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component of visual information process- 
ing whenever moving objects are encoun- 
tered in the environment. To act intelli- 
gently in the presence of potential hazards 
or navigate in a traffic environment, infor- 
mation on actual motion in the scene is 
indispensable. Autonomous mobile robots 
must know about the presence and behavior 
of moving objects to determine appropriate 
reactions. But because the sensor itself is 
moving, recognizing independent motion 
of objects in the image is harder: Stationary 
objects generally appear to be moving, and 
moving objects might appear to be station- 
ary. Before the robot can draw any useful 
conclusions, it must determine the effect of 
the sensor's motion on the image. 

Mobile robots depend on motion analy- 
sis to avoid obstacles, recognize landmarks, 
determine location, acquire models, and 
detect and track moving objects. For exam- 
ple, depth from motion analysis is an im- 
portant information source for any naviga- 
tional system, whether or not that system 
has domain knowledge to start with. Depth 
from motion analysis lets robots use sen- 
sors with a wide field of view and fast data 
rates. High-quality optical sensors are much 
less expensive than active sensors such as 
laser range finders, and they allow ranging 

THE DRIVE SYSTEM USES A QUALITATRE SCENE 
MODEL AND A FUZZY FOCUS OF EXPANSION TO 
ESTIMATE ROBOT MOTION FROM VISUAL CUES, 

DETECT AND TRACK M O m G  OBJECTS, AND 
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to surfaces that might not be suitable for 
active ranging. In addition, even the most 
advanced active sensors do not provide the 
large field of view and high frame rates that 
many practical applications need. 

Dynamic-scene and motion analysis uses 
information from a sequence of images 
obtained from a moving sensor; for exam- 
ple, a forward-looking video camera rigidly 
mounted on an autonomous mobile robot. 
The major goals of this work include 

recovering a sensor's motion parame- 
ters (decomposing rotation and transla- 
tion components); 
detecting independently moving objects 
and recovering their motion parameters; 
performing correspondence of features 
such as points, lines, and regions be- 
tween successive frames; 
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measuring the depth of three-dimensional 
environmental objects, including points, 
lines, and surfaces (accurate passive 
ranging); 
computing the optical flow of features 
between successive image frames (the 
two-dimensional instantaneous velocity 
of image pixels on discrete frames); and 
integrating motion and depth informa- 
tion with environmental models in ve- 
hicular navigation systems. 

This article describes some of the dy- 
namic-scene and motion analysis techniques 
developed at Honeywell to support the 
DARPA Strategic Computing program's 
Autonomous Land Vehicle effort. Our ap- 
proach, called Dynamic Reasoning from 
Integrated Visual Evidence (DRIVE), ad- 
dresses the key problems of estimating 
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work in this case because all pixels typically 
change as a result of sensor motion. Spatio- 
temporal methods,? which treat a closely 
spaced temporal sequence as a volume 
( x ,  y ,  t ) ,  have not been demonstrated to be 
feasible for analyzing general motion or 
detecting and tracking moving objects i n  
practical sequences. The techniques we 
describe here avoid these problems by de- 
termining sensor motion before trying to 

Figure 1. General-motion f ield (a) a typical displacement field obtained from a moving camera ' 
undergoing translation and rotation; (b) the displacement field after removing the rotational 
component of motion. The approximate location of the FOE is marked by a cross. 

recover the 3D Scene structure. 
Once the moving objects have been found, 

it is easier to track them from frame to .. 

robot niotion from visual cues, detecting 
and tracking moving objects, andconstruct- 
ing and maintaining a global dynamic ref- 
erence model. 'A companion article de- 

expand trom asingle point, and each image 
point's rate of expansion depends on the 
point's location and the distance between 
the robot and the point. This point, which is 

scribes other work in dynamic-scene and 
niotion analysis performed at the University 
of Massachusetts and the University of 
Southern California (see p. 5 3 ) ,  and dis- 
cusses important general issues and needed 
technical advances. 

Focus of expansion 

We can describe a robot's movement as 
a combination of translation and rotation. 
When both components are present, far 
more complex image trajectories are pro- 
duced. Only translation supplies infor- 
mation about the environment's depth and 
structure, so the first step i n  motion anal- 
ysis is to remove the effects of robot 
rotation from the images. Suppose we 
define a camera-centered coordinate sys- 
tem whose origin lies at the center of the 
camera lens. When a robot rotates about 
the axis that is perpendicular to the image 
plane and passes through the center of the 
camera lens, i t  makes points in the 3D 
scene and traces a circle in the 2D image. 
Rotations about the other two axes make 
points in the 3D scene that trace hyper- 
bolic paths in the 2D image. Rotations 
about axes that do not go through the 
camera focal point are equivalent to a 
rotation about axes through the focal point 
plus an additional translation. 

Once we remove rotations from the ap- 
parent image motion, the remaining image 
motion is due to translation. When the 
camera moves forward along a straight 
line, every point in the image seems to 

frame. Traditional techniques for object 
tracking use a multimode approach that 
synergistically combines several techniques 
such as centroid tracking, silhouette match- 
ing, correlation matching, feature match- 
ing, and Kalman filtering.' These tech- 
niques work in simple situations if the 

the intersection ofthe robot's velocity vec- ' prediction is good; however, they do not 
tor with the image plane, is called the focus use sensor motion or 3D scene structure, 
of expansion. Locating this FOE is also a and are unlikely to be effective in scenes 
goal of general-motion processing. where there is no simple figure-ground 

To locate the FOE in an image, we com- relationship. (In some scenarios where the 
pute the displacement of the projection of sensor is stationary, techniques using ter- 
a set of 3D points in a pair of images (see rain information and based on frame dif- 
Figure I ) .  The points used are usually dis- ferencing and Kalman filtering can be use- 
tinct (for example, boundaries of high con- ful for tracking.) We expect that estimating 
trast and high curvature). Once we have and predicting 3D motion will significantly 
found the displacement vectors, there are improve the tracking of moving objects in 
several methods of locating the FOE.' The cluttered natural scenes. For example, if 
problem is complicated by the fact that we can determine sensor motion, estimat- 
points on moving objects must be removed ing the 3D motion of independently mov- 
because their displacement motion will be ing objects will let us predict their image 
inconsistent with the FOEof the stationary projections over time far more accurately. 
environment and the translating sensor. Recently, researchers were able to predict 

Having located the FOE, we can use the 
points' rate of expansion to determine the 
relative distance between the camera and 
points in the scene. For example, as the 
sensor moves forward, nearby environmen- 
tal points appear to move rapidly outward, 
whereas distant environmental points hardly 
move at all (see Figure 1 b). 

In addition to determining sensor mo- 
tion, the vision system must detect and 
isolate moving objects from the stationary 
environment, track these objects over time 
and if possible, estimate their motion pa- 
rameters and create general expectations 
about their future behavior. Since the cam- 
era itself is moving, we cannot assume that 
the stationary part of the environment will 
register in subsequent images. Simple 
frame-differencing techniques, which sub- 
tract successive frames pixel by pixel to 
detect and isolate moving objects, do not 

2D motion based on 3D location estimates.' 

Qualitative dynamic=scene 
understanding 

The DRIVE system (see Figure 2) em- 
phasizes a qualitative line of reasoning and 
modeling, in which multiple scene inter- 
pretations are pursued simultaneously un- 
til ambiguities are resolved. 

Fuzzy focus of expansion. Since i t  is 
difficult to pinpoint the FOE under arbi- 
trary camera motion and noisy conditions, 
DRIVE extends the original FOE concept 
to the so-called fuzzy FOE, a connected 
image region marking the approximate di- 
rection of heading, rather than a singular 
image point.? 

First, DRIVE processes sequences of 
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image pairs and gives unique labels to 
features; then it obtains the displacement 
vectors between corresponding feature 
points in successive images. DRIVE esti- 
mates the initial FOE location in the first 
pair of frames based on the camera’s pa- 
rameters and orientation with respect to the 
robot. It uses a method called “rotation- 
from-FOE’ to determine the FOE for each 
frame pair and estimate possible rotations. 
In this approach, rotations are estimated 
based on the assumed FOE location. Ex- 
periments show that this “rotation-from- 
FOE” method is more robust against dis- 
turbances in the displacement field than 
other methods such as the traditional “FOE- 
from-rotation” approach,’.2 which guesses 
which rotations will lead to determining 
the FOE location. Rotation-from-FOE as- 
sumes that the FOE for subsequent frame 
pairs has the same location as the FOE in 
the last pair of frames, which is a reason- 
able approximation in most cases. Then 
the algorithm derotates the second image 
based on the particular FOE; in other 
words, it maps the tracked points to the 
locations they would have if the robot had 
not rotated between frames. Derotation is 
guided by the goal of a perfectly radial 
pattern of displacement vectors. If the sec- 
ond image is perfectly derotated, all dis- 
placement vectors will lie on straight lines 
extending from the FOE location, reflect- 
ing the pure translation component of the 
camera motion. 

However, if the predicted FOE location 
is incorrect, we do not get a perfect radial 
pattern. In this case, DRIVE computes the 
error between the guessed location and the 
true FOE location, updates the FOE loca- 
tion, and calculates the error of the new 
location. The system continues this modi- 
fied steepest-descent search until it finds 
the FOE yielding the minimum error. Fi- 
nally, the algorithm computes the region 
around the FOE within which the error is 
below some threshold. This “fuzzy FOE’  
embodies the assumption that noise and 
image distortion will prevent the system 
from determining the FOElocation exactly. 
The fuzzy FOE prevents a false precision 
from causing later processing steps to fail, 
since it finds qualitative relationships 
rather than precise quantitative range values. 

Once the system has located the image’s 
FOE, it determines the robot’s approxi- 
mate velocity from the image information. 
Given the distance between the camera and 
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the ground, DRIVE calculates the cam- 
era’s angle of depression from the location 
of the FOE in the image. Knowing this 
distance and angle, DRIVE estimates by 
triangulation the distance between a point 
on the ground and the robot. From the 
change in that point’s absolute position in 
consecutive frames, the system determines 
the robot’s velocity. 

Up to this point, dataflow is purely 
from the bottom up. However, DRIVE’S 
reasoning process (described below) pro- 
vides control information, such as the set 
of reference points that are believed to be 
stationary and might be used to compute 
the FOE. 

Qualitative scene model. After com- 
puting the fuzzy FOE and derotated dis- 
placement vectors, DRIVE reasons about 
the 3D scene structure and independent 
object motion using the 2D location and 
motion of distinct image feature points 
relative to each other and to the fuzzy FOE. 
Given only an approximate FOE location, 
the displacement field’s qualitative prop- 
erties are the main source of reasoning. 

This process incrementally builds a 3D 
camera-centered model of the environment 
in which the scene is described in qualita- 
tive terms, such as the relative distances of 
environmental features and how these fea- 
tures move in 3D space. The qualitative 
scene model (QSM) is declarative, describ- 
ing the status and behavior of its elements 
and the relationships between them in 
coarse, qualitative terms. It does not try to 
derive a precise geometric description of 
the scene in terms of 3D structure and 
object motion. Features that are believed to 
be part of the static environment are la- 
beled and used as references for computing 
the FOE. 

Scene interpretations, the core of the 
QSM, are hypotheses about the relation- 
ships between the facts found in an image 
and their meaning in 3D space. The reason- 
ing process that forms scene interpreta- 
tions has access to 2D information in the 
form of already abstracted image observa- 
tions. Each hypothesis represents a feasi- 
ble and distinct interpretation of a scene. 
The QSM can contain multiple scene in- 
terpretations at the same time; individual 
interpretations are not kept as separate 
constructs inside the model, but generally 
share their components (partial interpreta- 
tions). The interpretation process assembles 

Oualitatlve scene model F? 
computation cq displacement 

I J  
Original 

VeCtOrS 

- -  

Figure 2. The DRIVE interpretation process. 

complete interpretations from partial ones, 
ranks them, and makes results available to 
the other reasoning processes. 

The QSM’s basic elements are called 
entities, which are the 3D counterparts of 
the 2D features observed in the image. For 
example, the point feature A located in 
the image at x, y at time t - denoted by 
(Feature A t x y )  - has its 3D counterpart 
in the model as (Member A). We express 
entity properties and relationships using 
assertions. For example, (Stationary 1) 
means that entity 1 is considered stationary 
in the corresponding scene interpretation. 
In any scene interpretation, the set of enti- 
ties is divided into stationary (static) enti- 
ties and mobile (possibly moving) entities. 
The QSM supplies DRIVE with a set of 
environmental entities that are believed to 
be stationary so that DRIVE can use them 
to compute the FOE. 

The static scene structure is modeled in 
a way similar to a camera-centered depth 
map. At time t ,  the 3D location of any 
entity K with respect to the camera is com- 
pletely specified by its image coordinates 
x(K, t ) ,  y ( K , t )  and its distance from the 
focal plane z ( K , t ) .  However, in contrast to 
a regular depth map, the distance z ( K , t )  is 
not represented by a numeric value, but by 
a qualitative spatial relationship between 
entities. In particular, the relation (Closer 
A B )  means that entity A is believed to be 
closer to the camera than entity B .  This 
relationship can be determined efficiently 
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Figure 3. Developing a qualitative scene model over time. 

and reliably from the divergence of dis- 
placement vectors. While a regular depth 
map must be updated after every frame, 
this semitopological map does not need to 
be modified as the camera moves through 
its environment. During this time, however, 
the model is continually refined as addi- 
tional Closer relationships become evident. 

Object motion is described at progres- 
sive levels of detail. The least that can be 
said about a moving entity C i s  (Mobile C), 
which simply means that this entity is not 
part of the static environment. Once an 
entity has been identified as being in mo- 
tion, it is considered mobile in all subse- 
quent frames, even when its 3D motion can 
no longer be verified. Relative motion be- 
tween two entities in 3D may be detectable 
before the individual motion of a single 
entity becomes apparent. The fact (Move- 
ment-Between C D t) states that relative 
motion between C and D at time t has been 
deduced, but it tells nothing about which of 
the two entities are actually moving. This 
would be expressed by the more specific fact 
(Moves C t) or (Moves D t). Details about 
how an entity moves within the camera- 
centered coordinate frame are expressed by 
additional facts; for example, (Moves Left 
C t). (Moves Down C I), (Approaching C t ) ,  
or (Receding C t). 

The QSM network of hypotheses has the 
property of inheritance. Hypotheses com- 
mon to all interpretations of a scene are 
found near the network root and are inher- 
ited by all interpretations below them. When 
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the model receives a fact that is consistent 
with more than one hypothesis about the 
scene, the model branches. It develops all 
intermediate interpretations simultaneously 
as new information is received, eliminat- 
ing any interpretation whose internal hy- 
potheses conflict. Building the QSM thus 
involves four different activities: deriving 
3D facts from the 2D image sequence, cre- 
ating hypotheses about the scene, detect- 
ing conflicting hypotheses, and resolving 
those conflicts. To  avoid a combinatorial 
explosion of possible scene interpretations, 
the search for the most plausible scene 
interpretation is guided by metarules: 

Always tend toward the most stationary 
(that is, the most conservative) solution. 
By default, all new entities (features 
entering the field of view) are consid- 
ered stationary. 
Assume that an interpretation is feasible 
unless it can be proved false. 
If a new conclusion causes a conflict in 
a current interpretation, remove the con- 
flicting interpretation. 
If current interpretations cannot accom- 
modate a new conclusion, create a new, 
feasible interpretation and remove the 
conflicting ones. 

The reasoning engine. The overall struc- 
ture of the DRIVE interpretation process is 
shown in Figure 2. The QSM serves as the 
blackboard in a rule-based inference sys- 
tem and is maintained by a generate-and- 
test process. The interpretation network is 

accessible to two key sets of rules, each of 
which can modify it. The rules are based on 
perspective transformation and changing 
relationships between scene entities and 
the fuzzy FOE.6 

There are two major groups of rules. 
Forward-chaining generation rules exam- 
ine newly created derotated images and 
determine their consequences with respect 
to the model’s current state. Then they 
place immediate conclusions (hypotheses) 
in the model. For example, if two image 
points A and B lie on opposite sides of the 
fuzzy FOE and are getting closer to each 
other, then one point must be in motion 
relative to the other. If an interpretation 
includes the hypothesis that one of these 
points is stationary, then the other point 
can be asserted to be mobile. The second 
group of rules, backward-chaining verifi- 
cation rules, check existing interpretations 
and try to  prove them false. They are typ- 
ically rules that would produce too many 
conclusions if they were used to generate 
hypotheses. A violation of a verification 
rule often indicates that an interpretation is 
implausible. For instance, one verification 
rule states that if an object is lower than 
another in the image, it is closer to the 
camera. Suppose point A is lower than 
point B, but an interpretation already in- 
cludes the hypothesis that point B is closer 
to the camera than point A. If this verifica- 
tion rule fires, the interpretation will be 
marked as conflicting. Whether it is ulti- 
mately removed f rom the model will 
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Figure 4. An image sequence containing two moving cars. 
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Figure 5. Edges obtained from the video images in Figure 4. The numbered circles indicate points being tracked from image to image. 

depend on the global state of the QSM. 
Naturally, verification relies heavily on 
the backward-chained part of the reason- 
ing process. Goal-driven, backward-chain- 
ing rules also deliver image information 
“on demand,” that is, when the model needs 
information to complete a reasoning step at 
some level of the reasoning process. 

Figure 3 shows how we develop a QSM 
by deducing information from the expan- 
sion rates of tracked image points. At time 
r,), there are three features a, h, c in the 
model, all of which are assumed to be 
stationary. At time t , .  the subsystem has 
established three Closer relationships: Point 
A is closer than points B and C, and point C 
is closer than point B. At time t2, a conflict 
arises in this interpretation. A new piece of 
evidence indicates that C is closer than A .  
As a result, the system creates two new 
interpretations, each of which considers 
one point as mobile (heavy circles). At 
time t , ,  a new conflict arises in interpreta- 
tion 2 from the additional fact that point B 
is closer than C. Since there is an active 
interpretation that can explain this conflict, 
interpretation 2 is collapsed. Only one valid 
interpretation remains, interpretation 3. 

Detecting and tracking 
moving objects 

In detecting moving objects, DRIVE 
accounts for the 3D structure of the ob- 
served environment along with the robot’s 
motion. The system detects motion in two 
ways.’ First, it can directly deduce some 
forms of motion from 2D displacement 
vectors without knowing anything about 
the underlying 3D structure. For example, 
if a forward-looking camera finds that a 
point is moving toward the fuzzy FOE 
rather than away from it ,  then that point 
must belong to a moving object. No other 
interpretation is possible. 

Other kinds of motion are more subtle 
and require a second, interpretive detec- 
tion method. Suppose the robot is approach- 
ing a “T” intersection. There is a building 
on the far side of the intersection’s right 
branch. a van is approaching the intersec- 
tion along the right branch, and DRIVE is 
tracking one point on the building and one 
on the truck. 

As the robot moves forward, the point on 
the building will appear to move outward 
toward the edge of the image. However, if 

the truck is approaching the intersection at 
an appropriate speed, it will remain at the 
same po$ition in the image. From the ex- 
pansion pattern alone, the robot might con- 
clude that the truck is a stationary object at 
infinite distance and so collide with i t  at the 
intersection. 

The QSM, however, allows a more so- 
phisticated kind of reasoning. Because the 
truck is occluding the view of the building, 
i t  must be closer to the robot than the 
building. Since the image point on the 
building is moving outward, the building 
cannot be at infinite distance. Therefore, 
the truck cannot be at infinite distance, and 
there must be a different interpretation of 
its expansion pattern. The most probable 
interpretation is that the truck is moving 
toward the robot. 

We have tested this technique on a vari- 
ety of images taken by the Autonomous 
Land Vehicle.8 Figures 4 through 7 show a 
sample motion analysis and a computer- 
generated scene interpretation using a Sym- 
bolics 3670. Figures 4 and 5 show an image 
sequence containing two moving cars: one 
car has passed the robot and is barely 
visible in the distance, and the other is 
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Figure 6. The displacement vectors, the resulting fuzzy FOE (shaded area), camera rotations about two axes, and estimated odvancernent. 

approaching in the opposite direction and 
is about to pass. The numbered circles in 
Figure 5 represent points that are being 
tracked from image to image. Points 24 
and 33 are on the moving cars. 

Figure 6 shows the resulting fuzzy FOE 
(the shaded area). The circle inside the 
shaded area is the estimated FOE location 
with the lowest error value. Displacement 
vectors indicate the apparent motion of 
points from frame 195 to 196 (Figure 6a) 
and from frame 196 to frame 197 (Figure 
6b). Dots mark the endpoints of selected 
vectors used to compute the vehicle's ve- 
locity and the distance it has advanced 
(estimated in meters). Its rotation about 
two axes (by amounts less than one degree) 
is plotted. Rotations about the third axis 
are small enough to be neglected. 

Figure 7 shows the generated qualitative 
scene interpretations. Numbers at dots and 
in circles indicate stationary points, num- 
bers in squares indicate potentially moving 
points, and numbers in diamonds indicate 
moving points. Lines between two points 
indicate that a point in a bigger circle is 
closer to the vehicle than one in a smaller 
circle or at a dot. A point near the bottom of 
the interpretation is near the bottom of the 
image. After frame 195, the QSM creates 
two interpretations (the upper boxes). Based 
on earlier conclusions, both interpretations 
show that entity 24 (indicated by a square) 
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may be moving, but its direction of motion 
is undetermined. Interpretation 1 (frame 
196), in which points 24 and 33 are labeled 
as mobile, is ranked higher than interpreta- 
tion 2 (frame 196), in which point 33 is 
stationary, because interpretation 1 con- 
tains more stationary points. The QSM 
cannot rule out either interpretation, so both 
are carried over to the next frame pair (the 
lower boxes). If point 33 were stationary 
(interpretation 2, frame 197), its rapid ex- 
pansion would indicate it must be at least 
as close to the vehicle as point 76. However, 
since point 76 is much lower in the image 
than point 33, and hence assumed closer to 
the vehicle, this contradicts the heuristic 
that entities lower in the image are gener- 
ally closer in 3D space, which makes the 
entire interpretation implausible. As a re- 
sult of this conflict, interpretation 2 (frame 
197) is eliminated, leaving only the correct 
interpretation for frame 197 (interpreta- 
tion l) ,  in which point 33 is definitely 
moving. 

of displacement fields, this qualitative tech- 
nique for understanding dynamic scenes 
reasons accurately on hundreds of image 
frames. The technique can also be extended 
to cases where the features are lines, 

regions, or contours. A forthcoming book 
will describe the qualitative approach in 
more detaiLg 

Theoretically, vision systems could use 
the information deduced from image mo- 
tion to construct 3D models of local envi- 
ronments. This, of course, is one of the 
most fundamental goals of computer vision 
and would be of immense importance if 
autonomous mobile robots could build such 
models reliably. The entire static environ- 
ment might be recovered up to the limits of 
image digitization and the accuracy of de- 
termining correct correspondences between 
successive frames. In fact, this goal still 
has not been achieved due to a variety of 
practical vision problems, such as the ab- 
sence of robust algorithms and the need for 
high computational throughput, which we 
discuss in our accompanying paper. 
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Figure 7. Scene interpretations based on the apporent motion of points in Figure 6. 
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COMPUTER VISION: COMPUTER VISION: 
Advances and Applications Principles 

edited by Rangachar Kasturi and Rarnesh Jain edited by Rangachar Kasturi and Rarnesh lain 

Computer Vision: Aduanres and Applications, describes recent research 
results and technological advancements in this maturing field. The 
tutorial iscomprisedofmore than 45 paperson topicssuch asmodeling 
light reflection, active perception, object recognition and localization, 
shape schemes from interreflections, depth recovery, CAD-hased 
vision, 3-D object features, motion field and optical flow, estimation of 
object motion, and perceptual organization and representation. 

The text follows the same chapter organization as its companion 
volume, Compufrr Viczon: Prinripler, and details the latest research 
advancesfor each topic. Asaconclusion, the lastchapter,Applications, 
presents a special representative set of papers that describe five ma- 
chine \ision application areas: aerial image analysis, document image 
interpretation, medical image analysis, industrial inspection and ro- 
botics, and autonomous navigation. 

720 PAGES. SEPTEMBER 1991 HARDBOUND lSBN 0-8186-91034 
CATALOG#2103-$8500 MEMBERS$65.00 

Compufpr Vision: Pnnciplqintroduces fundamental topics in 
computer vision and describes principles, concepts, and commonly 
used algorithms for vision systems that generate scene interpretations 
from image data. I t  includes over 30 articles covering subjects such 
as intensity and range images, edge detection, region-based and 
model-based image analysis, object recognition schemes, optical flow 
techniques, and knowledge analysis and representation. Thisvolume 
also discusses image capture and enhancement, image segmentation, 
feature extraction, dynamic-scene analysissystems, and the techniques 
of image understanding and knowledge engineering and their 
impact on computer vision. 

The tutorial includes descriptions of practical applications of 
machine vision technology for the practicing engineer and investi- 
gates recent research advances for the active researcher in the field. 

728 PAGES OCTOBER 1991 HARDBOUND ISBN 0-8186-9102 6 
CATALOG # 2102 - $85 00 MEMBERS $65 00 
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