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all the pixels in the field of view (FOV). 
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Range measurements to objects in the world 
relative to mobile platforms such as ground or air 
vehicles are critical for visually aided navigation 
and obstacle detectiodavoidance. Active (laser) 
range sensors can be used to provide such range 
measurements although they have a limited field of 
view (FOV), suffer from slow data acquisition, and 
are expensive. Robust passive ranging techniques 
can be suitable alternatives. The passive visual 
cues of binocular and motion stereo have been the 
two most popular methods for range estimation. A 
plethora of algorithms have been proposed to estimate 
three-dimensional (3D) structure or motion or both, 
using these two cues individually. “Robustness” of 
the algorithms is sought by selecting stable features in 
the stereo images for matching, performing accurate 
camera calibration, removing lens distortion or 
employing less noise-sensitive computational methods. 
Applications of such algorithms are shown mostly 
for synthesized data, some for real scenes, and few 
for outdoor scenarios. However, it is to be realized 
that “robustness” cannot guarantee high precision 
of the estimates derived using any one of the cues 
which are inherently imprecise. Consequently, in any 
experiment involving these cues some 3D locations will 
consistently have better estimates than some others. 
Besides, most assumptions about “robustness” and the 
robust characteristics are unlikely to survive in major 
real-world applications, such as autonomous mobile 
robots operating outdoors. 

The objective of this research is to develop a 
passive ranging system that utilizes the benefits of 
binocular and motion stereo. This system is based 
on the synergistic combination of the two stereo 
modalities which is achieved by the following sequence 
of operations: interest point matching, Kalman 
filtering, and range measurement blending. The 
important benefits of the proposed synergistic system 
are, 1) the system is cheap to build (compared with 
active sensors), 2) it is passive (i.e., nondetectable, 
covert), 3) a more dense and more accurate range 
map is generated than is possible by either passive 
technique alone (this is necessary for obstacle 
avoidance), and 4) negligible motion distortion 
is caused by the moving platform (i.e., fast data 
acquisition). 

Previous efforts in the derivation of approaches 
for the synergistic combination of binocular and 
motion stereo ranging have placed restraints on the 
problem specification to reduce the complexity of the 
analysis. To date, no demonstration of a totally general, 
comprehensive characterization of the ranging problem 
for multiple binocular stereo frames has been derived. 

The emphasis of this work is on modeling the 
errors in binocular and motion stereo in conjuction 
with an inertial navigation system (INS) for a 
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real-world application of a passive ranging system, and 
deriving the appropriate Kalman filter to refine the 
estimates from these two stereo ranging techniques. 
Our particular approach is designed to allow empirical 
evaluation of the performance and robustness of the 
passive ranging system for various scenarios. The next 
section describes in greater detail the background 
and motivation behind the work reported here. 
Section I11 presents the technical approach adopted in 
designing the synergistic system. Section IV discusses 
results obtained during an empirical evaluation of the 
performance of this system with laboratory data and a 
simulated inertial reference unit (IRU) data. Section 
V discusses our plans for future research to further 
optimize this system. 

II. BACKGROUND AND MOTIVATION 

In this section we summarize the past research 
related to the work reported in this paper, and the 
motivations that lead to the development of the 
approach described in the following section. 

A. Background 

Features from stereo pairs of images can be 
matched over time to obtain better accuracy for 
disparity-based range calculations. Leung, et al. [SI 
derived an algorithm for finding point correspondences 
among stereo image pairs at two consecutive time 
instants (t i -  1, t i ) .  They demonstrated significantly 
improved feature matching accuracy for scenes that 
demonstrate large feature displacements due to object 
motion in the scene. Li and Duncan [9] estimated the 
platform motion from measures for the optical flow 
of the left and right cameras for a series of binocular 
stereo images, without point-to-point correspondences. 
In addition, stereo matching procedures based on 
the estimated translational velocity and the flow 
fields were derived. An empirical evaluation of 
the robustness of the approach to image noise 
(which degrades the accuracy of the flow field) for 
synthetic images was carried out. The approach was 
demonstrated to be robust for representative flow 
field magnitude and direction errors. Sridhar and 
Suorsa [13] describe recursive binocular and motion 
stereo algorithms and compare their performances. 
However, the confidence factors for each of the 
range measurements which form the basis of such 
comparison are obtained by considering only the errors 
in image locations of matched feature points. The 
uncertainty models of their passive ranging techniques 
are therefore inadequate for a real-world imaging 
system such as a mobile platform. Several researchers 
have used the Kalman filtering method to estimate 
range from binocular stereo images [5] and motion 
sequences [lo]. 
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Fig. 1. Modalities for passive ranging. 

B. Motivation 

A synergistic combination of binocular and motion 
stereo is motivated by the following observations 
about their relative performance as illustrated in 
Fig. 1. Binocular stereo-based range computations 
suffer the greatest error at the edges of field of view 
(FOV) of the camera where motion stereo-based 
range is most accurate; the converse scenario holds 
true in the vicinity of the focus of expansion (FOE) 
where motion stereo-based range error is very large 
and binocular stereo-based range error is very small. 
Thus, a passive ranging system which employs only 
one of these two methods of range computation is 
likely to perform poorly even with the most robust 
algorithm. On the other hand, a passive ranging system 
which can successfully employ both methods, has the 
advantage of retaining only the best range estimate of 
a scene point. Which one of the methods provides the 
best range estimate is determined by the location of 
the point in the FOV. This may mean that the visual 
field can be appropriately segmented to be processed 
by either binocular stereo or motion stereo, thereby 
reducing the computational burden. Alternately, range 
values for distinct points in the visual field can be 
computed from both binocular and motion stereo and 
be refined using the statistics of their uncertainties. 
The refined range estimates for each point can be 
statistically combined to yield a more precise range 
value. 

Most passive ranging techniques developed 
to date make idealistic assumptions about their 
operational conditions. On the contrary, in most 
real-world applications the conditions are far from 
being ideal. Some of these, such as vibration of the 
platform on which the cameras are mounted or the 
wind speed, may prove to be catastrophic to the 
ranging techniques, such as determination of motion 
parameters in order to compute range. Incorporation 
of hardware which can compute stable values of 
motion parameters under harsh operating conditions, 
will greatly improve the performance of any motion 
analysis technique for motion stereo-based ranging. An 
INS is one such item which is used in many types of 
land and air vehicles. 

An INS includes an IRU and the necessary 
hardware and software to stabilize and process the 
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IRU outputs to derive values for the position and 
velocity of the platform in a desired reference frame 
[4]. IRU measurements are made with gyroscopes, to 
provide an absolute measure of the rotation difference 
between the coordinate frame of the vehicle and a 
fixed, geographic, reference frame. Such measurements 
are also made with accelerometers, to provide the 
acceleration of the vehicle relative to the reference 
frame. The time integral of these accelerations gives 
the velocity and position of the vehicle. In addition, 
INS information can be used to select interest points 
in the visual field where range computations are to be 
made, and to determine sensor motion between frames 
[3, 121. 
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Ill. INTEGRATED APPROACH 
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With a two-camera system in motion, a stereo 
ranging system is formed which consists of binocular 
stereo and motion stereo range computations. In the 
case of binocular stereo two cameras are rigidly 
mounted on the same fixture such that their optical 
axes are parallel and yet horizontally displaced by 
a fixed, known distance. Whereas the cameras are 
laterally displaced for binocular stereo, the cameras 
are longitudinally displaced, due to forward vehicle 
motion, for motion stereo. On a moving platform, the 
same two cameras can provide the imagery required 
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to perform one binocular and two motion stereo range 
calculations. We use a right-handed coordinate system 
for both cameras of the binocular stereo ranging 
system. As shown in Fig. 2, the x-axis is parallel to the 
forward direction of travel, the y-axis points rightward, 
and the z-axis points down. In subsequent analyses, the 
image coordinates are denoted by (u ,v )  while the pixel 
coordinates are denoted by (y,z) .  

Our integrated stereo system, shown in Fig. 3, 
uses the following two key elements which constitute 
the unique features of our approach: 1) matching 
of interesting points in binocular stereo and motion 
stereo imagery, and 2) modeling of range errors 
present in the motion and binocular stereo techniques. 
These errors are represented as the states of a Kalman 
filter applied to obtain improved estimates of range 
values. 

for which range is computed by both motion and 
binocular stereo techniques, are used as measurements 
to estimate errors in the ranging processes. The points 
in the ragne maps which are not coincident can be 
corrected with these error estimates, improving the 
overall quality of the composite range map. This can 
be achieved with the use of a blending filter as shown 
in Fig. 4. This filter derives a composite range map for 
each measurement location as the weighted average 
of the Kalman filter estimates for the range, where 
the averaging weights are the current estimates of the 
measurement noise obtained from each filter. The 
confidence in each range measurement is inversely 
proportional to the estimate of the measurement noise, 
so that when the measurement noise for the binocular 
stereo algorithm is large, the estimate obtained from 
the motion stereo Kalman filter is weighted more 
heavily. Conversely, when the measurement noise 
for the motion stereo algorithm is large, the estimate 
from the binocular stereo algorithm is given more 
weight. The filtered estimates of the measurement 
noise are used to smooth out the effects of isolated 
bad measurements. 

The coincident points of interest, i.e., those points 
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Fig. 4. Composite range mapblending filter. 

A. Range Error Modeling 

In this section, we discuss the approach for 
synergistic combination of motion and binocular 
stereo-based range estimates. The disagreement 
between the calculated ranges from the motion and 
binocular stereo algorithms for the coincident points of 
interest is attributed to the errors in inertial data and 
geometric alignment of the cameras. The computed 
discrepancies in the range values are used by a Kalman 
filter to refine the estimates for the errors in the 
inertial and system configuration parameters. New 
estimates could be obtained by adding the updated 
estimates for the errors to the expected system variable 
magnitudes. The refined estimates could then be 
used to calculate improved binocular and motion 
stereo ranges. Alternatively, the H-matrices for 
each coincident interesting point could be derived 
from the dependence of errors for binocular and 
motion range calculations on errors in the inertial 
and system configuration data, and the output ranges 
for these algorithms could be corrected using a linear 
combination of the error states of the Kalman filter. 
The latter is done in the current implementation of the 
passive ranging system. 

component of the filter is the difference of the ranges 
from binocular and motion stereo. The motion stereo 
measurement of the filter is the negative of the 
binocular stereo measurement of the filter. Using 
the static Gauss-Markov discrete time model, the 
measurement process is described as follows: 

The measurement for the binocular stereo 

where y M ; ( k )  is the measurement for the motion 
stereo component of the Kalman filter for the 
j th  feature point location at time k ,  y s ; ( k )  is the 
measurement for the binocular stereo component 
of the Kalman filter for the j th  feature point 
location at time k, R M ~  is the estimate of the range 
corresponding to the j th  feature point from the 
motion stereo algorithm, Rs; is the estimate of the 
range corresponding to the j th  feature point from 

the binocular stereo algorithm, X M  is the error state 
vector for the motion stereo Kalman filter, x s  is the 
error state vector for the binocular stereo Kalman 
filter, VM is the measurement noise for the motion 
stereo Kalman filter where E{v&vM} = CT& is large 
near FOE and small near periphery, and vs is the 
measurement noise for the binocular stereo Kalman 
filter where E{ v,’vs} = CT: is small near FOE and 
large near periphery. 

As stated previously, the binocular stereo and 
motion stereo range errors are linear combinations of 
the Kalman filter error states. The linear combination 
can be expressed as: 

bRs = H i  

~ R M  = H i  
where H is the measurement matrix defined by the 
total differential of binocular stereo range and the total 
differential of motion stereo range, respectively, for 
the preceding pair of equations, and i is the estimated 
error state vector. 

We derived the functional relationships of errors 
in range values. The total differential of motion stereo 
range is 

aRf aRf 
ay‘ az‘ a y  

az  a f o v h  a m ,  
a F  aA*’ aae‘ 

d R f  = a R f d y ’  + -dz’ + -dy 

aRf d f  OVh + A d z + -  

+ f d F  + %,A$‘ + a R f d A O ’  

- aRf d f  o v ,  
aR 

aR 

+ *,A$’ + L d v ,  aR + A d v ,  aR + aRf -dv, 
aA@‘ a V ,  av ,  a y ,  

(3) 
where (y’,z’) is the pixel location of an interest point 
in the left frame of a motion stereo pair of images that 
is acquired at time t i + l ,  ( y , z )  is the pixel location of 
the interest point in the left frame of a motion stereo 
pair of images that is acquired at time ti and matches 
( y ’ ,~ ’ ) ,  f ov ,  is the camera vertical FOV, f OVh  is the 
camera horizontal FOV, A+’ is the change in yaw 
angle that occurred in the time interval ti+l - ti, AO’ 
is the change in pitch angle that occurred in the time 
interval ti+l - ti, A@’ is the change in roll angle that 
occurred in the time interval t i + l -  ti, (v, ,vy,vz) is the 
velocity of the camera, and F is the focal plane to lens 
center distance. 

The total differential of binocular stereo range is 

a R f a R f aRf aR + -dAO + -dA@ + -dF + f d a  
a n 0  aA@ a F  aa 

(4) 

712 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 30, NO. 3 JULY 1994 

- 



ymp(- 

Fig. 5. Data acquisition for motion and binocular stereo 

where ( y ~ , q )  is the pixel location of an interest point 
in the left frame of a binocular stereo pair of images 
acquired at time t;, ( y r , z r )  is the pixel location of an 
interest point in the right frame of a binocular stereo 
pair of images acquired at time ti and matches (y l ,z l ) ,  
A$ is the boresight yaw angle, A0 is the boresight 
pitch angle, A$ is the boresight roll angle, and a is the 
camera separation distance. 

In the above, we have given only the functional 
form of range errors. These equations are of great 
value in understanding the effect of various system 
and imaging parameters on the computed range. 
The complete equations for these partial derivatives 
are quite complicated and, for clarity, we have not 
presented them here. We have also derived the 
functional relationships between the variance of range 
error and the location of an interest point in the FOV. 
Further details of these steps may be found in [l, 21. 

the case of motion stereo range computations is, 
An approximation to the range calculation error for 

where g~~ is an initial estimate of the range 
calculation error due to the error in the motion 
stereo point matching algorithm, ARM(uA, V A )  is the 
computed error in range for the world point whose 
projection onto the image plane is described in three 
space by (F,uA,vA), and F is the distance between the 
lens center and the image plane. 

calculation error for the case of binocular stereo range 
computations is, 

Likewise, an  approximation to the range 

where g~~ is an initial estimate of the range calculation 
error due to the error in the binocular stereo point 
matching algorithm, and A R ~ ( u L ,  V L )  is the computed 
error in range for the world point whose projection 
onto the image plane is described in three space by 
( F ,  UL, V L ) .  The variances of the measurement noises 
VM and V S  of (1) and (2) are calculated using these 
approximations. 

In computing range with either the motion stereo 
or binocular stereo techniques, all range measurements 
are made relative to the first of a temporal pair 
of images (i.e., A of A and B images) and the left 
image of a stereo pair, as shown in Fig. 5. Hence the 
subscripts A and L are used for the variables that 
describe points in three space on the image plane. In 
our implementation, the A and L images are the same 
image. 

B. Kalman Filter Implementation 

The navigation coordinate system for the INS is 
shown in Fig. 6. The true local level axes X I ,  y l ,  Z I  are 
also known as north-east-down axes. The twenty-nine 
error states listed in Table I are mechanized in the 
Kalman filter. The first seven states [7] are based on 
the level axis “Psi-Angle’’ ($1,$2,$3 of Fig. 6) IRU 
error model, 

4 = - ( p  + sz) x II, - C6W 

6R = 6V - p x 6R 

(7) 

(9) 

6%’ = C6AB - II, x AL(6R. R/R)(R/R) + 6g‘ (8) 

where II, is the Psi-angle error (states 1, 2, and 3) ,  6V 
is the Psi-angle horizontal velocity error (states 4 and 
5) ,  6R is the Psi-angle horizontal position error (states 
6 and 7), p is the local level transport rotation rate 
(V/R), is the Earth rate in local level coordinate 
frame = [ w ~ c o ~ X , O , - w ~ s i n X ] ~ ,  C is the body to 
local level direction cosine transformation matrix, 6w 
is the gyro error states (states 25, 26, 27), 6AB is the 
accelerometer error states (states 28 and 29), AL is 
the local level acceleration, ws is the Shuler frequency 
(w 0.00125 rps), R/R is the unit vector, and 6g’ is the 
gravity deflection and anomaly errors. 

The vertical error states (8, 9, 10) assume an IRU 
vertical channel damped with altitude data from a 
radar altimeter. Fig. 7 shows a typical IRU vertical 
channel filter. The error model implemented in the 
Kalman filter can be expressed as 

k8 = -x9 (10) 

k9 = K 1 ~ 9  + X ~ O  (11) 

k10 = x24 + K2x9 - K3x8 (12) 

where Kl, K2, K3, are the vertical channel gains. In 
our system, these gains were selected as 0.6, 0.15, and 
0.0156, respectively. 

The remaining error states are modeled as 
Gauss-Markov processes with large time constants. 
A Gauss-Markov process can be represented as 

-1 
k = - x + q  

T 

where 7 is a white noise process and 
constant. For large time constants, the error sources 
are effectively modeled as constants. 

is a time 
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Fig. 6. Navigation coordinate system for INS. 

1 I 1 
Fig. 7. Block diagram of vertical channel filter. 

IV. IMPLEMENTATION AND RESULTS integration of the two algorithm suites. This includes 

In this section, we present details of implementing 
the synergistic combination of binocular and motion 
stereo. 

A. Implementation Details 

demonstrate the efficacy of our synergistic system. 

stereo data (a total of 5 pair of frames). For use in 
validating our integrated stereo technique, ground 
truth range to a selected number of image points was 
obtained. 

2) development and software implementation 
of binocular and motion stereo algorithms and the 

The following tasks were carried out to 

1) laboratory collection of binocular and motion 

the extraction of “interest” points and the matching of 
interest points for subsequent binocular and motion 
stereo range computations. 

3) Kalman filter implementation. We developed 
Kalman filter software to process range data 
measurements and derive estimates for the error states 
which contribute to range error. 

real imagery. 
4) evaluation of the integrated stereo system with 

For experimentation with the system, we wrote 
binocular and motion stereo algorithms in C and 
modified an existing Kalman filter software that was 
previously used in a real-time environment. The 
Kalman filter software is written in C and FORTRAN 
and was modified for a simulation environment. 
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TABLE I 
Error States Used in Kalman Filtering 

Error 
Stntt 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

Description 

IRU psi 1 angle error 
IRU psi 2 angle error 
IRU psi 3 angle error 
IRU x velocity ucot 
IRU y velocity error 
IRU x position ermr 
IRU y position error 
Vertical channel acceleration error 
Vatical channel velocity e m r  
VUtical channel position error 
Hosizontal M V  erm (fmd 
Vatical FOV error VovJ 
Camem focd plane to lens culter d i ~ m  0 
y I  left camera Y ofical axis offset error 
zI  left camera Z optical axis offset aror 
y, right camera Y optical axis offsa errot 
z, right camera Z optical axis OW errof 

Camera pitch angle bonsigbt emx 
Camera roll angle boresight error 
Camera separation distance (a) 
yi left camem Y optical axis offset error (past frame) 
I j left camaa Z optical axis offset ernn (past frame) 
Z accelemmem birrp 
X g y m b i a s u m  

Zgymbiasamr 
X accelerometer bias error 
Y acalaometer bias error 

camera yaw angle msight  emx 

YgymbiarfSTiX 

Camera parameters used were: horizontal FOV, 
hfov=0.754160 rad; vertical FOV, vfov=0.313147 rad; 
focal length, F = 0.0410 ft; baseline, a = 2.0 ft. 

For the purposes of efficiency, only one Kalman 
filter is used by the integrated system by stacking the 
binocular and motion stereo measurements into a 
single 2 N  x 1 column vector, where N is the number 
of feature points matched by both algorithms for a 
specific image. The H-matrix is obtained by stacking 
the total differential of binocular stereo range and the 
total differential of motion stereo range into a single 
2 N  x 29 matrix, where 29 is the number of states of 
the Kalman filter for our integrated system. 

IRU errors were simulated by running an off-line 
IRU error simulation and adding the resulting errors 
to our nominal motion. The simulation used was a 
Monte-Carlo simulation of the IRU error equations. 
For this research, we simulated a GG1328 gyro-based 
IRU which is a low cost, 0.1 mrad angular orientation 
accuracy, integrated gyroscope and INS. The trajectory 
chosen was a northern cruise at 15 ft/s. Fig. 8 shows 
simulation results for the first 10 s. For a cruise 
scenario such as the trajectory above, IRU errors are 
essentially a function of time. Therefore, to formulate 
IRU errors for our two cases, the true trajectory 
was subtracted from the Fig. 8 data. The resultant 

error data was then added to our integrated system 
trajectory to simulate corrupted IRU data. 

For the initial evaluation phase, our stereo 
system was not fully integrated, but left in modular 
components. These components consist of laboratory 
collected video files, an IRU error model simulation, 
binocular stereo range algorithm, motion stereo range 
algorithm, and Kalman filter algorithm. Each of these 
components are run separately with communication 
between the components through input/output files. 

B. Experimental Results 

Five frames (each 512 x 512 pixels) of video data 
were collected in the laboratory at 2 ft intervals. An 
example of the experimental data is shown in Fig. 9. 
To simulate motion for the motion stereo algorithm 
we chose two velocities, 2 ft/s and 20 ft/s. These two 
velocities correspond to processing the four frames 
at 1 s time intervals or 0.1 s intervals. The attitude 
of both experiments was chosen to be level and in a 
northerly direction. 

From these five frames, the interest points which 
have the highest promise of repeated extraction 
throughout multiple frames are extracted using 
a combination of the Hessian and Laplacian 
operators [ll].  The binocular stereo ranges are 
calculated to various points using the well-known 
Marr-Pogio-Grimson algorithm [6]. 

vector, ( F , y , , z j )  corresponding to the j t h  interest 
point in the frame m + 1, is derotated so that the 
image plane m + 1 appears to be parallel to image 
plane m. The matching of interest points is performed 
in two passes. The goal of the first pass is to identify 
and store the top three candidate matches for each 
interest point in frame m + 1. The second pass looks 
for multiple interest points being matched to a single 
point in frame m. The range computations are further 
improved (for three or more sequential frames) by 
predicting and smoothing the range to each interest 
point that can be tracked through multiple frames. 

The output binocular stereo and motion stereo 
range files, and simulated IRU data files are read into 
the Kalman filter software. “Frame i” (sequence i) 
processing consists of the following steps: the left and 
right binocular stereo images (L; and R;) are matched; 
the left image frames L; and L;+1 (of sequence 
i + 1) are matched by motion analysis. The filter 
software runs a range matching algorithm to detect 
coincident range points. For each coincident point the 
corresponding H-matrix and filter measurements are 
calculated and processed by the filter. 

with the Kalman filter is shown in Table 11. The 
results of Table I1 are simulated with IRU noise and 
a 1 Hz video frame iteration rate, which equates to 

To aid the process of interest point matching, each 

Results from processing “Frame 1” of the sequence 
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INS Latitude 

Measurement 

w-’ INS Longitude 

h W  Raw Kalman Filter Kalman Filter 
Binocular Motion Binocular Motion 

Range Ranee Error Error 

INS Altitude 

2 
3 
4 
5 
6 
7 

9 

11 
12 

8 

10 

m e  (Sec) 

INS North Velocity 

15.250125 19.987539 -2.715582 
23.286278 11.497955 5.687111 
17.710770 22.075123 -1.643602 
13.850588 20.908190 -3.369545 
15.973729 21.540310 -3.376971 
16.092087 17.760782 1.714687 

21.183895 22.302511 2.563853 

18.167021 20.215263 4.081967 
15.797955 21.457747 -1.679191 

16.151932 14.471107 -2.965745 

15.358275 14.538172 -3.013412 

INS East Velocity INS Vertical Velocity 

“.-a INS Pitch -._ 
-.. 
-.. 
-e. 

-., -. . 
* . . . . I *  

Thw (ma 

INS Yaw 

, * * , . I .  
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Fig. 8. Simulation of GG1328 gyro-based IRU. 

TABLE I1 
Kalman-Filter-Computed Range Errors for 1 Hz Processing Rate (2 ft/s velocity) 

Time = 1.0 sec (Frame 1) 

1 I 23.470947 I 13.229049 I 9257078 I -1.906973 
-1 S91671 
4.775131 
1.59 1987 
7.472088 
2.922868 
2.406360 
2.3506 10 
2.367056 
1.480840 
1.600948 
1.594449 

Corrected 
Binocular 

Range 

14.213869 
17.965708 
17.599 167 
19.354372 
17.220133 
19.350700 
17.806774 
19. I 17678 
18.620041 
18.371687 
18.085033 
17.477146 

Comcted 
Motion 

15.136022 
21.579210 
16.273087 
20.483 137 
13.436102 
18.617441 
15.354422 
12.120497 
19.935455 
13.057332 
18.6143 15 
19.863297 
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TABLE 111 
Ground Truth Measurements for 1 Hz Processing Rate 

Time = 1.0 sec (Frame 1) 

Y; 2; Jr zr Y I  ZI R 
Measurement (pixels) (pixels) (pixels) @held ( P h b )  (Pixels) (6 

1 -152 -59 -182 -53 -128 -51 13.9764 
2 -52 122 -131 114 -46 111 18.8474 
3 4 7  -50 -94 -3 8 -38 -43 12.229 

104 19.1300 4 -12 113 -83 106 -9 
5 41 65 -58 57 37 60 19.2826 
6 49 202 -39 189 44 184 20.2861 
7 92 -61 0 4 9  82 -53 18.I)Wl 
8 95 167 0 149 82 144 14.0358 
9 124 -15 51 -8 113 -12 22.3442 

10 157 152 48 143 134 138 14.2818 
11 1 70 -8 81 -1 153 -5 20.1257 
12 170 -16 71 -9 154 -12 21.4448 - 

~ 

13.853668 
17.983187 
17.424423 
17.878599 
19.382732 
17.235115 
19.439438 
17.751974 
19.178156 
18503334 
18.409391 
17.986984 
17.411528 

TABLE IV 
Kalman-Filter-Computed Range Errors for 10 Hz Processing Rate (20 ft/s velocity) 

I Time = 0.2 sec (Frame 1) 

14.079339 
19.025303 
13.862750 
19.368689 
19.909698 
12.217464 
15.541098 
17.986462 
12.602067 
21.495705 
14.527253 
19.777969 
21.004623 

Measurement 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Raw 
Binocular 

Range 

23.470947 
15.250125 
23.286278 
15.922381 
17.710770 
13.850588 
15.973729 
16.092087 
16.15 1932 
21.183895 
15.358275 
18.167021 
15.797955 

Raw 
Motion 
Range 

12980159 
19.459459 
10.937357 
14.836158 
2226381 5 
21.918085 
21.828583 
18.314566 
14.771038 
22.844698 
14.761926 
20.570227 
21.834696 

Kalman Filtei 
Binocular 

Enor 

9.6 17279 

5.861856 
-2.733061 

-1.956218 
-1.671963 
-3.384527 
-3.465710 
-1.659888 
-3.026224 

-3.051116 

-1.613573 

2.680561 

0.180036 

Kalman Filter 
Motion 
Error 

-1 .099180 
0.434156 

-4.53253 1 
2354116 
9.700621 
6287485 
0.328105 
2.168971 
1.348993 
0.234672 
0.792287 
0.830073 

-2.925393 

Corrected 
Binocular 

Range 

Corrected 
Motion 
Range 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

15.395482 
15.055490 
15.658957 
14.771465 
16.188807 
16.690779 
1 5.174622 
19.333355 
14.181705 
16.496565 
14.511797 
15.358172 
13.100904 

Tim e 

15.375104 
18.9533 18 
19.364252 
16.280893 
18.075811 
18.752043 
18.209389 
24.704124 
17.482733 
16.344479 
16.74018 1 
18.337030 
19.7900 14 

-2.823521 
-3.251050 
-2859818 
-3.150485 
-3.643293 
-2562827 
-3.081228 
-1.267558 
-3.954892 
-3.1 17268 
-4.223449 
-2874749 
-4.306006 

! 2) 

-1.199930 
-3.732748 
-3.794225 
-4.380288 
6.040530 
4.724038 
3.214266 
6.274734 
1.894 178 
0.850061 
1.269790 
2.921894 
2.210015 

18219004 
18.306541 
18.518774 
17.921949 
19.832100 
19.253607 
18.255850 
20.600912 
18.1 36597 
19.613832 
28.735247 
18232922 
17.406910 

16.575033 
22.686066 
23.158478 
20.661 182 
12.035282 
14.028005 
14.995123 
18.429390 
15.588555 
15.494417 
15.470390 
15.415136 
17.58oooO 
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PI 

Frame 2. Therefore, the ground truth range values 
of the corresponding measurements between Frame 1 
and Frame 2 in Table V are not for the same scene 
point. 

V. CONCLUSIONS 

The basic concept and results of our binocular 
and motion stereo synergistic system have been 
presented. These results demonstrate that it is possible 
to effectively combine binocular range and stereo 
range measurements by incorporating a blending filter. 
This approach has the potential of providing dense 
range measurements. We plan to do this in the future. 
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TABLE V 
Ground Truth Measurements for 10 Hz Processing Rate 

Y; 
(pixels) Measurement 

q' Yr Zr YI 
(pixels) (pixels) (pixels) (pixels) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Time = 0.2 sec (Frame 1) 

-158 -26 -218 -22 -137 
-85 -7 -161 3 -76 
-34 -7 1 -115 -53 -32 
-33 -95 -118 -86 -30 
79 205 -1 1 183 71 
85 -19 -3 -8 76 
103 -73 5 -56 92 
125 4 3  47 -30 115 
143 56 33 60 126 
145 138 46 125 126 
172 168 59 158 150 
204 -50 96 -35 I81 
207 50 85 52 185 

-152 
-52 
4 7  
-13 
-12 
41 
49 
92 
95 
124 
157 
170 
170 

1 -50 
' 0  
~ 113 

65 
202 
-61 
167 
-1 5 
152 
-8 
-16 

-182 
-131 
-94 
-93 
-83 
-58 
-39 
0 
0 
51 
48 
81 
71 

-53 
114 
-38 
13 
106 
57 
189 
4 9  
149 
-8 
143 
-1 
-9 

-128 
-46 
-38 
-1 1 
-9 

1 37 
44 

82 
113 
134 
153 
154 

~ 82 

Time = 0 3  sec (Frame 2) 

-5 1 
111 
4 3  
7 

104 
60 
184 
-53 
144 
-12 
138 
-5 
-12 

- 
R 
t L  - 
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