). The derivation of this surfact: will be 
described in Section IV-D, where we discuss the segmentation 
evaluation process. 

A. Selection of an Optimization Technique 

The conclusion drawn from an analysis of the surfaces in 
Fig. 3 is that we must utilize a highly effective search strategy 
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Fig. 3. (a) Representation of the objective function which must be optimized 
in the adaptive image segmentation problem. (b) Segmentation quality surface 
for the image shown in Fig. l(a). The contours of the surface indicate the 
complex interactions between the control parameters (Marmin and Absscore 
are Phoenix [19], [26] algorithm parameters). 

which can withstand the breadth of performance requirements 
necessary for the image segmentation task. We have reviewed 
many of the techniques commonly used for function opti- 
mization to determine their usefulness for this particular task. 
In addition, we have also investigated other knowledge-based 
techniques which attempt to modify segmentation parameters 
using production rule systems. The drawbacks to each of these 
methodologies are as follows: 

0 Exhaustive Techniques (Random walk, depth first, breadth 
first, enumerative)-Able to locate global maximum but 
computationally prohibitive because of the size of the 
search space. 

9 Calculus-Based Techniques (Gradient methods, solving 
systems of equations)-No closed form mathematical rep- 
resentation of the objective function is available. Discon- 
tinuities and multimodal complexities are present in the 
objective function. 

9 Partial Knowledge Techniques (Hill climbing, beam 
search, best first, branch and bound, dynamic program- 
ming, A*)-Hill climbing is plagued by the foothill, 
plateau, and ridge problems. Beam, best first, and A* 
search techniques have no available measure of goal 
distance. Branch and bound requires too many search 
points while dynamic programming suffers from the curse 
of dimensionality and is expensive computationally. 
Knowledge-Based Techniques (Production rule systems, 
heuristic methods)-These systems have a limited domain 
of rule applicability, tend to be brittle [17], and are usu- 
ally difficult to formulate. Further, the visual knowledge 
required by these systems may not be representable in 
knowledge-based formats. 

Genetic algorithms are able to overcome many of the 
problems mentioned in the above optimization techniques. 
They search from a popuEation of individuals (search points), 
which make them ideal candidates for parallel architecture 
implementation, and are far more efficient than exhaustive 
techniques. Since they use simple recombinations of existing 
high quality individuals and a method of measuring current 
performance, they do not require complex surface descriptions, 
domain specific knowledge, or measures of goal distance. 
Moreover, due to the generality of the genetic process, they 
are independent of the segmentation technique used, requiring 
only a measure of performance, which is referred to as 
segmentation quality, for any given parameter combination. 

Genetic algorithms are also related to simulated annealing 
[7] where, although random processes are also applied, the 
search method should not be considered directionless. Both ge- 
netic algorithms and simulated annealing are modeled on pro- 
cesses found in nature (natural evolution and thermodynamics, 
respectively), and both techniques have recently attracted 
significant attention as suitable for optimization problems of 
very large scale. In the image processing domain, Geman and 
Geman [ll], [18] have used simulated annealing to perform 
image restoration and Sontag and Sussmann [27] have per- 
formed image restoration and segmentation. Simulated anneal- 
ing and other hybrid techniques [l] also have the potential for 
improved performance over earlier optimization techniques. 

ID. OVERVIEW OF GENETIC ALGORITHMS 

Genetic algorithms were pioneered at the University of 
Michigan by John Holland and his associates [8], 1131, [16]. 
The term genetic algorithm is derived from the fact that its 
operations are loosely based on the mechanics of genetic 
adaptation in biological systems. Genetic algorithms can be 
briefly characterized by three main concepts: a Darwinian 
notion of fitness or strength which determines an individual’s 
likelihood of affecting future generations through reproduc- 
tion; a reproduction operation which produces new individuals 
by combining selected members of the existing population; 
and genetic operators which create new offspring based on the 
structure of their parents. 

A genetic algorithm maintains a constant-sized population 
of candidate solutions, known as individuals. The initial seed 
population from which the genetic process begins can be 
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chosen randomly or on the basis of heuristics, if available for 
a given application. At each iteration, known as a generation, 
each individual is evaluated and recombined with others 
on the basis of its overall quality or $fitness. The expected 
number of times an individual is selected for recombination 
is proportional to its fitness relative to the rest of the pop- 
ulation. Intuitively, the high strength individuals selected for 
reproduction can be viewed as providers of “building blocks” 
from which new, higher strength offspring can be constructed. 
An abstract procedure of a simple genetic algorithm is given 
below, where P( t )  is a population of candidate solutions to a 
given problem at generation t . 

t = 0; 
initialize P(t ) ;  
evaluate P( t ) ;  
while not (termination condition) 

begin 
t = t + l ;  
reproduce P( t )  from P(t  - 1); 
recombine P ( t )  ; 
evaluate P( t ) ;  

end; 

New individuals are created using two main genetic 
recombination operators known as crossover and mutation. 
Crossover operates by selecting a random location in 
the genetic string of the parents (crossover point) and 
concatenating the initial segment of one parent with the 
final segment of the second parent to create a new child. A 
second child is simultaneously generated using the remaining 
segments of the two parents. The string segments provided by 
each parent are the building blocks of the genetic algorithm. 
Mutation provides for occasional disturbances in the crossover 
operation by inverting one or more genetic elements during 
reproduction. This operation insures diversity in the genetic 
strings over long periods of time and prevents stagnation in 
the convergence of the optimization technique. 

The individuals in the population are typically represented 
using a binary notation to promote efficiency and application 
independence of the genetic operations. Holland [ 161 provides 
evidence that a binary coding of the genetic information may 
be the optimal representation. Other characteristics of the 
genetic operators remain implementation dependent, such as 
whether both of the new structures obtained from crossover are 
retained, whether the parents themselves survive, and which 
other knowledge structures are replaced if the population size 
is to remain constant. In addition, issues such as the size of 
the population, crossover rate, mutation rate, generation gap, 
and selection strategy have been shown to affect the efficiency 
with which a genetic algorithm operates [14]. 

The inherent power of a genetic algorithm lies in its 
ability to exploit, in a highly efficient manner, information 
about a large number of individuals. By allocating more 
reproductive occurrences to above average individuals, the 
overall net affect is an upward shift in the population’s average 
fitness. Since the overall average moves upward over time, the 
genetic algorithm is a “global force” which shifts attention to 
productive regions (groups of highly fit individuals) in the 

search space. However, since the population is distributed 
throughout the search space, genetic algorithms effectively 
minimize the problem of converging to local maxima. 

Since genetic algorithm rely on the accumulation of evi- 
dence rather than on domain dependent knowledge, genetic 
algorithms are ideal for optimization in applications where 
domain theories or other applicable knowledge is difficult or 
impossible to formulate. However, there are certain drawbacks 
to genetic algorithms which make them inappropriate for cer- 
tain applications. For example, genetic systems usually require 
the evaluation of a large number of candidate solutions. In 
application domains where the evaluation process is expensive, 
the computational effort to perform numerous evaluations may 
be prohibitive. However, research by Fitzpatrick and Grefen- 
stette [9] has shown that a simple statistical approximation 
to a complex evaluation process can allow genetic systems 
to effectively adapt in these situations and converge to an 
approximate global maxima. 

To date, genetic algorithms have been applied to a wide 
diversity of problems including combinatorial optimization, 
gas pipeline operations, and machine learning [ 131. With 
regards to computer vision applications, Mandava et. al. [20] 
have used genetic algorithms in solving the vision problem of 
image registration. In this work, the genetic system was used to 
select a set of transformation parameters which correctly align 
a pair of images. Genetic algorithms have also been used in 
computer vision for generating image domain feature detectors 
by Gillies [12]. 

Iv. ADAPTIVE IMAGE SEGMENTATION SYSTEM 

Genetic algorithms can be used in three different ways 
to provide an adaptive behavior within a computer vision 
system. The simplest approach is to allow the genetic system 
to modify a set of control parameters that affect the output 
of an existing computer vision program. By monitoring the 
quality of the resulting program output, the genetic system 
can dynamically change the parameters to achieve the best 
performance. A second approach allows the genetic component 
to modify the complex data structures within an algorithm or 
production rule system for a computer vison application. By 
modifying the control mechanism or agenda in an algorithm 
or the organization of data frames in a rule-based system, the 
genetic algorithm can bring about changes in the system’s 
behavior. Finally, the most complex implementation of an 
adaptive computer vision system allows the genetic algorithm 
to actually make changes in the executable code of a program. 
In most of these cases, the adaptation involves changing the 
conditiodaction statements of the rules in a production system. 
Since almost every image segmentation algorithm contains 
parameters that are used to control the segmentation results, 
we have adopted the first strategy listed above. 

Adaptive image segmentation requires the ability to modify 
control parameters in order to respond to changes that occur in 
the image as a result of varying environmental conditions. The 
block diagram of our approach to adaptive image segmentation 
is shown in Fig. 4. After acquiring an input image, the system 
analyzes the image characteristics and passes this informa- 
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tion, in conjunction with the observed extemal variables, to 
the genetic learning component. Using this data, the genetic 
learning system selects an appropriate parameter combination, 
which is passed to the image segmentation process. After 
the image has been segmented, the results are evaluated and 
an appropriate reward is generated and passed back to the 
genetic algorithm. This process continues until a segmentation 
result of acceptable quality is produced. The details of each 
component in this procedure will be described in the following 
subsections. 

A. Image Characteristics 

The input image must be analyzed so that a set of features 
can be extracted to aid in the parameter selection process 
performed by the genetic component. A set of characteristics of 
the image is obtained by computing specific properties of the 
digital image itself as well as by observing the environmental 
conditions in which the image was acquired. Each type of 
information encapsulates knowledge that can be used to de- 
termine a set of appropriate starting points for the parameter 
adaptation process. 

Image analysis produces a set of image statistics that mea- 
sure various properties of the digital image. There are a 
large number of plausible image statistics that can be used, 
including: 

* First Order Properties: Measure the shape of the image 
histogram. Information includes mean, variance, skew- 
ness, kurtosis, energy, entropy, and x and y intensity 
centroids. 

* Second Order Properties: Measure the histogram fea- 
tures based on joint probability distributions between 
pairs of pixels. Information includes autocorrelation, co- 
variance, inertia, cooccurrence matrices, and other derived 
properties. 
Histogram PeaMValley Properties: Measure the values 
of the peaks and valleys in the image histogram. Informa- 
tion includes maximum peak height divided by minimum 
valley height, total number of histogram peaks, maximum 
peak location, minimum valley location, distance between 
maximum peak and minimum valley, maximum peak-to- 
valley ratio, interval set score, and interval set size. 

External variables can also be used to characterize an input 
image. These factors specify the conditions under which the 
image was acquired. They include information such as the 
time of day, time of year, cloud cover, temperature, humidity, 
and other environmental factors such as the presence of 
rain, snow, haze, fog, etc. These conditions all affect the 

Long-Term Popnlntim 

Fig. 5. Representation of a knowledge structure used by the genetic learning 
system. The image characteristics (image statistics and external variables), 
segmentation parameters, and the quality or fitness of the parameter set is 
srored in each knowledge structure. 

quality of the image, which in tum necessitates changes in 
control parameters, and thus they provide useful information 
in representing the overall characteristics of the input image. 

Fig. 5 illustrates the structure of the image statistics and 
external variables ((7,’s) extracted from the image in Fig. l(a). 
The image characteristics list used in our experiments is 
somewhat more complex than the one pictured in Fig. 5 since 
we are using color imagery. For the experiments described in 
Section V, we compute twelve first order properties for each 
color component (red, green, and blue) of the image. These 
features include mean, variance, skewness, kurtosis, energy, 
entropy, x intensity centroid, y intensity centroid, maximum 
peak height, maximum peak location, interval set score, and 
interval set size. The last two features measure histogram 
properties used directly by the Phoenix [ 191, [26] segmentation 
algorithm and provide useful image similarity information. 
Since we use a blacwwhite version of the image to compute 
edge information and object contrast during the evaluation 
process, we also compute the twelve features for the Y 
(luminance component) image as well. Combining the image 
characteristic data from these four components yields a list of 
48 elements. In addition, we utilize two extemal variables, time 
of day and weather conditions, in the outdoor experiments to 
characterize each image. The extemal variables are represented 
symbolically in the list structure (e.g., time = 9 am, 10 am, 
etc. and weather conditions = sunny, cloudy, hazy, etc.). The 
distances between these values are computed symbolically 
when measuring image similarity. The two external variables 
are added to the list to create an image characteristic list of 
50 elements for the outdoor experiments. 

B. Genetic Learning System 

Once the image statistics and external variables have been 
obtained, the genetic learning component uses this information 
to select an initial set of segmentation algorithm parameters. 
A knowledge-based system is used to represent the image 
Characteristics and the associated segmentation parameters. 
The knowledge structure (Fig. 5) stores the current fitness 
of the parameter settings, the image statistics and external 
variables of the image, and the segmentation parameter set 
used to process images with these characteristics. The image 
statistics and external variables form the condition portion 
of the knowledge structure, C1 through CI+J, while the 
segmentation parameters indicate the actions, A1 through A N ,  
of the knowledge structure. The fitness, W, which ranges in 
value from 0.0-1.0, measures the quality of the segmentation 
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parameter set. Note that only the fitness value and the action 
portion of the knowledge structure are subject to genetic 
adaptation; the conditions remain fixed for the life of the 
knowledge structure. 

When a new image is provided to the genetic learning 
system, the process begins by comparing the image char- 
acteristics of the new image with the knowledge structures 
in the global population (also called long-term population, 
Fig. 5). The global population represents the accumulated 
knowledge of the adaptive system obtained through previous 
segmentation experience. The algorithm computes a ranked 
list of individuals in the population that have characteristics 
similar to the new image. Ranking is based on the normalized 
Euclidean distance between the image characteristic values as 
well as the fitness of the knowledge structure. The normalized 
distance between images A and B is computed using 

I + J  GA - GMIN distAB = W,l 
z = 1  GMAX - GMIN 

- GB - GMIN 
GMAX - GMIN 

where C,MIN is the minimum value of the ith numeric or 
symbolic feature in the global population, C,MAX is the 
maximum value of the ith feature in the global population, 
and W, is the weight attached to the ith feature. In this work, 
the ranges are normalized and the W, values have been set 
to 1 so that each feature contributes equally to the distance 
calculation. 

When the distance between an image and several members 
of the global population are the same (e.g., if a previous image 
contributed multiple individuals to the global population), fit- 
ness values are used to select the best individuals from the pop- 
ulation. Temporary copies of the highest ranked individuals are 
used to create the initial or seed population for the new image. 

Once the initial or seed population is available, the genetic 
adaptation cycle begins. This cycle is shown in Fig. 6. (The 
seed population is the same as the initial population, when the 
genetic algorithm begins its search operation.) The segmenta- 
tion parameter set in each member of the seed population is 
used to process the image. The quality of the segmented results 
for each parameter set is then evaluated. If the maximum 
segmentation quality for the current population is above a 
predefined threshold of acceptance or other stopping criteria 
are satisfied, the cycle terminates and the high quality members 
of the current image population are used to update the global 
population. Less fit members of the global population are 
discarded in favor of higher strength individuals obtained from 
processing the current image. In this manner, the system is able 
to extend the knowledge of the adaptive segmentation system 
by incorporating new experience into the knowledge database. 

Alternatively, if after segmenting and evaluating the perfor- 
mance of the current or local (also called short-term) p o p -  
lation, the system has not achieved acceptable segmentation 
quality and any other termination criteria are not satisfied, the 
genetic recombination operators are applied to the members of 
the current population. The crossover and mutation operators 
are applied to the high strength individuals in the population, 
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Fig. 6. Flow chart of genetic adaptation cycle. The cycle (segmen- 
tation-evaluation-reproduction-recombination) continues until termination 
criteria are satisfied. The long-term population is then modified in order to 
retain the information “learned” during the genetic adaptation process. 

creating a new set of offspring which will theoretically yield 
better performance [16]. The new population is supplied back 
to the image segmentation process, where the cycle begins 
again. Each pass through the loop (segmentation-evaluation- 
recombination) is known as a generation. The cycle shown in 
Fig. 6 continues until the maximum fitness achieved at the end 
of a generation exceeds some threshold or other termination 
criteria are satisfied, as described earlier. The global population 
is updated and the system is then ready to process a new 
image. 

C. Segmentation Algorithm 

Since we are working with color imagery in our 
experiments, we have selected the Phoenix segmentation 
algorithm developed at Carnegie-Mellon University [ 191, 
[24], [26]. Phoenix, which was the subject of several 
Ph.D. dissertations, has been widely used, refined, and 
documented. The algorithm has been extensively tested on 
color imagery and has been assimilated into the DARPNSRI 
Image Understanding Testbed [ 191. 

The Phoenix algorithm is a recursive region splitting tech- 
nique. An input image typically has red, green, and blue 
image planes, although monochrome images, texture planes, 
and other pixel-oriented data may also be used. Each of the 
data planes is called a feature or feature plane. The algorithm 
recursively splits nonuniform regions in the image into smaller 
subregions on the basis of a peaWvalley analysis of the 
histograms of the red, green, and blue image components 
simultaneously. Fig. 7 shows a high-level description of the 
Phoenix segmentation process [ 191. Segmentation begins with 
the entire image, considered to be a single region, based on 
histogram and spatial analyses. If the initial segmentation fails, 
the program terminates; otherwise, the program fetches each 
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Fig. 7. Block diagram of the Phoenix [19], [26] algorithm. 

of the new regions in turn and attempts to segment them. This 
process terminates when the recursive segmentation reaches a 
predefined depth, or when all the regions have been segmented 
as finely as various user-specified parameters permit. 

Phoenix contains seventeen different control parameters, 
[19] fourteen of which are used to control the thresholds 
and termination conditions of the algorithm. There are about 
lo4’ conceivable parameter combinations using these fourteen 
values. For the outdoor image sequence that we have used, 
these parameters can be divided into three groups according 
to their effect on segmentation results. Based on our ex- 
perimentation, we find that of the fourteen values the two 
most critical parameters that affect the overall results of 
the segmentation process are, maxmin and hsmooth. From 
an analysis of the Phoenix algorithm, we find that incorrect 
values of these two parameters lead to results in which, at 
one extreme, the desired object is not extracted from the 
background, and at the other extreme, the object is broken 
up into many small regions that have little significance for 
higher-level processes. The default values for these parameters 
are 160 and 9, respectively. Maxmin specifies the lowest 
acceptable peak-to-valley-height ratio (of a histogram) used 
when deciding whether or not to split a large region into two or 
more smaller parts. Hsmooth controls the width of the window 
used to smooth the histogram of each image region during 
segmentation. Smoothing helps to remove small histogram 
peaks corresponding to small irrelevant regions or noise in the 
image. The use of only two parameters for the initial tests aids 
in the visualization of the optimization process since we can 
easily plot the associated segmentation quality corresponding 
to each parameter combination. 

D. Segmentation Evaluation 

After the image segmentation process has been completed 
by the Phoenix algorithm, we must measure the overall qual- 
ity of the segmented image. There are a large number of 
segmentation quality measures that have been suggested in 
the literature [2], although none has achieved widespread 
acceptance as a universal measure of segmentation quality. 
In order to overcome the drawbacks of using only a single 
quality measure, we have incorporated an evaluation technique 
that uses five different quality measures to determine the 
overall fitness for a particular parameter set. Most of the 
individual measures of segmentation performance that we have 
selected for this work have been proposed in the computer 
vision literature and similar measures have been recommended 
by DARPA’ s Automatic Target Recognition Working Group 
(ATRWG) as good indicators of segmentation quality. In the 
following, boundary pixels refer to the pixels along the borders 
of the segmented regions, while the edges obtained after 
applying an edge operator are called edge pixels. The five 
segmentation quality measures that we have selected are, 

1) Edge-Border Coincidence-Measures the overlap of the 
region borders in the image acquired from the segmentation 
algorithm relative to the edges found using an edge operator. 
In this quality measure, we use the Sobel operator to compute 
the necessary edge information. The original, unthinned Sobel 
edge image is used to maximize overlap between the seg- 
mented image and the edge image. Edge-border coincidence 
is defined as follows (refer to Fig. 8(a)). Let E be the set of 
pixels extracted by the edge operator after thresholding and S 
be the set of pixels found on the region boundaries obtained 
from the segmentation algorithm: 

n(E n S) 
Edge-border Coincidence = 

n(E)  ’ 

E fl S = { ( z k , y k ) ,  k = 1, . . .  ,m  where 
and (xk, yk E E and S}, 

n(A) = t h e  number of elements in set A. 

2) Boundaly Consistency: Similar to edge-border coinci- 
dence, except that region borders which do not exactly overlap 
edges can be matched with each other. In addition, region 
borders which do not match with any edges are used to 
penalize the segmentation quality. The Roberts edge operator 
is used to obtain the required edge information. As with the 
edge-border coincidence measure, the Roberts edge image 
is not thinned to maximize the overlap between images. 
Boundary consistency is computed in the following manner 
(see Fig. 8(b)). 

The first step is to find neighboring pixel pairs in the region 
boundary and edge results. For each pixel in the segmented 
image region boundary results, S, a neighboring pixel in the 
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edge image, E ,  that is within a distance of dm, is sought. 
A reward for locating a neighbor of the ith boundary pixel is 
computed using 

where 

dmax = l o ,  and 
d; = t h e  distance to  the nearest edge pixel. 

Thus, if the pixels had overlapped, R; = (10 - 0)/10 = 1. 
Pixels that do not directly overlap contribute a reward value 
that is inverserly related to their distance from each other. As 
matching pairs of pixels are identified, they are removed from 
the region boundary and edge images ( S  and E ) .  The total 
reward for all matching pixel pairs is obtained using 

Once all neighboring pixel pairs have been removed from 
E and S,  the remaining (Le., non-overlapping and non- 
neighboring) pixels correspond to the difference between 
the two images. The average number of these pixels is used 
to compute a penalty 

n(al1 remaining pixels in E and S )  
2 

P =  

Finally, since the value of boundary discrepancy must 
be positive, we define an intermediate value, M ,  as M = 
(RTOTAL - P) /n (E) .  
Then, Boundary Consistency = M ,  if M 2 0, and zero 
otherwise. 

3)  Pixel Classijication: This measure is based on the num- 
ber of object pixels classified as background pixels and the 
number of background pixels classified as object pixels. Let 
G be the set of object pixels in the groundtruth image and 
R be the set of object pixels in the segmented image (see 
Fig. 8(c)). Formally, we have 

Using the value of N ,  pixel classification can then be 
computed as 

Pixel Classification = N ,  if N 2 0, and zero otherwise. 

4) Object Overlap: Measures the area of intersection be- 
tween the object region in the groundtruth image and the 
segmented image, divided by the object region. As defined 
in the pixel classification quality measure, let G be the set 
of object pixels in the groundtruth image and R be the set 
of object pixels in the segmented image (Fig. 8(d)). Object 
overlap can be computed as 

n(G n R)  
Object Overlap = 

n(G) ' 

where 

G n R = { ( ~ k , y k ) , k =  l , . . . , m  
where (zk, yk) E Gand R}. 

5 )  Object Contrast: Measures the contrast between the 
object and the background in the segmented image, relative to 
the object contrast in the groundtruth image. Let G be the set 
of object pixels in the groundtruth image and R be the set of 
object pixels in the segmented image, as shown in Fig. 8(a). In 
addition, we define a bounding box ( X  and Y )  for each object 
region in these images. These boxes are obtained by enlarging 
the size of the minimum bounding rectangle for each object 
(G and R)  by 5 pixels on each side. The pixels in regions X 
and Y include all pixels inside these enlarged boxes with the 
exception of the pixels inside the G and R object regions. 

We compute the average intensity for each of the 
four regions (G, R , X ,  and Y )  using the equation I, = 
E,=, I(j)/Lmax, where I ( j )  is the intensity of the j th  pixel 
in some region L and Lmax is the total number of pixels in 
region L. The contrast of the object in the groundtruth image, 
CGT, and the contrast of the object in the segmented image, 
CSI ,  can be computed using 

The object contrast quality measure is then computed as 

C S I  CGT 
Object Contrast = -, if CGT 2 CSI or - 

CGT C S I  ' 

G = {Pl,  P2 , . . PA) 

={(xpl,ypyPl), (xp2,Yp2),..., (xpA,ypA)} and 
R = (41, 42,  . . ., 4 B )  if CGT < CSI.  

= { ( x q l ,  Yql), ( x q 2 ,  YqZ), . . ' 7 (298, YqB)}. 
The maximum and minimum values for each of the five 

Segmentation quality measures are 1.0 and 0.0, respectively. 
The first two quality measures are global measures since 
they evaluate the segmentation quality of the whole image 
with respect to edge information. Conversely, the last three 
quality measures are local measures since they only evaluate 
the segmentation quality for the object regions of interest in 
the image. When an object is broken up into smaller parts 
during the segmentation process, only the largest region which 
overlaps the actual object in the image is used in computing 
the local quality measures. 

Since pixel classification must be positive, we define the 
intermediate value N as follows 

' 1 (n(G) - n(G n R))  + (n(R) - n(G n R) )  [ n(G) 
N = l -  

where 

G n  R = { ( ~ k , y k ) , k  = l , - . . , m  
where (xk, yk) E G and R}. 
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Fig. 8. Illustrations for the quality measures used in the adaptive segmentation system. (a) Edge-border coincidence diagram. (b) Boundary consistency 
diagram. (c) Pixel classification diagram. (d) Object overlap diagram. 

The three local measures require the availability of object 
groundtruth information in order to correctly evaluate segmen- 
tation quality. Since object groundtruth data may not always be 
available, we have designed the adaptive segmentation system 
to use three separate methods of evaluating segmentation 
quality. First, we can measure quality using global evaluation 
methods alone. Second, if groundtruth data is available and we 
are only interested in correctly segmenting the object regions 
in the image, we can use local evaluation methods alone. 

Finally, if we desire good object regions as well as high quality 
overall segmentation results, we can combine global and local 
quality measures to obtain a combined segmentation quality 
measure that maximizes overall performance of the system. 

In the experiments described in the next section, we combine 
the five quality measures into a single, scalar measure of 
segmentation quality using a weighted sum approach. Each of 
the five measures is given equal weighting in the weighted 
sum. In addition to the weighted sum technique currently 
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(e) (0 
Fig. 9. Color images for the outdoor experiments. (a) Frame 1. (b) Frame 6. (c) Frame 10. (d) Frame 11. (e) Frame 13. (0 Frame 20. 

in use, we have investigated a more complex vector evalu- 
ation approach that provides multidimensional feedback on 
segmentation quality [5]. 5a. select individuals using the reproduction 

4. 
5. 

Compute the segmentation quality measures. 
WHILE not (stopping conditions) DO 

operator 

V. EXPERIMENTAL RESULTS 
5b. generate new population using the crossover 

and mutation ooerators 
The adaptive image segmentation consists of the following 

1. Compute the image statistics. END 
2. Generate an initial population. 6. Update the knowledge base using the new 
3. Segment the image using initial parameters. knowledge structures. 

5c. segment the image using new parameters 
steps: 5d. compute the segmentation quality measuers 
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We have tested the performance of the adaptive image 
segmentation system on a time sequence of outdoor images 
that contains variations in the position of the light source (sun) 
and the amount of light as well as changing environmental 
conditions. Imagery of this type allows us to monitor the 
system’s ability to compensate for real world conditions. 
As the results will demonstrate, the adaptive segmentation 
technique is very effective in compensating for the changes 
observed in these images. 

The outdoor image database consists of twenty frames 
captured using a JVC GXF700U color video camera. The 
images were collected approximately every 15 minutes over 
a 4 hour period. A representative subset of these images is 
shown in Fig. 9. The original images were digitized to be 
480 x 480 pixels in size but were subsequently subsampled 
(average of 4 x 4 pixel neighborhood) to produce 120 x 120 
pixel images for the segmentation experiments. Fig. 10 shows 
the time and associated weather conditions for each frame in 
the database. Frames 14, 17-19 were not collected at the 15- 
minute interval marks to ensure diversity in the environmental 
conditions within the outdoor database. 

This type of image data simulates a photointerpretation 
scenario in which the camera position is fixed and the image 
undergoes significant change over time. Weather conditions in 
our image database varied from bright sun to overcast skies. 
Varying light level is the most prominent change throughout 
the image sequence. The changing environmental conditions 
caused by movement of the sun also created varying object 
highlights, moving shadows, and many subtle contrast changes 
between the objects in the image. Also, the colors of most 
objects in the image are subdued. The car in the image is 
the object of interest. The auto-iris mechanism in the camera 
was functioning, which causes a similar appearance in the 
background foliage throughout the image sequence. Notice that 
even with the auto-iris capability built into the camera, there 
is still a wide variation in image characteristics across the 
image sequence. This variation requires the use of an adaptive 
segmentation approach to compensate for these changes. 

To precisely evaluate the effectiveness of the adaptive image 
segmentation system, we exhaustively defined the segmenta- 
tion quality surfaces for each frame in the database. The car 
in the image is the object of interest for the pixel classifica- 
tion, object overlap, and object contrast segmentation quality 
measures. The groundtruth image for the car was obtained by 
manual segmentation of Frame 1 only for the image sequence 
and is shown in Fig. ll(a). The Sobel and Roberts edge 
operator results, which are used in the computation of the 
edge-border coincidence and boundary consistency measures 
respectively, are obtained from the blacuwhite image (Y 
component of the YIQ image set) for each frame. The Sobel 
threshold value was 160 and the Roberts threshold value was 
40 for the images. After applying edge operators to the first 
frame of the outdoor images, we took (manually) top 15% 
of pixels as edge pixels. Thus, we end up with a Sobel 
threshold value of 160 and Roberts threshold value of 40 
for the outdoor images. These thresholds remain fixed for the 
remaining frames. So, in the remaining frames, edge pixels 
were not exactly in the top 15%. They were in the range 

Frame # 

1 
2 
3 
4 
5 

6 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Time 

1:20 pm 
1:30 pm 
1:45 pm 
2:OO pm 
2: 15 pm 
2:30 pm 
2:45 pm 
3:OO pm 
3:15 pm 
3:30 pm 
4:OO pm 
4:30 pm 
4:45 pm 
4:47 pm 
5:OO pm 
5:15 pm 
5:20 pm 
5:22 pm 
5:25 pm 
5:30 pm 

Weather 

Sunny 
Sunny 
Sunny 
Sunny 
Sunny 
Sunny 
Sunny 
Sunny 
Sunny 
Sunny 
Sunny 
Sunny 

Cloudy 
Sunny 
Sunny 
Cloudy 
Cloudy 
Sunny 
Cloudy 

Fig. 10. Time of day and weather conditions for the outdoor images 

of top 12-17%. If the thresholds are high, we will have 
less number of edge pixels and the segmentation results will 
be undersegmented, Le., we will not have all the interesting 
regions. If the thresholds are too low, we will have more edge 
pixels and the segmentation results will be oversegmented, 
Le., we will have too many small irrelevant regions. We have 
chosen thresholds so that segmentation results are neither 
undersegmented nor oversegmented. The Sobel and Roberts 
edge images for Frame 1 in Fig. 9 are shown in Fig. ll(b) 
and ll(c). For the determination of object contrast, we used 5 
pixels beyond the Minimum Bounding Rectangle (MBR) for 
each object region. The maxmin and hsmooth parameters of 
the Phoenix algorithm were used to control the segmentation 
quality and the segmentation quality surfaces were defined for 
preselected ranges of these two parameters. All the parameters 
that were not optimized were set at the default Phoenix 
parameter values. These parameters remain fixed throughout 
all the experiments. Maxmin values, which affect segmentation 
performance in a non-linear fashion, were sampled exponen- 
tially over a range of values from 100 to 471. Values near 100 
were spaced closer together than values at the upper end of the 
range. Hsmooth values were sampled linearly using numbers 
between 1 and 63. By selecting 32 discrete values (5 bits of 
resolution) for each of these parameter ranges, the search space 
contained 1024 different parameter combinations. 

A. Basic Experiments 
The first set of experiments with the adaptive segmentation 

system was divided into two separate phases: 1) a training 
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Fin. 11. Groundtruth data for the outdoor images. (a) Car region extracted from Frame 1 in Fig. 9. (b) Sobel edge results for Frame 1. (c) Roberts 
edge results for Frame 1. 

phase where the optimization capabilities of the genetic al- 
gorithm were measured; and 2) a testing phase where we 
evaluated the reduction in effort achieved by utilizing previous 
segmentation experience. The outdoor image sequence was 
separated into two halves, 10 images for training and 10 
images for testing. To insure that the training imagery was 
representative of the entire outdoor image sequence, the odd 
numbered images (1,3,  . . . ,19) were chosen as the training 
data and the even numbered images (2,4, ., 20) were saved 
for testing purposes. During the training phase, seed popula- 
tions were selected using random locations on the combined 
segmentation quality surface for each image. The genetic 
system was then invoked using the seed population for each 
image and the convergence rate of the process was measured. 
Each training image was processed 100 times, each with a 
different collection of random starting points. These results 
were combined to compute the average number of generations 
needed to optimize each surface. The genetic component used 

a local or seed population size of 10, a crossover rate of 0.8, 
and mutation rate of 0.01. A crossover rate of 0.8 indicates 
that, on average, 8 out of 10 members of the population will 
be selected for recombination during each generation. The 
mutation rate of 0.01 implies that on average, 1 out of 100 bits 
is mutated during the crossover operation to insure diversity 
in the local population. 

The stopping criteria for the genetic process contains three 
tests. First, since the global maximum for each segmentation 
quality surface was known a priori (recall that the entire 
surface was precomputed), the first stopping criteria was the 
location of a parameter combination with 95% segmentation 
quality or higher. In experiments where the entire surface is 
not precomputed, this stopping criteria would be discarded. 
Second, the process terminates if three consecutive generations 
produce a decrease in the average population fitness for the 
local population. Third, if five consecutive generations fail to 
produce a new maximum value for the average population 
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fitness, the genetic process terminates. If any one of these 
three conditions is met, the processing of the current image is 
stopped and the maximum segmentation quality currently in 
the local population is reported. 

Fig. 12 presents the five individual segmentation quality 
surfaces and the combined surface for Frame 1 of the database. 
The combined quality surfaces for the images of Fig. 9 are 
shown in Fig. 13. Notice that the individual surfaces in Fig. 12 
as well as the combined surfaces in Fig. 13 are complex 
and hence, would pose significant problems to traditional 
optimization techniques. The maximum quality measure is 
totally dependent on the Phoenix system. The characteristic 
of the Phoenix segmentation algorithm is that when an image 

has low average brightness, Phoenix gives good segmentation 
results with low maxmin and hsmooth parameter values. Since 
the outdoor images have low average brightness in general, the 
maximum quality values are at the back comer of the surfaces. 

Following the algorithm shown in Fig. 6, the average num- 
ber of generations for each of the outdoor training images, 
as well as the average number of generations for all training 
images, is obtained. The maximum number of generations 
required by the genetic process was 13, the minimum number 
was 5,  and the average number of generations was 9. The 
progression of the genetic search process for Frames 1, 11, 
and 13 from the starting parameter location to final location is 
shown in Fig. 14. By monitoring the intermediate generations 



BHANU et al.: ADAPTIVE IMAGE SEGMENTATION USING A GENETIC ALGORITHM 1557 

Y -7 

za I U 3  

I noon, 

100 on0 

M 6667 

9 3333 

Fig. 13. Combined segmentation quality surfaces for all images in Fig. 9. (a) Frame 1.  (b) Frame 6.  (c) Frame 10. (d) Frame 11. (e) Frame 13. (0 Frame 20. 

(not shown here), we find the distinct trend of the genetic 
process to shift attention to those areas of the surface with the 
highest level of fitness. For example, consider the initial search 
points located on the lower plateau of the Frame 1 surface, i.e., 
segmentation quality 0.0, in Fig. 14(a). By the final generation, 
all search points have migrated to the rear corner of the surface 
where the high quality parameter combinatioiis are located. 
Similar observations can be made from the Frames 11 and 13 
results. By examining the performance charts which indicate 
the maximum and average fitness values of the population 
during each generation for each frame, we find that maximum 
fitness values constantly increase in these charts because the 

highest fit individual in the population is always retained 
from one generation to the next. Average fitness, on the other 
hand, fluctuates as the individuals visit different regions of the 
surface in search of highly fit areas. 

Fig. 15 shows the initial and final segmentation results for 
Frames 1, 11, and 13. These results are obtained from the 
individual in the genetic population with maximum fitness, 
Le., the best segmentation quality. In these results as well as 
those for the other frames in the sequence, the lower portion 
of the car, which is dark because of the car's original color 
and the lack of highlight or glare from the sun (see Fig. 9), 
is often merged into the darker background of the foliage 
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Fig. 14. Starting and final ten search point locations for the training images. Some of the points are not visible in the views shown here. (a) Frame 1 starting 
locations. (b) Frame 1 final locations. (c) Frame 11 starting locaitons. (d) Frame 11 final locations. (e) Frame 13 starting locations. (f) Frame 13 final locations. 

directly behind the car. However, a fairly good silhouette of 
the upper portion of the car i s  eventually extracted in the final 
segmentation results. The characteristics of the image and the 
limitations inherent in the segmentation algorithm itself are 
responsible for the behavior described above. An increase 
in overall segmentation quality between the initial and final 
results can be seen in each figure as evident from the portion of 
the car extracted in each image. Sometimes (in Frames 3 and 9, 
not shown here), the bottom of the car is extracted as a separate 
region from the background, although this region is still not 
combined with the top portion of the car to form a single 
region. Also, the diamond shaped sign to the right of the car is 

usually extracted in each frame. As the lighting in the frames 
becomes progressively darker, more and more of the car is 
combined with the background until in Frame 15, only the very 
top portion of the car is extracted as a separate region. In this 
frame, the contrast between the car and the background was so 
poor, the Phoenix algorithm could not distinguish the borders 
of the car. Nevertheless, the adaptive image segmentation 
system was able to optimize the segmentation of the scene 
within the limits of the Phoenix algorithm. 

Once the training phase of the outdoor imagery experiments 
was complete, the testing phase was begun. The testing phase 
is designed to measure the reduction in effort obtained by 
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Fig. 15. Segmented images for the outdoor training experiments. (a) Frame 1 initial results. (b) Frame 1 final results. (c) Frame 11 initial results. (d) 
Frame 11 final results. (e) Frame 13 initial results. (f) Frame 13 final results. 

initializing the genetic parameter optimization process with 
non-random starting points. The final populations from each 
of the training images (1,3,  . . . ,19) were combined to create 
a global population of 100 individuals. From this population, 
the 10 initial members of each seed population for the testing 
images (2 ,4 , .  . . ,20) were selected. The testing was performed 
in a parallel fashion; the final population for each of the testing 
images was not placed back into the global population for these 
tests. The alternative approach to testing, which processes each 
frame in the outdoor imagery database in a sequential manner 

and integrates the results into the global population, will be 
discussed at the end of this section. 

Using the seed populations obtained from the global popu- 
lation, the adaptive image segmentation process was invoked 
on each of the testing images (2,4, .  . . ,20). The reduction in 
effort for the genetic process is because of the diversity of the 
global population. Fig. 16 illustrates the initial seed population 
and final population for Frames 6, 10, and 20 in the outdoor 
testing experiments. These figures clearly indicate the high 
quality of both the initial and final populations for each image. 
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Starting and final search point locations for the outdoor testing images. (a) Frame 6 starting locations. (b) Frame 6 final locations. (c) Frame 10 

In every initial population (except for Frames 14 and 16), all 
points are concentrated on the upper levels of the segmentation 
quality surface. The single point located on the lower plateau in 
Frames 14 and 16 are located very near the steep “cliffs” which 
transition from the low quality segmentation parameter sets 
(quality < 10%) to the higher quality parameter combinations 
(quality > 33%). These points are quickly shifted to higher 
portions of the surface during the early generations of the 
genetic process. In the final population for each image, all 
individuals reside in the upper portions of the surface. 

The initial and final segmentation results for Frames 6, 10, 
and 20 are shown in Fig. 17. The improved quality of the 

initial segmentation results during testing can be visually com- 
pared with the initial results acquired during training (Fig. 15). 
Results for adjacent images, e.g., Frames 10 and 11, in the 
image sequence can also be compared since they are similar 
in overall quality. For example, the initial representation of 
the car region in Frame 10 (Fig. 17(c)) is much better than the 
initial car region in Frame 11 (Fig. 15(c)). Overall, the exper- 
iments reveal the general trend towards improved initial accu- 
racy during the testing stage. The final segmentation results for 
each of the testing images are also very similar in quality to the 
training results. Considering that the average number of gener- 
ations was reduced from 9 during training to 3 during testing, 
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Fig. 17. 
Frame 10 final results. (e) Frame 20 initial results. (f) Frame 20 final results. 

Segmented images for the outdoor testing experiments. (a) Frame 6 initial results. (b) Frame 6 final results. (c)  Frame 10 initial results. (d) 

equivalent segmentation performance during testing represents 
considerable improvement in the adaptive system's efficiency. 
On the average, the adaptive segmentation system visits ap- 
proximately 2.5% of the search space (i.e., N 2.5 generations) 
for the experiments described here for outdoor images. 

Since there are no other known adaptive segmentation 
techniques with a learning capability in both the computer 
vision and neural networks fields to compare our system 
with, we measured the performance of the adaptive image 
segmentation system relative to the set of default Phoenix 

segmentation parameters [ 191, [26] and a traditional optimiza- 
tion approach. The default parameters have been suggested 
after extensive amounts of testing by various researchers who 
developed the Phoenix algorithm [19]. The parameters for the 
traditional approach are obtained by manually optimizing the 
segmentation algorithm on the first image in the database and 
then utilizing that parameter set for the remainder of the ex- 
periments. This approach to segmentation quality optimization 
is currently a standard practice in state-of-the-art computer 
vision systems. 
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Fig. 18. Comparison of the adaptive image segmentation system with default 
Phoenix performance and the traditional image segmentation approach. The 
adaptive technique achieves 95.8% segmentation accuracy while the default 
parameters and the traditional approach obtained only 55.6 and 63.2% 
accuracies, respectively. 

Fig. 18 presents the comparison between our adaptive seg- 
mentation system, the results from the default parameter 
set, and the traditional approach. The average segmentation 
quality for the adaptive segmentation technique was 95.8%. 
In contrast, the performance of the default parameters was 
only 55.6% while the traditional approach provided 63.2% 
accuracy. As the figure shows, the performance of both of 
these alternative approaches was highly erratic throughout the 
sequence of outdoor images. Fig. 19 illustrates the quality of 
the segmentation results for Frames 1 and 11 using the default 
parameters and the traditional approach and contrasts this 
performance with our adaptive segmentation technique. Each 
result corresponds to the average segmentation performance 
produced by each technique for the first frame in the outdoor 
image database. By comparing the extracted car region in 
each of these images, as well as the overall segmentation of 
the entire image, it is clear that the adaptive segmentation 
results are superior to the other methods. Also note that 
for Frame 1 using the traditional approach, the segmentation 
quality is initially 95% (Frame l), which is close to the 
adaptive segmentation quality. This value indicates that our 
segmentation evaluation measures are providing information 
similar to human perceptual performance. 

The outdoor experiments described above were conducted 
in a parallel fashion, Le., all training and all testing was per- 
formed without the aid of previous segmentation experience. 
Although the testing experiments used the knowledge acquired 
during training, the tests were still performed in parallel. None 
of the segmentation experience obtained during testing was 
applied to subsequent testing images. 

B. Comparison of the Adaptive System with Random Search 
Several tests were performed to compare the optimization 

capabilities of the adaptive segmentation system with a simple 
random walk through the search space. This experiment used 
only the training images (I, 3,  . . . ,19) from the outdoor image 
database so that the adaptive system would not benefit from 
the reuse of segmentation experience from one image to 
the next. The intent of this restriction was to measure the 
efficiency of the genetic algorithm in optimizing a complex 
surface. In addition, the stopping criteria for the adaptive 
system was simplified so that when a surface point with 95% 
segmentation quality or better was located, the optimization 

process would terminate. The random walk algorithm searched 
the segmentation quality surface by visiting points randomly 
and used the same 95% stopping criteria. Finally, in order to 
insure correctness of the results, each segmentation quality 
surface was optimized by each technique 100 times and 
the results are averaged to create the performance figures 
discussed below. 

Fig. 20(a) presents a comparison of the efficiency for the 
two techniques described above. The bars represent the total 
number of points visited on the surface using each technique 
for each of the images and the average number of points visited 
for each approach. As the average values show, the adaptive 
technique is far superior to the random walk approach. In 
addition, the average number of points visited by the adaptive 
approach is N 6.9% of the total number of points on the sur- 
face, compared to the earlier experiments where we processed 
N 2.5% of the surface, since we have not reused any segmen- 
tation experience gained from processing earlier images. 

Fig. 20(b) contrasts the segmentation quality achieved by 
the two techniques. Since the adaptive segmentation technique 
insures the achievement of a near global maximum for each 
image, we modified the random walk approach so that it would 
terminate after the same number of visited locations required 
by the adaptive technique. The maximum segmentation quality 
achieved by the random approach was then compared with the 
adaptive system. On the average, the adaptive system achieved 
99.3% segmentation quality after the number of segmentations 
shown in Fig. 20(a). In comparison, the random walk achieved 
only 81.4% of the maximum quality for the same number of 
segmentations for each image. 

C. Effectiveness of the Reproduction and Crossover Operators 

A number of tests were performed to demonstrate the 
effectiveness of the reproduction and crossover operators in 
the adaptive image segmentation system. The optimization 
capability of the pure genetic algorithm was compared with 
two variations of the genetic algorithm. The first variation of 
the pure genetic algorithm was implemented without a repro- 
duction operator. Instead of reproducing individuals according 
to their fitness values, the algorithm selected the individuals at 
random for further genetic operator action with the restriction 
that any individual be selected only once. The second variation 
of the genetic algorithm simply skipped a crossover operator. 
To ensure that this approach generates about the same number 
of offsprings as the pure genetic algorithm, the mutation rate 
of this approach was increased to the crossover rate (0.8) of 
the genetic process. The stopping criteria for each technique 
is to locate a surface point with 95% or higher segmentation 
quality. In order to ensure correctness of the results each image 
was tested by each technique 100 times and the results were 
averaged to create the performance figure. Fig. 21 presents the 
comparison of the optimization capability for three techniques. 
As the histograms show, the pure genetic algorithm results are 
much better than the results of the other two approaches for 
both the training and testing experiments. This demonstrates 
that the reproduction and crossover operators are critical for 
the success of genetic algorithms. 
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Fig. 19. Segmentation results for the adaptive technique, the default parameters, and the traditional approach using the outdoor images. (a) Frame 1 
adapative technique results. (b) Frame 11 adaptive technique results. (c) Frame 1 default parameter results. (d) Frame 11 default parameter results. (e) 
Frame 1 traditional approach results. (f) Frame 11 traditional approach results. 

D. Demonstration of the Learning Behavior 

To measure the improvement in efficiency achieved by 
immediately reusing segmentation experience, we also con- 
ducted a set of experiments. These experiments were designed 
to investigate the reduction in computational effort obtained 
by processing the images in a sequential rather than parallel 
manner. All genetic algorithm parameters (population size, 
crossover rate, etc.) and the evaluation criteria (five separate 
quality measures, segmentation quality threshold1 of 95%) were 

retained from the earlier experiments. Finally, a comparison of 
the sequential and parallel testing experiments is presented. 

1) Sequential testing experiment: Three separate sequen- 
tial tests were performed. In each case, the order of the 
images presented to the adaptive image segmentation system 
was modified to determine the sensitivity of the sequential 
process to variations in the image sequences. The first test 
processed the outdoor images in their original order, i.e., 
Frames 1 ,2 ,3 , .  . . ,20. The second test processed the odd 
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Fig. 20. Performance comparison of the adaptive image segmentation system 
and the random walk technique. (a) Comparison of the computational efforts 
for the same segmentation quality. (b) Comparison of the segmentation quality 
with the same computational effort. The segmentation quality represents the 
percentage of the maximum quality for each frame of the training images. 
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Fig. 21. Performance comparison of the pure genetic algorithm and its 
two variations. The superior performance of the pure genetic algorithm 
demonstrates the effectiveness of the reproduction and crossover operators. 

numbered images first and then the even numbered images, 
i.e., Frames 1 ,3 ,5 ,  . . . ,19 followed by Frames 2,4, . . . ,20. 
This order was chosen so that we could compare the 
performance of the sequential processing with the parallel 
experiments performed earlier. Finally, the third test altered 
the sequence of images to simulate a multi-day scenario where 
the frequency of image collection decreases to approximately 
one hour. The order of the images in this test is {1,5,9,12, 

Frame Number 

(a) 

12 9 

Frame Number 

(C) 

Performance of the adaptive image segmentation system for the 
sequential experiments. (a) Single day test results. (b) Double day test results. 
(c) Multiple day test results. 

16,20,3,7,11,14,18,2,6,10,13,17,4,8,15,19}. Each 
group of images in the sequence of Frames {1,5,9,12,16, 
20}, {3,7,11,14, IS}, {2,6,10,13,17}, or {4,8, 15,19}) was 
designed to represent a collection of images acquired on a 
different day. Thus, using the sequence of images described 
above, we have simulated a four day long collection of images. 

For each of the three tests, the genetic population of the first 
frame in the image sequence was randomly selected. Once the 
segmentation performance for that frame was optimized by 
the genetic algorithm, the final population from that image 
was used to create the initial global population. This global 
population was then used to select the seed population for 
subsequent frames in the image sequence. The global popu- 
lation size was set to 100 for these experiments to insure a 
diversity of segmentation experience in the population. While 
the size of the global population remained below 100 members 
(prior to processing 10 frames), the final populations for each 
image were merely added to the current global population. 
After the size of the global population reached 100 individuals, 
the final populations from each successive image had to 
compete with the current members of the global population. 
This competition was based on the fitness of the individuals; 
highly fit members of a new local population replaced less fit 
members of the global population, thus keeping the size of the 
global population constant. Fig. 22 presents the performance 
results achieved by the adaptive image segmentation system 
during each of the three sequential tests. 
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Single Day Sequential Test-Fig. 22(a) illustrates the per- 
formance of the system for the single day sequence (first 
test). The number of generations for the first frame is quite 
large since we started from a random collectlion of search 
points. The experience gained in processing the first frame 
is immediately utilized during the second frame. The number 
of generations has been reduced from 12 to 3. Similarly, for 
Frames 3 and 4, the number of generations decreases each 
time. Although the number of generations does increase at 
several points beyond the fourth frame, the overall trend of 
this plot does indicate a reduction in computational effort. This 
claim is evident by noting that for the 20 frames of outdoor 
imagery in this sequence, the adaptive image segmentation 
system optimizes the segmentation quality of 50% (10 out 
of 20) of these images using the information present in the 
global population. No iterations of the genetic generations are 
necessary in these cases. 

Odd-Even Image Sequence Test-Fig. 22(b) provides sim- 
ilar evidence of learning and computational savings for the 
sequence of images used in the second test. Note that the 
initial slope of the graph in this figure is not as steep as 
in Fig. 22(a). This difference is due to the fact that the 
image intervals have increased in this experiment (e.g., we 
take every other image instead of every image). Thus, the 
knowledge previously acquired by the adaptive process is 
not as immediately relevant to subsequent images as it was 
during the first test. However, once we have processed all 
odd numbered images, the number of generations required 
during the even numbered images is substantially smaller. It 
is interesting to note that the even numbered images which 
require several generations (Frames 6, 14, and 18) in this test 
also required similar efforts in the first test (Fig. 22(a)). This 
correlation implies that the knowledge currentby in the global 
population was not sufficient to optimize the segmentation 
quality of these images without some assistance from the 
genetic algorithm. Finally, note that as was tlhe case in the 
first test, the adaptive image segmentation system optimizes 
the segmentation quality of half the image sequence (10 of 20 
frames) without invoking the genetic process. 

Multiple Day Sequential Test-Fig. 22(c) presents the com- 
putational efforts required for the multi-day simulation in the 
third test. Once again, we can see the difference in the initial 
slope of the graph, which is due to the order in which the im- 
ages are encountered. In this case, since there is an even wider 
separation between the images than in the two previous tests, 
the number of generations required for the firs1 few frames is 
much higher. Additionally, with the exception of some local 
irregularities, the graph in Fig. 22(c) shows the cyclical nature 
of the multi-day process. The irregularities are attributed to 
the troublesome frames (6, 14, and 18) described earlier. The 
images in the first “day” (frames {1,5,9,12,16,20}) show 
a continually decreasing level of computational effort. When 
the second sequence (frames {3,7,11,14,18}) is encountered, 
the effort increases temporarily as the adaptive process fills 
in the knowledge gaps present as a result of the differences 
between the images in each sequence. The image sequence for 
the third “day” (frames {2,6,10,13,17}) was handled with 
almost no effort by the genetic learning. Finally, the fourth 
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Fig. 23. Comparison of the sequential and parallel experiments. In every 
frame, the sequential experimental results outperform the parallel experimental 
results. 

image sequence (frames {4,8,15,19}) requires no effort by 
the genetic learning at all; each image is optimized by the 
information stored in the global population. Note that the third 
test contains the largest number of frames processed with no 
help from the genetic algorithm. Twelve of the twenty frames 
in this test were optimized using the global population. 

2) Sequential results versus parallel results: A final com- 
parison contrasts the performance of the sequential experi- 
ments and the parallel experiments described earlier. Fig. 23 
examines the reduction in effort obtained by the sequential 
processing tests. The performance figures for the parallel 
results are obtained from the data obtained during training 
experiments. For each image in the outdoor database, the 
sequential tests provide fewer numbers of generations in order 
to optimize the segmentation quality. As before, we see that 
Frames 6, 14, and 18 required additional processing effort 
regardless of the approach used during the experiments. The 
results in Fig. 23 provide strong evidence for the utilization of 
a sequential approach to the image segmentation optimization 
problem. The above tests also demonstrate that the process of 
adaptive image segmentation can be performed in a completely 
unsupervised mode. 

VI. CONCLUSIONS 

We have shown the ability of the adaptive image segmenta- 
tion system to provide high quality (> 95%) segmentation 
results in a minimal number of segmentation cycles. The 
performance improvement provided by the adaptive system 
was consistently greater than N 30% over the traditional 
approach or the default segmentation parameters [19], [26]. 
Recently we have carried out experiments where we have 
used hsmooth, maxmin, splitmin, and height parameters of the 
Phoenix algorithm to achieve adaptive image segmentation. 
The size of search space in these experiments is over 1 million 
and the number of points that are visited on the surface 
varies from 0.3-0.6% for 95% quality of segmentation for 
outdoor images [4]. The genetic parameters used for scaling 
experiments consist of four crossover points, crossover rate 
of 0.8, mutation rate of 0.01, and short-term population size 
of 10. Note that, as the number of segmentation parameters 
for adaptation increases, the number of points to be visited 
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on the surface will also increase. Therefore, the computational 
requirements change with the number of parameters. However, 
genetic algorithms are not subject to the “curse of dimension- 
ality,” much like Hough transform techniques. Unlike Hough 
transform, which is essentially an exhaustive search technique, 
it is expected that the genetic algorithm will visit only a 
small percentage of the search space to achieve the global 
maximum. 

Further research efforts are planned to extend the scope of 
the current adaptive system. We plan to use a data set with 
dramatic environmental variations and we will utilize several 
segmentation algorithms and a larger number of segmenta- 
tion parameters. Ultimately, we will incorporate the adaptive 
segmentation component into our complete vision system. 
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