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aided navigation and obstacle detection/avoidance. An approach is
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We show a new way to model the errors in binocular and motion
stereo in conjunction with an inertial navigation system (INS)
and derive the appropriate Kalman filter to refine the estimates
from these two stereo ranging techniques. We present results
using laboratory images that show that refined estimates can be
optimally combined o give range values which are more accurate
than any one of the individual estimates from binocular and
motion stereo. By incorporating a blending filter, the approach has
the potential of providing accurate, dense range measurements for
all the pixels in the field of view (FOV).
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I.  INTRODUCTION

Range measurements to objects in the world
relative to mobile platforms such as ground or air
vehicles are critical for visually aided navigation
and obstacle detection/avoidance. Active (laser)
range sensors can be used to provide such range
measurements although they have a limited field of
view (FOV), suffer from slow data acquisition, and
are expensive. Robust passive ranging techniques
can be suitable alternatives. The passive visual
cues of binocular and motion stereo have been the
two most popular methods for range estimation. A
plethora of algorithms have been proposed to estimate
three-dimensional (3D) structure or motion or both,
using these two cues individually. “Robustness” of
the algorithms is sought by selecting stable features in
the stereo images for matching, performing accurate
camera calibration, removing lens distortion or
employing less noise-sensitive computational methods.
Applications of such algorithms are shown mostly
for synthesized data, some for real scenes, and few
for outdoor scenarios. However, it is to be realized
that “robustness” cannot guarantee high precision
of the estimates derived using any one of the cues
which are inherently imprecise. Consequently, in any
experiment involving these cues some 3D locations will
consistently have better estimates than some others.
Besides, most assumptions about “robustness” and the
robust characteristics are unlikely to survive in major
real-world applications, such as autonomous mobile
robots operating outdoors.

The objective of this research is to develop a
passive ranging system that utilizes the benefits of
binocular and motion stereo. This system is based
on the synergistic combination of the two stereo
modalities which is achieved by the following sequence
of operations: interest point matching, Kalman
filtering, and range measurement blending. The
important benefits of the proposed synergistic system
are, 1) the system is cheap to build (compared with
active sensors), 2) it is passive (i.e., nondetectable,
covert), 3) a more dense and more accurate range
map is generated than is possible by either passive
technique alone (this is necessary for obstacle
avoidance), and 4) negligible motion distortion
is caused by the moving platform (i.e., fast data
acquisition).

Previous efforts in the derivation of approaches
for the synergistic combination of binocular and
motion stereo ranging have placed restraints on the
problem specification to reduce the complexity of the
analysis. To date, no demonstration of a totally general,
comprehensive characterization of the ranging problem
for multiple binocular stereo frames has been derived.

The emphasis of this work is on modeling the
errors in binocular and motion stereo in conjuction
with an inertial navigation system (INS) for a
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real-world application of a passive ranging system, and
deriving the appropriate Kalman filter to refine the
estimates from these two stereo ranging techniques.
Our particular approach is designed to allow empirical
evaluation of the performance and robustness of the
passive ranging system for various scenarios. The next
section describes in greater detail the background

and motivation behind the work reported here.
Section III presents the technical approach adopted in
designing the synergistic system. Section IV discusses
results obtained during an empirical evaluation of the
performance of this system with laboratory data and a
simulated inertial reference unit (IRU) data. Section
V discusses our plans for future research to further
optimize this system.

II. BACKGROUND AND MOTIVATION

In this section we summarize the past research
related to the work reported in this paper, and the
motivations that lead to the development of the
approach described in the following section.

A. Background

Features from stereo pairs of images can be
matched over time to obtain better accuracy for
disparity-based range calculations. Leung, et al. [8]
derived an algorithm for finding point correspondences
among stereo image pairs at two consecutive time
instants (f;_1,¢;). They demonstrated significantly
improved feature matching accuracy for scenes that
demonstrate large feature displacements due to object
motion in the scene. Li and Duncan [9] estimated the
platform motion from measures for the optical flow
of the left and right cameras for a series of binocular
stereo images, without point-to-point correspondences.
In addition, stereo matching procedures based on
the estimated translational velocity and the flow
fields were derived. An empirical evaluation of
the robustness of the approach to image noise
(which degrades the accuracy of the flow field) for
synthetic images was carried out. The approach was
demonstrated to be robust for representative flow
field magnitude and direction errors. Sridhar and
Suorsa [13] describe recursive binocular and motion
stereo algorithms and compare their performances.
However, the confidence factors for each of the
range measurements which form the basis of such
comparison are obtained by considering only the errors
in image locations of matched feature points. The
uncertainty models of their passive ranging techniques
are therefore inadequate for a real-world imaging
system such as a mobile platform. Several researchers
have used the Kalman filtering method to estimate
range from binocular stereo images [5] and motion
sequences [10].
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B. Motivation

A synergistic combination of binocular and motion
stereo is motivated by the following observations
about their relative performance as illustrated in
Fig. 1. Binocular stereo-based range computations
suffer the greatest error at the edges of ficld of view
(FOV) of the camera where motion stereo-based
range is most accurate; the converse scenario holds
true in the vicinity of the focus of expansion (FOE)
where motion stereo-based range error is very large
and binocular stereo-based range error is very small.
Thus, a passive ranging system which employs only
one of these two methods of range computation is
likely to perform poorly even with the most robust
algorithm. On the other hand, a passive ranging system
which can successfully employ both methods, has the
advantage of retaining only the best range estimate of
a scene point. Which one of the methods provides the
best range estimate is determined by the location of
the point in the FOV. This may mean that the visual
field can be appropriately segmented to be processed
by either binocular stereo or motion stereo, thereby
reducing the computational burden. Alternately, range
values for distinct points in the visual field can be
computed from both binocular and motion stereo and
be refined using the statistics of their uncertainties.
The refined range estimates for each point can be
statistically combined to yield a more precise range
value.

Most passive ranging techniques developed
to date make idealistic assumptions about their
operational conditions. On the contrary, in most
real-world applications the conditions are far from
being ideal. Some of these, such as vibration of the
platform on which the cameras are mounted or the
wind speed, may prove to be catastrophic to the
ranging techniques, such as determination of motion
parameters in order to compute range. Incorporation
of hardware which can compute stable values of
motion parameters under harsh operating conditions,
will greatly improve the performance of any motion
analysis technique for motion stereo-based ranging. An
INS is one such item which is used in many types of
land and air vehicles.

An INS includes an IRU and the necessary
hardware and software to stabilize and process the

710 1IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 30, NO. 3 JULY 1994



/:wam
Direction Xg

Xr

of Travel
Ye o Yr
Lokt ot Figt s
Camera Camera
mace "] / 1 mage 7| +”
Plano | Piane
[’Fi z, 2z,
le -
f—
Lek Camera Right Camera
Coordinate Coordinate
System System

Fig. 2. Reference coordinate system.

IRU outputs to derive values for the position and
velocity of the platform in a desired reference frame
[4]. IRU measurements are made with gyroscopes, to
provide an absolute measure of the rotation difference
between the coordinate frame of the vehicle and a
fixed, geographic, reference frame. Such measurements
are also made with accelerometers, to provide the
acceleration of the vehicle relative to the reference
frame. The time integral of these accelerations gives
the velocity and position of the vehicle. In addition,
INS information can be used to select interest points
in the visual field where range computations are to be
made, and to determine sensor motion between frames
[3, 12].

lll.  INTEGRATED APPROACH

With a two-camera system in motion, a stereo
ranging system is formed which consists of binocular
stereo and motion stereo range computations. In the
case of binocular sterco two cameras are rigidly
mounted on the same fixture such that their optical
axes are parallel and yet horizontally displaced by
a fixed, known distance. Whereas the cameras are
laterally displaced for binocular stereo, the cameras
are longitudinally displaced, due to forward vehicle
motion, for motion stereo. On a moving platform, the
same two cameras can provide the imagery required

to perform one binocular and two motion stereo range
calculations. We use a right-handed coordinate system
for both cameras of the binocular stereo ranging
system. As shown in Fig. 2, the x-axis is parallel to the
forward direction of travel, the y-axis points rightward,
and the z-axis points down. In subsequent analyses, the
image coordinates are denoted by (u,v) while the pixel
coordinates are denoted by (y, z).

Our integrated stereo system, shown in Fig. 3,
uses the following two key elements which constitute
the unique features of our approach: 1) matching
of interesting points in binocular stereo and motion
stereo imagery, and 2) modeling of range errors
present in the motion and binocular stereo techniques.
These errors are represented as the states of a Kalman
filter applied to obtain improved estimates of range
values.

The coincident points of interest, i.e., those points
for which range is computed by both motion and
binocular stereo techniques, are used as measurements
to estimate errors in the ranging processes. The points
in the ragne maps which are not coincident can be
corrected with these error estimates, improving the
overall quality of the composite range map. This can
be achieved with the use of a blending filter as shown
in Fig. 4. This filter derives a composite range map for
each measurement location as the weighted average
of the Kalman filter estimates for the range, where
the averaging weights are the current estimates of the
measurement noise obtained from each filter. The
confidence in each range measurement is inversely
proportional to the estimate of the measurement noise,
so that when the measurement noise for the binocular
stereo algorithm is large, the estimate obtained from
the motion stereo Kalman filter is weighted more
heavily. Conversely, when the measurement noise
for the motion stereo algorithm is large, the estimate
from the binocular stereo algorithm is given more
weight. The filtered estimates of the measurement
noise are used to smooth out the effects of isolated
bad measurements.
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Fig. 3. System for integration of motion stereo and binocular stereo.
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A. Range Error Modeling

In this section, we discuss the approach for
synergistic combination of motion and binocular
stereo-based range estimates. The disagreement
between the calculated ranges from the motion and
binocular stereo algorithms for the coincident points of
interest is attributed to the errors in inertial data and
geometric alignment of the cameras. The computed
discrepancies in the range values are used by a Kalman
filter to refine the estimates for the errors in the
inertial and system configuration parameters. New
estimates could be obtained by adding the updated
estimates for the errors to the expected system variable
magnitudes. The refined estimates could then be
used to calculate improved binocular and motion
sterco ranges. Alternatively, the H-matrices for
each coincident interesting point could be derived
from the dependence of errors for binocular and
motion range calculations on errors in the inertial
and system configuration data, and the output ranges
for these algorithms could be corrected using a linear
combination of the error states of the Kalman filter.
The latter is done in the current implementation of the
passive ranging system.

The measurement for the binocular stereo
component of the filter is the difference of the ranges
from binocular and motion stereo. The motion stereo
measurement of the filter is the negative of the
binocular stereo measurement of the filter. Using
the static Gauss-Markov discrete time model, the
measurement process is described as follows:

ymj(k) = Rmj — Rs;
¥sj(k) = Rsj— Ru;

where yu (k) is the measurement for the motion
stereo component of the Kalman filter for the

Jjth feature point location at time k, ys;(k) is the
measurement for the binocular stereo component
of the Kalman filter for the jth feature point
location at time k, Ry; is the estimate of the range
corresponding to the jth feature point from the
motion stereo algorithm, Rg; is the estimate of the
range corresponding to the jth feature point from

=Hxy +vym €))]
=Hxs +vs )]

the binocular stereo algorithm, x s is the error state
vector for the motion stereo Kalman filter, xg is the
error state vector for the binocular stereo Kalman
filter, vps is the measurement noise for the motion
stereo Kalman filter where E{v vy} = o3, is large
near FOE and small near periphery, and v is the
measurement noise for the binocular stereo Kalman
filter where E{vIvs} = 0% is small near FOE and
large near periphery.

As stated previously, the binocular stereo and
motion stereo range errors are linear combinations of
the Kalman filter error states. The linear combination
can be expressed as:

6Rs =Hzx

0Ry =HZ%

where H is the measurement matrix defined by the
total differential of binocular stereo range and the total
differential of motion stereo range, respectively, for
the preceding pair of equations, and £ is the estimated
error state vector.

We derived the functional relationships of errors
in range values. The total differential of motion stereo
range is

dR; = %i{dy 36 ,fdz + L 8Rf T
aR af KL af
aalfvf dF + ;;';, dAY + g Agl dne’
* 52 %Rfd +36Rfd +%Rfdvz

©)
where (y’,2’) is the pixel location of an interest point
in the left frame of a motion stereo pair of images that
is acquired at time f;41, (y,2) is the pixel location of
the interest point in the left frame of a motion stereo
pair of images that is acquired at time #; and matches
(',2'), fov, is the camera vertical FOV, fovj is the
camera horizontal FOV, Ay’ is the change in yaw
angle that occurred in the time interval £;41 — t;, A6’
is the change in pitch angle that occurred in the time
interval t;4+1 — t;, A¢’ is the change in roll angle that
occurred in the time interval #;41 — £, (Vx,Vy,V;) is the
velocity of the camera, and F is the focal plane to lens
center distance.
The total differential of binocular stereo range is
R dR OR
aayf dy; + wd—f Z1+ — 3y, Vr 3Z,f
IRy
OAY
6Rf
da

dR; = dz,

+
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Fig. 5. Data acquisition for motion and binocular stereo.

where (y;,2;) is the pixel location of an interest point
in the left frame of a binocular stereo pair of images
acquired at time ¢;, (y,,2,) is the pixel location of an
interest point in the right frame of a binocular stereo
pair of images acquired at time #; and matches (y;,z;),
A1) is the boresight yaw angle, Af is the boresight
pitch angle, A¢ is the boresight roll angle, and a is the
camera separation distance.

In the above, we have given only the functional
form of range errors. These equations are of great
value in understanding the effect of various system
and imaging parameters on the computed range.

The complete equations for these partial derivatives
are quite complicated and, for clarity, we have not
presented them here. We have also derived the
functional relationships between the variance of range
error and the location of an interest point in the FOV.
Further details of these steps may be found in [1, 2].

An approximation to the range calculation error for
the case of motion stereo range computations is,

ARpM(uq,V4)

F2+u? +vi

where op,, is an initial estimate of the range
calculation error due to the error in the motion
stereo point matching algorithm, ARy (u 4,V 4) is the
computed error in range for the world point whose
projection onto the image plane is described in three
space by (F,u4,v4), and F is the distance between the
lens center and the image plane.

Likewise, an approximation to the range
calculation error for the case of binocular stereo range
computations is,

®)

om(Ua,va) =0p,

ARg(ur,vy)

—— ©)
VF2+u? +v?

where op, is an initial estimate of the range calculation
error due to the error in the binocular stereo point
matching algorithm, and ARg(u;,vy) is the computed
error in range for the world point whose projection
onto the image plane is described in three space by
(F,ug,vr). The variances of the measurement noises
vy and vs of (1) and (2) are calculated using these
approximations.

os(uL,vL) = op;

In computing range with either the motion stereo
or binocular stereo techniques, all range measurements
are made relative to the first of a temporal pair
of images (ie., A of A and B images) and the left
image of a stereo pair, as shown in Fig. 5. Hence the
subscripts A and L are used for the variables that
describe points in three space on the image plane. In
our implementation, the A and L images are the same
image.

B. Kalman Filter Implementation

The navigation coordinate system for the INS is
shown in Fig. 6. The true local level axes x;,y:,2; are
also known as north-cast-down axes. The twenty-nine
error states listed in Table I are mechanized in the
Kalman filter. The first seven states [7] are based on
the level axis “Psi-Angle” (¥1,%2, %3 of Fig. 6) IRU
error model,

Y=—(p+9)x 3~ Cow @
6V = C6AZ — o x AL(6R-R/R)(R/R) +6g  (8)
R =6V—px R 9)

where 1 is the Psi-angle error (states 1, 2, and 3), 6V
is the Psi-angle horizontal velocity error (states 4 and
5), 6R is the Psi-angle horizontal position error (states
6 and 7), p is the local level transport rotation rate
(V' /R), © is the Earth rate in local level coordinate
frame = [wgcosA,0, —wEsin)\]T, C is the body to
local level direction cosine transformation matrix, 6w
is the gyro error states (states 25, 26, 27), 645 is the
accelerometer error states (states 28 and 29), AL is
the local level acceleration, wg is the Shuler frequency
(~ 0.00125 1ps), R/R is the unit vector, and ég’ is the
gravity deflection and anomaly errors.

The vertical error states (8, 9, 10) assume an IRU
vertical channel damped with altitude data from a
radar altimeter. Fig. 7 shows a typical IRU vertical
channel filter. The error model implemented in the
Kalman filter can be expressed as

g = —xo (10)
X9 = Kiyx9 + xq9 (11)
K10 = X24 + Kpxo — K3xg (12)

where Ki, K>, K3, are the vertical channel gains. In
our system, these gains were selected as 0.6, 0.15, and
0.0156, respectively.

The remaining error states are modeled as
Gauss-Markov processes with large time constants.
A Gauss-Markov process can be represented as

= ix+ 13
=T (13)
where 7 is a white noise process and 7 is a time
constant. For large time constants, the error sources
are effectively modeled as constants.
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IV.  IMPLEMENTATION AND RESULTS

In this section, we present details of implementing
the synergistic combination of binocular and motion
stereo.

A. Implementation Details

The following tasks were carried out to
demonstrate the efficacy of our synergistic system.

1) laboratory collection of binocular and motion
stereo data (a total of 5 pair of frames). For use in
validating our integrated stereo technique, ground
truth range to a selected number of image points was
obtained.

2) development and software implementation
of binocular and motion stereo algorithms and the

integration of the two algorithm suites. This includes
the extraction of “interest” points and the matching of
interest points for subsequent binocular and motion
stereo range computations.

3) Kalman filter implementation. We developed
Kalman filter software to process range data
measurements and derive estimates for the error states
which contribute to range error.

4) evaluation of the integrated stereo system with
real imagery.

For experimentation with the system, we wrote
binocular and motion stereo algorithms in C and
modified an existing Kalman filter software that was
previously used in a real-time environment. The
Kaiman filter software is written in C and FORTRAN
and was modified for a simulation environment.
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TABLE 1
Error States Used in Kalman Filtering

Error
State Description
1 IRU psi 1 angle error
2 IRU psi 2 angle error
3 IRU psi 3 angle error
4 TRU x velocity error
5 IRU y velocity error
6 IRU x position error
7 IRU y position error
8 Vertical channel acceleration error
9 Vertical channel velocity error
10 Vertical channel position emor
11 Horizontal FOV error (fovy,)
12 Vertical FOV error (fov,)
13 Camera focal plane to lens center distance (F)
14 y; left camera Y optical axis offset error
15 z; left camera Z optical axis offset error
16 y, right camera Y optical axis offset error
17 2, right camera Z optical axis offset error
18 Camera yaw angle boresight error
19 Camera pitch angle baresight error
20 Camera roll angle baoresight error
21 Camera separation distance (a)
22 y; left camera Y optical axis offsct error (past frame)
23 z;" left camera Z optical axis offset error (past frame)
24 Z accelerometer bias
25 X gyro bias error
26 Y gyro bias error
27 Z gyro bias error
28 X accelerometer bias error
29 Y accelerometer bias error

Camera parameters used were: horizontal FOV,
hfov=0.754160 rad; vertical FOV, vfov=0.313147 rad,
focal length, F = 0.0410 ft; bascline, a = 2.0 ft.

For the purposes of efficiency, only one Kalman
filter is used by the integrated system by stacking the
binocular and motion stereo measurements into a
single 2N x 1 column vector, where N is the number
of feature points matched by both algorithms for a
specific image. The H-matrix is obtained by stacking
the total differential of binocular stereo range and the
total differential of motion stereo range into a single
2N x 29 matrix, where 29 is the number of states of
the Kalman filter for our integrated system.

IRU errors were simulated by running an off-line
IRU error simulation and adding the resulting errors
to our nominal motion. The simulation used was a
Monte-Carlo simulation of the IRU error equations.
For this research, we simulated a GG1328 gyro-based
IRU which is a low cost, 0.1 mrad angular orientation
accuracy, integrated gyroscope and INS. The trajectory
chosen was a northern cruise at 15 ft/s. Fig. 8 shows
simulation results for the first 10 s. For a cruise
scenario such as the trajectory above, IRU errors are
essentially a function of time. Therefore, to formulate
IRU errors for our two cases, the true trajectory
was subtracted from the Fig. 8 data. The resultant

error data was then added to our integrated system
trajectory to simulate corrupted IRU data.

For the initial evaluation phase, our stereo
system was not fully integrated, but left in modular
components. These components consist of laboratory
collected video files, an IRU error model simulation,
binocular stereo range algorithm, motion stereo range
algorithm, and Kalman filter algorithm. Each of these
components are run separately with communication
between the components through input/output files.

B. Experimental Results

Five frames (each 512 x 512 pixels) of video data
were collected in the laboratory at 2 ft intervals. An
example of the experimental data is shown in Fig. 9.
To simulate motion for the motion stereo algorithm
we chose two velocities, 2 ft/s and 20 ft/s. These two
velocities correspond to processing the four frames
at 1 s time intervals or 0.1 s intervals. The attitude
of both experiments was chosen to be level and in a
northerly direction.

From these five frames, the interest points which
have the highest promise of repeated extraction
throughout multiple frames are extracted using
a combination of the Hessian and Laplacian
operators [11]. The binocular stereo ranges are
calculated to various points using the well-known
Marr-Pogio-Grimson algorithm [6].

To aid the process of interest point matching, each
vector, (F,y;,z;) corresponding to the jth interest
point in the frame m + 1, is derotated so that the
image plane m + 1 appears to be parallel to image
plane m. The matching of interest points is performed
in two passes. The goal of the first pass is to identify
and store the top three candidate matches for each
interest point in frame m + 1. The second pass looks
for multiple interest points being matched to a single
point in frame m. The range computations are further
improved (for three or more sequential frames) by
predicting and smoothing the range to each interest
point that can be tracked through multiple frames.

The output binocular stereo and motion stereo
range files, and simulated IRU data files are read into
the Kalman filter software. “Frame i” (sequence i)
processing consists of the following steps: the left and
right binocular stereo images (L; and R;) are matched;
the left image frames L; and L, (of sequence
i +1) are matched by motion analysis. The filter
software runs a range matching algorithm to detect
coincident range points. For each coincident point the
corresponding H-matrix and filter measurements are
calculated and processed by the filter.

Results from processing “Frame 1” of the sequence
with the Kalman filter is shown in Table II. The
results of Table II are simulated with IRU noise and
a 1 Hz video frame iteration rate, which equates to
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Fig. 8. Simulation of GG1328 gyro-based IRU.
TABLE 1
Kalman-Filter-Computed Range Errors for 1 Hz Processing Rate (2 ft/s velocity)
Time = 1.0 sec (Frame 1)
Raw Raw Kalman Filter | Kalman Filter { Corrected | Corrected
Binocular | Motion Binocular Motion Binocular Motion
Measurement Range Range Error Error Range Range
1 23.470947 | 13.229049 9.257078 -1.906973 14.213869 | 15.136022
2 15.250125 | 19.987539| -2.715582 -1.591671 17.965708 | 21.579210
3 23.286278 | 11.497955 5.687111 —4.775131 17.599167 | 16.273087
4 17.710770 | 22.075123 | -1.643602 1.591987 19.354372 | 20.483137
5 13.850588 | 20.908190} -3.369545 7.472088 17.220133 | 13.436102
6 15.973729 | 21.540310) -3.376971 2.922868 19.350700 | 18.617441
7 16.092087 | 17.760782 1.714687 2406360 17.806774 | 15.354422
8 16.151932 | 14.471107 | -2.965745 2.350610 19.117678 | 12.120497
9 21.183895 | 22.302511 2.563853 2.367056 18.620041 | 19.935455
10 15.358275 | 14.538172| -3.013412 1.480840 18.371687 | 13.057332
11 18.167021 | 20.215263] -0.081987 1.600948 18.085033 | 18.614315
12 15.797955 | 21.457747| -~1.679191 1.594449 17477146 | 19.863297
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TABLE III

Ground Truth Measurements for 1 Hz Processing Rate

Time = 1.0 sec (Frame 1)

Y ' Z{' Yr Zr B4 | R,
Measurement (pixels) (pixels) (pixels) (pixels) (pixels) (pixels) [({})]
1 -152 -59 -182 -53 -128 =51 13.9764
2 ~52 122 -131 114 -46 111 18.8474
3 —47 -50 -94 -38 -38 —43 12.2229
4 -12 113 -83 106 -9 104 19.1300
5 41 65 -58 57 37 60 19.2826
6 49 202 -39 189 44 184 20.2861
7 92 61 0 49 82 -53 18.0941
8 95 167 0 149 82 144 14.0358
9 124 -15 51 -8 113 -12 22.3442
10 157 152 48 143 134 138 14.2818
11 170 -8 81 -1 153 -5 20.1257
12 170 -16 7 -9 154 -12 21.4648
TABLE IV
Kalman-Filter-Computed Range Errors for 10 Hz Processing Rate (20 ft/s velocity)
Time = 0.2 sec (Frame 1)
Raw Raw Kalman Filter | Kalman Fifter | Corrected | Corrected
Binocular Motion Binocular Motion Binocular Motion
Measurement Range Range Error Error Range Range
1 23.470047 | 12.980159 9.617279 -1.099180 13.853668 | 14.079339
2 15.250125 | 19.459459 | -2.733061 0434156 17.983187 | 19.025303
3 23.286278 | 10.937357 5.861856 -2.925393 17.424423 | 13.862750
4 15922381 | 14.836158 | -1.956218 —4.532531 17.878599 | 19.368689
5 17.710770 | 22.263815 | -1.671963 2354116 19.382732 | 19.909698
6 13.850588 | 21.918085 | -3.384527 9.700621 17.235115 | 12.217464
7 15973729 | 21.828583 | -3.465710 6.287485 19.439438 | 15541098
8 16.092087 | 18.314566 | -1.659888 0.328105 17.751974 | 17.986462
9 16.151932 | 14.771038 | -3.026224 2.168971 19.178156 | 12.602067
10 21.183895 | 22.844698 2.680561 1.348993 18.503334 | 21.495705
11 15.358275 | 14.761926 | -3.051116 0.234672 18.409391 | 14.527253
12 18.167021 | 20.570257 0.180036 0.792287 17.986984 | 19.777969
13 15.797955 | 21.834696 | -1.613573 0.830073 17.411528 | 21.004623
Time = 0.3 sec (Frame 2)
1 15.395482 | 15.375104 | -2.823521 -1,199930 18219004 | 16.575033
2 15.055490 { 18.953318 | -3.251050 -3.732748 18.306541 | 22.686066
3 15.658957 | 19.364252 | -2.859818 -3.794225 18.518774 | 23.158478
4 14.771465 | 16.280893 | -3.150485 —4.380288 17921949 | 20.661182
5 16.188807 | 18.075811 | -3.643293 6.040530 19.832100 | 12.035282
6 16.690779 | 18.752043 | -2.562827 4.724038 19.253607 | 14.028005
7 15.174622 | 18.209389 | -3.081228 3.214266 18.255850 | 14.995123
8 19.333355 | 24.704124 | -1.267558 6.274734 20.600912 | 18.429390
9 14.18170S | 17.482733 | -3.954892 1.894178 18.136597 | 15.588555
10 16496565 | 16.344479 | -3.117268 0.850061 19.613832 | 15.494417
11 14.511797 | 16.740181 | -4.223449 1.269790 18.735247 { 15.470390
12 15.358172 | 18337030 { -2.874749 2921894 18.232922 | 15415136
13 13.100904 | 19.790014 { -4.306006 2.210015 17406910 | 17.580000
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Fig. 9. (a) Frame 1 image obtained from left camera of stereo
pair. (b) Frame 1 image obtained from right camera of stereo pair.
(c) Frame 2 image obtained from left camera of stereo pair.

a velocity of 2 ft/s. Ground truth measurements for
the 12 matched feature point locations of Frame 1
are presented in Table III. The center of the image
plane is the origin of the pixel coordinates; (y;,2;)
in the left image matches (y,,z,) in the right image
of Frame i, while (y;,z) in the left image of “Frame
i +1” matches (y;,2;).

As shown in Table 11, the corrections added to
the binocular stereo range and motion stereo range
tend to converge the solutions to a common point
as expected, ie., the corrected range values are in
the direction (increasing or decreasing) as that of the
ground truth values with respect to the raw range
values. In general this behavior can be observed in
the results for measurements 1 through 12. There are
some exceptions (measurement 8 and 10) which could
possibly be due to the measurement weighting. Since
the results are for only a pair of frames, the actual
convergence of the corrected range values cannot be
seen.

Table IV contains results from processing the
first and second “frames” for the 20 ft/s velocity case
(10 Hz video frame iteration rate). Results for Frame
1 processing are good; the revised range estimates for
the binocular and motion stereo ranging algorithms
are converging to a unique value with the exception of
measurements 3 and 9. Ground truth measurements
for the 13 matched feature point locations of Frame 1
and the 13 matched feature point locations of “Frame
2” are presented in Table V. It is to be noted that
the same scene points matched in Frame 1 will not
necessarily appear in the results of processing

Frame 2. Therefore, the ground truth range values

of the corresponding measurements between Frame 1
and Frame 2 in Table V are not for the same scene
point.

V. CONCLUSIONS

The basic concept and results of our binocular
and motion stereo synergistic system have been
presented. These results demonstrate that it is possible
to effectively combine binocular range and stereo
range measurements by incorporating a blending filter.
This approach has the potential of providing dense
range measurements. We plan to do this in the future.
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