
Pattern Rect~gnition, Vol. 22, No. 1, pp. 49 64, 1989.
Printed in Great Britain.

0031 3203/89 $3.00 + .00
Pergamon Press plc

Pattern Recognition Society

RECOGNITION OF 3-D OBJECTS IN RANGE IMAGES
USING A BUTTERFLY MULTIPROCESSOR*

BIR BHANU~" and LAWRENCE A. NUTTALL~
t Honeywell Systems and Research Center, 3660 Technology Drive, Minneapolis, MN 55418, U.S.A.

and
:~ Department of Computer Science, University of Utah, Salt Lake City, UT 84112, U.S.A.

(Received 29 September 1987; in revised form 9 May 1988; received for publication 23 May 1988)

Abstract The recent advent of Multiple Instruction Multiple Data (MIMD) architectures together with
the potentially attractive application of range images for object recognition, motivated the development
of a successful goal-directed 3-D object recognition system on a 18 node Butterfly multiprocessor. This
system, which combines the use of range images, multiprocessing, and rule-based control in a unique
manner, provides several new insights and data points into these research areas.

Several topics pertinent to current research were explored. First, a new method of surface characterization
using a curvature graph was proposed and tested. It was determined that by jointly using information
provided by the principal curvatures, the potential exists for uniquely identifying a larger variety of
surfaces than has heretofore been accomplished. Second, a 3-D surface-type data representation, coupled
with the depth information available in range images, was used to correctly recognize and interpret
occluded scenes. Finally, it was determined that both multiprocessing and a rule-guided/goal-directed
search can be successfully combined in an object recognition system. Multiprocessing was employed both
at the object level and within objects. This enabled the achievement of near linear speedups for scenes
containing fewer objects than the number of available processors.

3-D object recognition
Surface characterization

Butterfly multiprocessor
Range images

Curvature graphs

I. INTRODUCTION

Object recognition approaches in computer vision
can conceptually be classified into two categories. The
first, or traditional approach, involves the use of
statistical and structural techniques. Over the years
this approach, by itself, has proven to be inadequate
in handling some of the more difficult real world
problems where noise and improper illumination
exist, and the problem domain has not been con-
strained to well-defined geometric objects. The second
approach attempts to overcome these problems in
much the same way a human does, through the
use of contextual information, experience, or expert
knowledge. The advantages derived from the second
approach, however, typically come at the expense of
speed.

For many computer vision applications, real time
processing are mandatory. For nearly a decade pipe-
lined or Single Instruction Multiple Data (SIMD)
image processors have been successfully used to
overcome many of the speed constraints associated
with the large volumes of data found in image

* This work was supported in part by NSF grants DCR-
8506393, CCR-8704778 and DMC-8502115 at the University
of Utah. The support rendered by Perceptics Corporation
is sincerely appreciated.

processing. They have been successful in image pro-
cessing because many low-level algorithms and
enhancement techniques can be applied uniformly
across an entire image. On the other hand, many of
the higher level computer vision tasks such as image
understanding or object recognition, depend on algor-
ithms which are local in nature and contain logic,
pixel addressing, and control sequencing which are
not easily performed on typical image processors.
Such tasks are more naturally suited to the use of a
Multiple Instruction Multiple Data (MIMD)
machine. With such architectures now becoming a
reality, the next step seems obvious; to test whether
the advantages of more flexible control sequencing,
and the contextual and expert knowledge utilized by
high-level vision algorithms, can in fact be gained
without sacrificing speed.

The problem domain chosen for this research (i.e.
object recognition in range images) is one that stands
to gain much from such an approach. Depth informa-
tion provided by 3-D range images, and the utilization
of contextual knowledge and rule-based control are
particularly useful in resolving some of the problems
associated with 3-D object recognition tasks. This
project implemented a goal-directed object recogni-
tion system on a Butterfly multiprocessor in order
to investigate some of the issues mentioned above.
Section 2 provides a brief overview of this system. As

49

50 BIR BHANU and LAWRENCE A. NUTTALL

part of this project, two primary areas of research were
studied. The first relates to surface characterization via
curvature, and is discussed in Section 3. The results
of object recognition and occlusion are also discussed.
The second is presented in Section 4 and reviews
the methodology and results of the multiprocessor
implementation of the object recognition system.

2. SYSTEM DEFINITION

The purpose of the object recognition system in
this research was to conduct a goal directed search
in order to identify all objects in a range image
matching a specified goal.

2.1. System hardware

The image processing system developed for this
research was implemented on an 18 node BBN
Butterfly multiprocessor. Each node consists of an
MC68020 processor, an MC68881 floating-point co-
processor, memory, and an interface to the Butterfly
switch. Sixteen of these nodes have 1 Mbyte of on-
board memory, while the other two have 4 Mbytes.
The Butterfly is connected to a VAX 11/785 via two
serial lines and an ethernet interface. The serial lines
are used primarily for booting the Butterfly, while
normal access occurs over the ethernet. Because the
Butterfly does not have a file server, executable code
as well as images were downloaded over the ethernet.

2.2. System input, output, and data structures

There were two inputs to the system. (1) A three-
dimensional range image containing one or more
objects. Each object was composed of surfaces from
the following types: cones, interior cones, cylinders,
troughs, spheres, dishes and planes. There were no
restrictions as to object size and orientation, in fact
the system took advantage of scale information to
assist in the resolution of occluded objects. This
system was designed to accept objects which did not
have concave boundaries. (2) The second system input
was a high-level description of the goal object to be
located in the input image. As output the system
returned the description and location of all objects in
the input image, as well as identifying those objects
which matched the goal.

2.3. lmage data

The broad scope of this study necessitated several
different types of images. The first image, scene_3
(Fig. 1), is an actual range image containing 3 objects,
a sphere, a cylinder, and a cube. It was taken from
the Utah Range Database, 14~ a collection of range
images created by a Technical Arts 3-D White Scanner
Model 100-A. Range data returned by the White
Scanner is in the form of x, y and z coordinate values
relative to a world coordinate system. Because the
White Scanner derives range information via triangul-
ation, the z or range data is not orthogonal to the

Fig. 1. Image scene 3: White Scanner data.

scanning plane. In order to facilitate processing, a
raster-formatted image was created from this data.
Essentially, the x and y information was discarded
and the image was displayed according to scan lines,
using the nonorthogonal z values. The effect of this
nonorthogonality will be discussed in Section 3.

In order to test the object recognition algorithms
on a larger variety of composite objects than those
available from the Utah Database, five 16 bit,
512 x 512, synthetic range images were also created.
These images represent range data sampled at regular
x and y intervals relative to a fixed x, y, and z
coordinate system. The pixel values are range values
or distances from the x-y plane. These images differ
from those generated by the White Scanner in two
ways: first, they are regularly sampled in x and y, and
second, the plane of this raster scan is perpendicular
to the z axis. As required by this project, each image
contained multiple objects at arbitrary orientation.
Each object was composed of various combinations
of the basic curved surface shapes: cones, spheres,
cylinders, and planes. Objects containing different
sizes of all of these surface types, as well as similar
surface types at different radii or curvature were
included.

Four of these five images contain 1, 3, 5 and 7
composite objects respectively, and are referred to
throughout this paper as images R1-R7. Images R5,
and R7 are shown in Figs 2 and 3. These images
contain different numbers of the same objects placed
at different locations in the image. The same objects
were used primarily to provide a stable level of
processing complexity when analyzing the multi-
processing performance of the system.

Proceeding from the upper left corner to the lower
right corner of image R7 (Fig. 3), the seven objects in
images R1-R7 can be described as follows. (1) A
closed can consisting of a cylindrical surface of radius
30, and a planar bottom. (2) An open can consisting
of a cylindrical surface of radius 40, rotated so that
the trough-like interior of the can can be seen. (3) A
cone of radius 40 also rotated so that the interior of
the cone is visible. (4) A sphere of radius 40. (5) A

3-D objects in range images 51

Fig. 2. Image R5: synthetic data.

in Fig. 4, contains two cylinders. The larger cylinder
of radius 30 was rotated so that the interior of the
cylinder was visible. This object was then occluded
by a smaller cylinder of radius 15.

2.4. The object data structure

One of the main goals of computer vision is to take
an input image and transform it in some way so that
we can understand the real world it portrays. This
portrayal of the real world exists in the data represen-
tation we choose. Hence, it is one of the first issues
which must be resolved when designing a vision
system such as the object recognition system devel-
oped for this research.

In general, a 3-D data representation should satisfy
the following considerations. (l) It should be invariant
to translation, rotation, and scale. In other words, it
should be view independent. Although high level
object descriptions should not depend on scale, it
may still be possible to capitalize on size or scale
differences as a further discriminator between objects.
(2) The model should be as memory conservative as
possible. (3) The data representation should facilitate
the matching of randomly oriented objects. (4) It
should maximize the advantages and information
derived from range images. In particular, range data
provides depth information invaluable in interpreting
occluded objects. Data representations must include
this adjacency and edge-type information.

Three-dimensional object representations are typ-
ically classified into three categories: surface or
boundary descriptions; sweep; and volumetric rep-
resentations. Besl and Jain t21 give an excellent critique

Fig. 3. Image R7: synthetic data.

sphere of radius 60. (6) A cube rotated so that 3 planar
faces are visible. (7) A "dome can" consisting of a
spherical surface resting on a cylindrical surface, both
of radius 50. Image R1 consists of (6), image R3
consists of (1), (5) and (6), and image R5 consists of
(1), (2), (5), (6) and (7).

The last of the synethetic images, "occlude", shown Fig. 4. Image occlude: synthetic data.

52 BIR BHANU and LAWRENCE A. NUTTALL

of 3-D object representations. They point out that
many of the volumetric representations (e.g. CSG)
and the algorithms required to compute them, are
often memory and compute intensive. In addition,
there are many surfaces which are not easily defined
in terms of a closed form formulae, resulting in
nontrivial descriptions for complex objects. Generally
speaking, these same objections apply to the "sweep"
representations (e.g. generalized cylinders). Surface
representations are often given at a higher level of
abstraction t7) and were therefore considered the best
choice for the application pursued in this research.

The primary data structure used by this system,
therefore, was the "object", similar in concept to the
"winged-edge" data structure. "~ In keeping with the
concept of a surface representation, objects were
merely lists of surfaces. Each surface had associated
with it a surface type, a list of adjacent surfaces, and
a description of the connecting edges. In addition to
this surface list, each object contained several Boolean
types indicating the processing state of the object.

2.5. Multiprocessor control

Similar to several of the rule-based vision systems
developed by other researchers, t5'6) this system incor-
porates several sets of control and high-level process-
ing rules to direct multiple processors in an optimized
search for a goal object. Figure 5 displays the general
processing steps performed on each object in order
to accurately identify it. As indicated in the figure,
matching was performed after various stages of pro-
cessing. Depending on its state of completion, an

Range Image

Find objects [

j /
/

,.,°.1t/

Identified Object[s]

Fig. 5. Basic processing flow. In this figure lines drawn to
the "match object" box merely indicate that matching is
performed after each of the four processing steps indicated.
Matching does not alter the sequential flow of processing, but
merely allows prioritization of objects, so that these proces-
sing steps are performed on the most promising objects first.

object's surface types, number of surfaces, surface
adjacencies, and connecting edge types were compared
with the goal object during the matching process.
While it is evident that these processing steps were
performed sequentially, parallelism was achieved by
performing them simultaneously on each object, as
well as by subdividing some of these tasks among the
multiple processors. Results from the multiprocessing
portion of this research are discussed in Section 4.

As depicted in Fig. 6, the system can conceptually
be viewed as data on which to operate, specific work
to be done, and multiple processors to perform the
work. All processors are equally capable of performing
all processing, and may either remove or place data
or work on the data and job queues. The word
"queue" is used loosely here. Work or data may be
placed at either the front or back of these control
structures allowing them to be used as either a queue
or a stack.

The system control strategy is quite simple. Bas-
ically, each processor possesses an identical set of
control rules which directs it in a search for work to
do. Work can be found in one of two data queues or
one of two job queues. The job queues contain specific
work to be done, (e.g. calculate curvature measures
for row 10 of object 2), while the data queues contain
image objects which are awaiting the next stage of
processing.

The fact that this study implements a goal-directed
recognition system, strongly suggests the use of a
top down approach using backward chaining rules.
Backward chaining requires a reasonably complex
interpretation and control scheme typically
implemented within special purpose "expert system"
languages. Unfortunately, none of these languages,
including Lisp (the language upon which most of
these higher level languages are based), were available
on the Butterfly. Consequently the goal-directed,
or backward chaining, nature of this system was
accomplished via forward chaining "if then else" rules
which prioritized the data and work to be done.
Because the "Butterfly" allows the insertion of data
only at the beginning and end of queues, four queues
were used in this scheme to provide essentially eight
priority levels. After each stage of processing, objects
were placed at either the front or the back of either
the low or high priority data queues. When all
processing had been completed on an object, it was
either announced as a match or discarded.

When seeking work, processors were directed by
the control rules to first check the high priority job
queue. The idea was that the most important work
to be done was that which had already been identified.
If no specific high priority jobs were available, a check
for data (i.e. image objects) on the high priority data
queue was made. Both work and data were always
extracted from the front of the queues. The processing
rules were then applied to the object in order to
further identify work to be done. On completion of
some of the processing tasks, the object was marked,

3-D objects in range images 53

High Priority
Data Queue

Low Priority
Data Queue

DATA

Apply . ~
Processing/ ~
Matching

Rules ~ 4 L

PROCESSORS

High Priority
Job Queue

Low Priority
Job Queue

SPECIFIC WORK

~ ssing
e

Control Rules
Processing Rules
Matching Rules
Processing Code

Fig. 6. System components.

indicating that an evaluation of its "match likelihood"
was needed. This flag caused one of the processing
rules to fire, which in turn caused the matching rules
to be applied to the object.

In contrast to the control rules, the processing and
matching rules were applied directly to an object, and
assessed that object's state of processing or match
likelihood. Many of the jobs to be performed on
objects were easily performed in parallel, such as
calculating curvature values. Assistance for complet-
ing such jobs was requested from other processors by
placing a specific task on a job queue. So as to avoid
deadlock, results from these tasks were collected by
a separate task also placed on the job queue. The
task responsible for collecting results also placed the
completed data object back on the appropriate queue,
depending on its match likelihood. System processing
was terminated on the occurrence of one of two
events: (1) when the first match had been found, or
(2) after all objects had been processed and identified.
The second event was recognized when there were no
further jobs to be done, and no more data on the
data queues. In both events, objects matching the
specified goal were identified.

3. SURFACE CHARACTERIZATION VIA CURVATURE
GRAPH

The success of the object data structure described
in Section 2 depends almost entirely on the method

selected for characterizing surfaces. Two of the criteria
for the selection of a data representation enumerated
in that section suggest that the chosen representation
should maximize information derived from range
images, and also be invariant to translation and
rotation. Surface curvature can readily be obtained
from range data, and satisfies both of these criteria.
Because it is an intrinsic property of objects, curvature
is a natural choice to be used for maching and object
recognition, and is becoming an increasingly popular
method of surface classification. 12'31 For these reasons
a surface data representation with curvature as the
primary descriptor was used for this project. As
indicated, curvature has been used by many
researchers for the purpose of surface classification.
Some of these approaches used single curvature
measures, others used combinations of curvature
measures, and still others used combinations of the
signs of curvatures. At best, 8 surface types TM were
identifiable: pit surfaces, minimal surfaces, ridge sur-
faces, saddle ridges, peak surfaces, fiat surfaces, valley
surfaces, and saddle valleys.

In this research, a significant variation from these
approaches was explored. The motivation for doing
so came when realizing that conical surfaces cannot
be satisfactorily recognized using only the signs of
the Gaussian and mean curvatures. While analyzing
alternate uses of curvature for this purpose, it was
realized that (at least theoretically), a complete map-
ping of all surface types should be achievable, not just
the limited classifications accomplished to date. In
this paper, the term surface type generally refers to

54 BIR BHANU and LAWRENCE A. NUTTALL

the nature of the surface at any point on that surface.
In discrete range images, points are pixels, and the
description of the surface at that pixel is limited by
the spatial resolution of the image. Large surface
patches whose pixels have surface types with similar
characteristics are generally recognized at a high level
as one surface. Discovering how to identify those
characteristics common to such surfaces is an active
field of research.

3.1. Curvature graphs

In this study, surface types were determined accord-
ing to an estimation of the principal curvatures for
each pixel on the surface of interest. It was recognized
by Fan et al. t3) that the magnitude and orientation of
the principal curvatures completely and uniquely
define a surface. Although their work concentrated
on the identification of jump boundaries, folds, and
ridge lines, this concept can be extended to enable
the identification of a continuum of surface types.
This is possible by preserving the information inherent
in the principal curvatures rather than arithmetically
combining them as is done to obtain the Gaussian
and mean curvatures. Specifically, each pixel's surface
type is determined according to the location of its
principal curvature values on a graph, where the
principal curvatures (i.e. the minimum and maximum
curvatures) are the coordinate axis of that graph (see
Fig. 7). Throughout this paper this graph will be
referred to as the curvature graph. By definition, the

maximum curvature cannot be less than the minimum
curvature. Surface types will, therefore, not be found
in the shaded area to the right of and below the 45 °
diagonal line as shown in Fig. 7. Every position above
this 45 ° diagonal, however, represents a unique set of
principal curvatures and hence can be considered a
different surface type. Pixels with the same principal
curvatures have identical surface types. It becomes
clear then, that there is in reality a potential for
representing a continuum of surface types. In fact it
can be seen from Fig. 7, that the 8 types identifiable
using the combinations of the Gaussian and mean
curvatures are subsets of the curvature space rep-
resented on the curvature graph. These 8 surface types
define large areas and are indicated in Fig. 7, as are
also the surface types which were of particular interest
to this research. Surface patches consisting of many
pixels whose surface types have some common charac-
teristic, are often perceived as a single "surface". Some
familiar surfaces, such as spheres and cylinders, consist
of pixels having identical principal curvatures or
surface types. Principal curvatures from such surfaces
map to a single location on the curvature graph and
are therefore easily identified. Other surfaces, such as
cones, have pixels whose surface types are not exactly
the same, but which still form an identifiable pattern
on the curvature graph.

It is conceivable that surface types from an entire
object may create a pattern on the curvature graph
which is unique for a particular application. To be
specific, spherical surfaces ideally have minimum and

H=
K<I

Minimal S~

Fig. 7. Curvature graph: regions identified by signs of the Gaussian and mean curvatures (K--Gaussian
Curvature, H--Mean Curvature), as well as basic surface types are labeled.

3-D objects in range images 55

maximum curvatures which are equal. Points from
such surfaces should plot directly on the 45 ° diagonal.
Cylinders have minimum curvatures of 0 and a
single maximum curvature. Cylindrical surfaces will
therefore be found at a single point on the y axis
corresponding to the value of its maximum curvature.
Cones will also be located on the y axis, but because
each cone's maximum curvature ranges from infinity
to the curvature at its base, points plotted from this
surface will form a pattern of points spread along the
y axis, rather than being located at a single point.
Reflecting plots of these surfaces around the 135 °
diagonal yields the expected plots for the inverses of
these surface types (e.g. dishes, troughs, and interior
cones). Planes of course ideally have minimum and
maximum curvatures equal to zero and will therefore
be plotted at the origin. Because curvature is inversely
proportional to the radius of curvature, even surfaces
of similar types yet different radii will occupy different
locations on the curvature graph and should therefore
be distinguishable. The ability to resolve surfaces on
the graph depends, of course, on the spatial resolution
of the image and on the effects of noise and the
quantization of the range data.

Figures 8 and 9 show plots of principal curvatures
taken from all of the surfaces represented in the
synthetic image R7. For the most part surface types

plotted exactly where expected and were easily distin-
guishable. In particular, notice the clear distinction
between the cylindrical and conical surfaces. The only
surface which was not easily identified was the interior
surface of the cone. Because only a small interior
portion near the base of the cone was visible, there
were not enough pixels available to distinguish it
from a trough like surface. Without the contextual
information provided by neighboring surfaces, it is
likely that the human visual system would also be
unable to clearly identify this surface. Although the
planar points from image R7 mapped to an identifi-
able region on the curvature graph, they were slightly
displaced from the origin (Fig. 8). Figure 10, however,
shows that planar points from the real data in scene 3,
plotted directly at the origin as expected and the
spherical and planar surfaces clearly segmented on
the curvature graph. An initial investigation into this
discrepancy indicated that the planar points in the
synthetic data were abnormally effected by quantiz-
ation during the synthetic data generation process.
Figure 11 shows the curvature graph of the soda pop
can. It was sitting on its top so that three different
surface types were visible. A cylindrical surface of
course makes up the majority of the can. The bottom
of the can is an inverted sphere or dish, and there
exists a narrow spherical-type surface between the

R7 Surfaces

max curvaturelp~.T Cylinder I.
c ubee~ / sphere

Trough rain curvature

S3 Sphere/Cube

max curvature f 4.~i1~;~
• sphere

cube min curvature

Fig. 8. Curvature clusters from image R7. Cylinder, sphere,
cube, and trough.

Cone

I !

Interior Cone

R7 Surfaces

i max curvature

I I

rain curvature

Fig. 9. Curvature clusters from image R7. Cone and interior
cone.

Fig. 10. Curvature graph results for sphere and cube in
scene_3.

Dome Can

max curvature I ; ~ :

: : : : " ~ l ~ I I I I I I

m i n c u r v a t u r e

Fig. l l. Curvature graph results for pop can in scene_3.
Shows three surfaces: sphere, cylinder, and trough.

56 BIR BHANU and LAWRENCE A. NUTTALL

cylindrical side and the bottom dish of the can. All
three surface types on the can are clearly segmented
on the curvature graphs.

It should be mentioned that curvature graphs do
not give information as to how many pixels were
plotted at each location on the graph. This is evident
from the spherical surface plotted for the can, which
at first glance seems to suggest that the spherical
surface had the most points. This surface in fact was
the smallest, and its proportionately large number of
near edge pixels account for the less compact cluster.
The cylindrical surface, on the other hand, actually
contains the greatest number of surface points.
Because these all had very nearly the same principal
curvatures, the cluster on the graph is much more
compact. A better indication as to representative
surface sizes is obtained from the histogram analysis
discussed in Section 3.2.

It is also evident that while the clusters from scene_3
were easily distinguishable and generally where they
belonged, the nonorthogonality of this range data, as
expected, did cause some distortions. In particular
spheres did not lie on the 45 ° diagonal line as one
would hope, but instead plotted somewhere between
the diagonal and the min = 0 or y axis.

3.2. Use of curvature graph for edge detection

In addition to determining the usefulness of the
curvature graph for surface characterization, this
research also investigated the utility of the graph for
edge detection and identification, indicating whether
edges are jump or interior, concave or convex. Essenti-
ally jump edges are indicated by large discontinuities
in the range data. These are typically found between
objects and the background, or between occluding
surfaces. One would expect, therefore, that relatively
large curvature values should also be the characteristic
of jump edges. In this paper interior edges refer to
edges between two continuously connected surfaces
on the same object, and are typically indicated by
local extrema of curvature. The terms convex and
concave define the direction of the surface change as
one traverses the edge from one surface to the next.
Convex edges are typically distinguished by large
positive curvatures, while concave edges are identified
by large negative curvatures. Because they give direc-
tional information, it is convenient to use them when
describing interior edges. In the vicinity of jump edges,
curvature values yield information about the nature
of the discontinuity at the edge rather than the surface
itself. Zero-crossings occur in the curvature at jump
boundaries. The sign of the curvature on either side
of these zero-crossings is useful in resolving occlusion
problems.

One can actually think of a straight convex edge
as a continuous extension of a cylinder, and a straight
concave edge as the continuous extension of a trough
or interior cylinder. The range of cylinders of course
have radii of curvature varying from near zero to
infinity. The smaller the radius, the more the cylinder

looks like an edge. Straight interior and jump edges
can be defined to exist somewhere along that con-
tinuum. Such edges therefore lie along the x and y
axis of the curvature graphs. One expects jump edges
to have curvature values well in excess of those found
on normal surfaces. Exactly where the distinction
between a surface and an edge lies is a matter of
definition and may depend on the context. Typically
nonstraight edges should also have relatively high
curvature values but will not lie on the coordinate
axis.

With one exception, all edges associated with the
objects used in this study were clearly distinguishable
from normal surface pixels by their extreme principal
curvature values. The "dome can" in image R7,
however, demonstrated the fact that some edges or
boundaries lie on smooth transitions between surfaces
and are not accompanied by large curvature disconti-
nuities. As with all surface types, however, such
boundaries occupy a distinct region on the curvature
graph and should therefore be identifiable. This is
shown in Fig. 12 which displays the plot of curvatures
as one traverses from the spherical to the cylindrical
surface on the dome can. For this application it was
a simple matter to define pixels falling within the
portion of graph between these two surfaces as edge
or boundary points. This fact enabled the segmen-
tation of the "dome can" for which no discontinuities
in range, derivatives, or curvature values existed on
the boundary between the spherical and cylindrical
surfaces.

3.3. Curvature histogramming

As mentioned previously, the difficulties anticipated
in applying the curvature graph concept are associated
with digitization, quantization, and noise. To some
degree, smoothing curvature values helped to minim-
ize these problems, but at the same time somewhat
altered the pattern for the conical surface on the
curvature graph. The fact that all surface types can
visually be distinguished when viewing the curvature
graph, suggested that a statistical approach using well

Dome Can

!.
. I m I J

Fig. 12. This figure shows the smooth transition of curvature
values from a spherical to a cylindrical surface on the dome

can.

3-D objects in range images 57

established pattern recognition techniques may reduce
the adverse effects of noise, etc., as well as make the
recognition of many complex surfaces possible. Ideally
such statistical approaches should include the quan-
tity information, that is, how many pixels on a surface
are represented at each location on the curvature
graph. A three dimensional curvature graph or space
could be used where the three variables would be:
the maximum curvature, minimum curvature, and
the number of pixels possessing these curvatures.
Clustering and statistical techniques could then be
used to identify surfaces, (or possibly entire objects),
in this 3-D space. Because the surfaces used in this
study were easily identifiable without such an involved
analysis, a simple histogram approach was used.

The histogram approach involved mapping the
2D information in the curvature graph into a one
dimensional histogram. Although this method loses
spatial resolution on the graph, it does take advantage
of the quantity information useful in identifying cones.
This mapping takes place by assigning each pixel on
an object's surface a single value according to its
location on the curvature graph. Future use of the
term mapped-curvature in this paper refers to this
one dimensional value. Specifically, mapped-curvatu-
re = base_value x distance, where the base_value is
determined by the region on the graph in which the
principal curvatures lie. Distance is the distance from
the plotted point on the graph to the origin of the
graph. Because the object recognition portion of this
research required only that a limited number of
surface types be distinguished, defining broad regions
corresponding to these required surface types proved
to be adequate for this work. All range pixels whose
curvature graphs were greater than a specified dis-
tance from the origin, were considered to be edge
pixels and were not utilized for determining the
classification of surfaces.

Once mapped-curvature values had been assigned
over the entire object or region of interest, the surface
types within that region were identified by examining
the histogram of these values (see Fig. 13). The
histogram was divided into regions corresponding to
the different surface types. The broad categories

required for this project were defined approximately
over the following mapped-curvature values: spheres
0-50; cylinders 51-100; planes 101-150; troughs 151-
200; and dishes 201-250. The visible area of each
surface type represented in the region is derived by
integrating the histogram over the correct value range.

Figure 14 shows the actual histogram of the map-
ped-curvature values derived from the pop can in
scene_3 (Fig. 1). The three surface types, spherical,
dish, and cylindrical are very distinct. In addition,
relative surface areas can be derived from the cumulat-
ive distribution function. Even a visual inspection of
the histogram indicates that the cylindrical surface of
the can is two or three times as large as the dish
portion, which is also two or three times as large as
the spherical surface.

Table 1 summarizes the total number of pixels,
average mapped-curvature values, and standard devi-
ations found for each section of the histograms derived
for each object in image R7. These sections are
labeled according to the surface types to which they
correspond. The *'s indicate for each object which of
the surfaces are significant or valid. As evidenced in
Table 1, all surfaces of all objects were correctly
identified with the exception of the interior of the
cone which was classified as a trough or the interior
of a cylinder. This was due to the fact that not enough
of the interior portion of the cone was visible.

This table also demonstrates that resolution
between spheres, cones, and cylinders of different radii
is possible. Because curvature is inversely pro-
portional to the radius of curvature, however, the
larger the radii, the less distinguishable were surfaces
of different sizes. Specifically we note that the average
mapped-curvature values for the spheres of radii 40,
50, and 60 are 19, 14, and 12 respectively. Similarly,
values for the cylinders of radii 30, 40, and 60 are 77,
82, and 90. As expected, we see that the difference
between curvatures for surfaces with larger radii is
smaller than the difference between surfaces of smaller
radii. Without testing on a larger variety of images
these results demonstrate that as a minimum, both
cylindrical and spherical shaped surfaces are distin-
guishable into at least 3 different size groups using

Nuber of Pixels

Spheres Cylinders Planes

i , . ~ ~ Curvature Values

I
Troughs Dishes

Fig, 13. Simulated mapped-curvature histogram for an open-ended can.

58

Number
of pixels

BIR BHANU and LAWRENCE A. NUTTALL

O

0 COO

Curvature Value
• .' ! ; .' ' ; ; ; ; ; I I

0 20 40 60 80 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0

Spheres Cylinders Planes Troughs Dishes

Fig. 14. Histogram of mapped-curvature values on the pop can in scene_3.

Table 1. Histogram results of mapped curvature values taken over objects in image R7

Canl Cone
Surface Type Tot. Pixels Ave. Val. S.D. Surface Type Tot. Pixels Ave. Val. S.D.

Sphere 46 33 4 Sphere 0 0 0
Cylinder "2124 77 5 Cylinder *2040 82 8
Plane * 1159 119 23 Plane 254 120 16
Trough 26 155 2 Trough *906 153 5
Dish 0 0 0 Dish 56 223 4

Can2 Small sphere
Surface Type Tot. Pixels Ave. Val. S.D. Surface Type Tot. Pixels Ave. Val. S.D.

Sphere 0 0 0 Sphere *3269 19 2
Cylinder *2759 80 4 Cylinder 0 0 0
Plane 174 135 12 Plane 80 139 1
Trough *2304 157 5 Trough 88 139 1
Dish 0 0 0 Dish 0 0 0

Large sphere Cube
Surface Type Tot. Pixels Ave. Val. S.D. Surface Type Tot. Pixels Ave, Val. S.D.

Sphere *8573 12 2 Sphere 2 42 0
Cylinder 20 53 2 Cylinder 632 26 7
Plane 0 0 0 Plane *5978 112 21
Dish 0 0 0 Dish 0 0 0

Dome can
Surface Type Tot. Pixels Ave. Val. S.D. Surface Type Tot. Pixels Ave. Val. S.D.

Sphere *2787 14 2
Cylinder *4857 90 0
Plane 158 144 0
Trough 164 145 2
Dish 0 0 0

the histogramming approach. Because of the greater
resolution at smaller radii, it appears the actual
number of differentiable size groupings will in fact be
much larger.

3.4. Object recognition and occlusion

The successful application of the curvature graph
approach described in the previous section enabled
the correct classification of surface types and edges in
the object recognition system. As shown by the
processing steps outlined in Fig. 5, once an object's
surface types had been identified, segmentation and
complete labeling was possible. The classifier output,
showing the final results of classifying all objects in

image R7 (Fig. 3), is shown in Fig. 15. The center
of each object's bounding rectangle is shown as a
coordinate pair, and listed with each surface are two
numbers. The first is the identification of the surface
type according to the following labels: 1--sphere; 2 - -
dish; 3--cylinder; 4-- t rough; 5--cone; 6--interior
cone; and 7--plane. The second number is the average
mapped-curvature value for the surface. This number
can be directly mapped to the radius of curvature.

The processing steps described thus far were
sufficient to successfully identify all objects in each
image with the exception of image "occlude" shown
in Fig. 4, The last two processing steps shown in Fig.
5 are necessary to handle occlusion. In the following
a simple example is given which illustrates the basic

3-D objects in range images 59

There are 7 objects in the image:

object 1, at (56,56), has 2 visible surfaces:

surf 1 ; 3 77

surf 2; 7 120

object 2, at (64, 400), has 2 visible surfaces:

surf 1; 4 158

surf 2; 3 82

object 3, at (112,200), has 2 visible surfaces:

surf 1 ; 5 77

surf 2; 4 155

object 4, at (248,400), has 1 visible surfaces:

surf 1; 1 12

object 5, at (256, 256), has 1 visible surfaces:

surf 1; 1 19

object 6, at (368, 60), has 3 visible surfaces:

surf 1; 7 122

surf 2; 7 117

surf 3; 7 103

object 7, at (424,352), has 2 visible surfaces:

surf 1; 1 14

surf 2; 3 90

Fig. 15. Printed results after identifying all 7 objects in image
R7. The two figures associated with each surface indicate

their surface type and average curvature value.

concepts involved.
Figure 16 shows a line drawing of image "occlude"

(Fig. 4). Because of their experience, most observers
would probably interpret the combinations of surfaces
contained in the leftmost object to actually be two
objects as shown on the right in Fig. 16. This
interpretation combines surfaces 1 and 3 from the
leftmost object into one surface occluded by surface
2. Although the interpretation shown on the right may
be the most probable, we realize that the description
of the leftmost object in fact has many possible
interpretations. Without taking into account surface
adjacencies and other factors, there are in fact 16

Cylinder ~ ' ~

I 2 I I I

Trough

Fig. 16. Occluded objects: surfaces 1 and 3 in the left figure
have been interpreted as being the same surface in the right

figure.

possible interpretations, one for each combination of
the 4 surfaces involved. Some of these interpretations
will of course not make any sense in light of other
information.

One possible method for determining which are
the meaningful interpretations, would merely involve
evaluating each possibility separately, examining all
of the adjacencies and situations where two surfaces
should be interpreted as one. A different approach
was utilized in this study. Simply stated, this method
involved the recursive procedure of extracting the
occluding surfaces, defining the resulting possible
interpretations, and placing these new objects back
on the data queues, themselves to be matched and
evaluated for possible multiple interpretations due to
occlusion. Extracting surfaces in this manner involved
only the high-level data representations, and did not
involve modifying image data in any way.

No matter which method is used to resolve
occlusion, it will most likely depend on having surface
adjacency information. The method applied to deter-
mine surface adjacencies was fairly straightforward.
Briefly, this approach involved traversing the object
from the center of one surface to the center of another
and counting the number of edges between them. If
there was only one edge, it was concluded that the
two surfaces were adjacent. It is obvious that this
approach depends on the fact that surface boundaries
are not concave. In other words, they were not allowed
to fold back on themselves. None of the objects used
by this study had difficulties with this restriction.

Figure 17 shows the results of evaluating image
"occlude", (Fig. 4), giving as the goal any object
composed of two adjacent surfaces, one cylindrical,
and the other a trough. The printout gives a descrip-
tion of all possible interpretations of the occluded
objects. Objects 0 15 correspond to (binary) interpret-
ations 0-15. Interpretations 12 and 13 were correctly
identified as the only matching interpretations, while
interpretations 0, 9, 10, and 11 were identified as being
impossible. The printout lists object 13 as having only
2 visible surfaces. This is due to the fact that original
surfaces 1 and 3 were successfully combined into a
single cylindrical surface.

4. MULTIPROCESSING RESULTS

In order to properly evaluate the success of the
multiprocessing aspects of this study, several basic
measurements were used. They are total speedup,
plots of speed vs the number of processors, processor
utilization under varying circumstances and the pro-
gression of processing in time for each object to be
recognized. These results are discussed in this section.
For the sake of establishing the accuracy of timing
measurements, duplicate measurements were
occasionally performed which indicated that timing
measurements may vary by approximately 50-100 ms
from one measurement to the next, all other factors

60 BIR BHANU and LAWRENCE A. NUTTALL

MATCH: Obj 13 matches goal; at 1392
MATCH: Obj 12 matches goal; at 1409

object O, has 0 visible surfaces:
object 1, has 1 visible surfaces:

surf 1 ; 3 79
object 2, has 1 visible surfaces:

surf 1 ; 3 66
object 3, has 2 visible surfaces:

surf 1 ; 3 66
surf 2; 3 79

object 4, has 1 visible surfaces:
surf 1 ; 3 79

object 5, has 1 visible surfaces:
surf 1 ; 3 79

object 6, has 2 visible surfaces:
surf 1 ; 3 79
surf 2; 3 66

object 7, has 3 visible surfaces:
surf 1 ; 3 79
surf 2; 3 66
surf 3; 3 79

object 8, has 1 visible surfaces:
SUrf 1; 4 158

object 9, has 0 visible surfaces:
object 10, has 0 visible surfaces:
object 11, has 0 visible surfaces:
object 12, has 2 visible surfaces:

surf 1 ; 3 79
surf 2; 4 158

object 13, has 2 visible surfaces:
surf 1 ; 3 79
surf 2; 4 158

object 14, has 3 visible surfaces:
SUrf 1 ; 3 66
SUrf 2; 3 79
surf 3; 4 158

object 15, has 4 visible surfaces:
surf 1 ; 3 79
surf 2; 3 66
surf 3; 3 79
surf 4; 4 158

Fig. 17. Printed results after resolving interpretations of
occluded objects in Fig. 16.

remaining constant. The initiation of timing should
also be explained. Because the Butterfly does not have
a file system, all code and image data was first down
loaded to the Butterfly. Timing began once this had
been accomplished and all processors had been started
and initialized.

4.1. Total speedup

This is the simplest measurement of performance
and is displayed in Table 2 for images R7, R5, R3,
and R1. This table compares the time taken by a
single Butterfly processor to process the applicable
image, against the best or fastest processing time
when using multiple processors.

4.2. Speedup vs the number of processors

This is one of the most common measures of
performance of algorithms implemented on a multi-
processor. As shown in Figs 18 and 19, the results are

Table 2. Total speedup

Image Single processing time Best time

R7 21.07 s 2.64 s
R5 18.10s 2.20s
R3 8.09 s 1.48 s
RI 3.89 s 1.41 s

displayed by plotting the reciprocal of the normalized
processing time (speedup), against the number of
processors used. Processing times were normalized
by the processing time for a single processor. The
ideal is to achieve a "linear speedup", where the plot
is not only linear, but the slope of the plot is 1. To
better understand this goal, it may help to realize
that unless synergistic relationships are possible in
multiprocessing, the best one could hope to achieve
is that the processing time would be reduced by two
when the number of processors have been doubled.
This defines a function of the form, f (x) = l /x, where
f (x) is time and x is the number of processors. As has
been mentioned, however, the inverse function is
normally plotted, f (x) = x, where f (x) is 1/time and
x is the number of processors. This of course defines
a linear function of slope 1, and becomes the upper
limit or goal. The overhead involved in multiprocessor
communication, shared and remote data access, and
work distribution usually make this a very difficult
goal to achieve.

Figure 18 shows the speedup plot obtained when
processing image R7 (Fig. 3), containing 7 objects.
The plot is indeed linear with a slope of about 0.7
through 10 processors, at which time the plot becomes
non-linear showing essentially no speedup beyond 12
processors. This is to be expected due to the fact that
most of the parallelism is achieved by processing
different objects simultaneously. If this were the only
form of parallelism employed, however, the plot
would in fact only be linear through 7 processors,
corresponding to the 7 objects in the image. The fact
that the linearity extends well beyond 7 indicates that
efforts to utilize parallelism within objects were useful.

The plot for image R3 with three objects, (Fig. 19),
also demonstrates that while multiprocessing benefits
do extend beyond the one to one ratio of processor to
objects in the image, the number of useful processors is
still linked to the number of objects in the image. For
three objects, linearity with a slope of about 0.6 is
maintained through 6 processors.

It is of interest to see what effect multiprocessing
had on speedup when processing was halted on

Speedup

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0 I I I l I I I I
2 4 6 8 10 12 14 16

Processors

Fig. 18. Speedup plot for R7.

3-D objects in range images 61

S p e e d u p

16.0

14 .0

12 .0

10 .0

8 .0

6 .0

4 .0

2 .0

0.0

,..,...-'J"
t I I I I I I I

0 2 4 6 8 10 12 14 16

P r o c e s s o r s

Fig. 19. Speedup plot for R3.

detection of the first matching object. Figures 20 and
21 show speedup plots on R7 when the goal object
was the closed can (object 1) and the large sphere
(object 4) respectively. Because the can was the first
object found and was the goal object, it was processed
immediately with no processing time diverted to
the other objects. One would expect that adding
additional processors would do little to improve speed
in this scenario. In fact, the slope of the line in Fig.
20 is about 0.04. Changing the search goal to an
object located in the middle of the image, (Fig. 21),
once again demonstrates the benefits of multiple
processors. The approximate slope of this line is 0.4

1 6 . 0 -

14 .0 "

12 .0

10.0

S p e e d u p 8.0

6 .0

4 . 0 .

2 .0

0.0

0 2 4 6 8 10 12 14 16

P r o c e s s o r s

Fig. 20. Speedup plot for R7 goal: closed can (object 1).

16.0

14 .0

12 .0

10 .0

S p e e d u p 8.0 '

6.0 " ~ o
4.0

2.0 o,,,,,~ ~'''~'''~
0.o I i i t i I I I

0 2 4 6 8 10 12 14 16

P r o c e s s o r s

Fig. 21. Speedup plot for R7 goal: large sphere (object 4).

compared to 0.7 when processing all objects. Similar
results were observed when performing goal-directed
searches on images R5 and R3.

Table 3 shows a different viewpoint of essentially
the same data. It compares times obtained when
processing all objects to those obtained when halting
processing on the identification of the first match.
The number in the goal object column refers to the
order in the image in which the goal object was
initially found. That is, a goal object of 3 means that
the goal object specified is the third object to be
located by the find objects routine (see Fig. 5). Results,
of course, depend greatly on the order in which the
objects are initially located. These results show that
performing a goal-directed search did in fact yield
additional speedups from 12 to 33% beyond those
times recorded when processing all objects.

The utility of combining multiprocessing with a
goal-directed search has been and is still a debatable
issue. It should be noted that at least for the complex-
ity of the images and processing required in this
research, it was found that although performing a
goal-directed search did in fact diminish the usefulness
of multiprocessing, overall speedups (with 16 proces-
sors) from 6.5 to 10.2 times were achieved using
multiprocessing in combination with a goal-directed
search for the images R3, R5 and R7. This was due
primarily to the fact that most of the processing time
was spent performing low-level image processing,
which had to be accomplished before sufficient know-
ledge was available to prioritize the work. Images of
higher complexity may very well require greater
portions of processing to be accomplished at higher
levels, enabling the goal-directed approach to have
an even greater effect.

For the control strategy used in this system, the
advantages to be expected from multiprocessing and
heuristic search actually seem to be somewhat inde-
pendent, and can be determined from the following
two observations. (1) The more compute intensive the
processing to be performed, the greater the benefit of
multiprocessing. (2) The sooner object characteristics
can be determined, the greater the advantage of
heuristic search. In other words, if there remains a
considerable portion of computer intensive work after
work prioritization is possible, the greater is the
benefit of performing a goal-directed search.

4.3. Processor utilization

Processor utilization in this study is defined as a
processor's processing time divided by the total
elapsed time. Processing time is the time spent by a
processor performing real work. In other words, it
does not include idle time checking data and job
queues. Total elapsed time is the interval between the
start and the time at which all the objects have been
identified. Total processing time is the sum of the
individual processing times (i.e. the total amount of
work required to process the entire image). Average

62 BIR BHANU and LAWRENCE A. NUT'FALL

Table 3. Speedup resulting from goal-directed search. Times are given
in ms

Goal object Image Total time First match time % Speedup

1 R7 2601 2285 12%
4 R7 2601 2223 15%
6 R7 2601 2285 12%
2 R5 2270 1788 21%
4 R5 2270 1992 12%
5 R5 2270 2007 12%
1 R3 1479 984 33%
2 R3 1479 1245 16%
3 R3 1479 1144 23%

processing time is the total processing time divided
by the number of processors. Finally, the average
processor utilization is the average processing time
divided by the total elapsed time.

Processor utilization was computed for 16 scen-
arios; one for each of four different processor con-
figurations on each of the 4 images R1-R7. Figure 22
shows four plots portraying the utilization measure-
ments made for each of the four configurations, (i.e.
16, 12, 8, and 4 processors), relative to processing
done in image R7. Figure 23 shows the utilization for
16 processors on image R1. The other cases were not
included because of their similarity to the results
observed in these two figures. Table 4 displays the

total elapsed times, total processing times, and the
average processor utilization for each of the 16
scenarios measured.

The most important observation to be made from
examining Figs 22 and 23, is that they show a fairly
even distribution of work among the processors as
long as there is sufficient work to be performed in the
image. Beginning with image R3 it was observed that
several processors were doing an uneven port ion of
the work. This became even more pronounced on
image R1 (Fig. 23). This, of course, is to be expected.
In fact it is somewhat surprising that all of the 16
processors were able to participate in the processing
of even the single object in image R1.

Table 4. Processor utilization. Times are given in ms

Image Processors Elapsed time Total process time Average utilization

R7 16 2,528 25,083 62.0%
R7 12 2,951 24,939 70.5 %
R7 8 3,844 24,241 78.8%
R7 4 7,327 25,183 85.9%
R5 16 2,162 20,177 58.3%
R5 12 2,634 20,514 64.9%
R5 8 3,492 20,165 72.2%
R5 4 5,639 19,968 88.5%
R3 16 1,558 9,555 38.3%
R3 12 1,502 9,410 52.2%
R3 8 1,740 9,332 67.0%
R3 4 3,087 9,289 75.2%
R1 16 1,484 5,738 24.2%
RI 12 1,237 5,294 35.7%
R1 8 1,382 5,392 48.8%
R1 4 2,765 6,728 60.8%

Percent
Ut i l izat ion

1 0 0

90

80

70

60

50

40

30

20

10

0 : :

0 2 4

.
[]

. . . : • :

6 8 1 0 1 2 1 4 1 6

Processors

Fig. 22. Processor utilization on R7. Top to bottom, utiliz-
ation is shown for 4, 8, 12, and 16 processors respectively.

1oo

90

80

70

60
P e r c e n t

50
U t l l l z s t l o n

40

30

20

IO

o
0 2 4 6 8 10 12 14 16

Processors

Fig. 23. Processor utilization on R1 with 16 processors.

3-D objects in range images 63

A number of observations can be made by examin-
ing the data shown in both Table 4 and Fig. 24.
The primary conclusion is that in general, as image
complexity increases, processor utilization also
increases. Second, as one would expect, the total
processing time on each image was essentially inde-
pendent of the number of processors being used. This
adds credibility to the average processor utilization
values which were based on this total processing time.
Finally, as was discovered when examining speedup,
both images R1 and R3 show an increase in total
elapsed time when increasing the number of proces-
sors from 12 to 16. This confirms the earlier conclusion
that there is probably an overhead and memory
contention penalty to be paid when increasing the
number of processors beyond that warranted by the
amount of work to be accomplished in the image.

In general, Fig. 24 confirms the conclusion that the
fewer the processors and/or the higher the image
complexity, the better the processor utilization. The
natural expectation is that increasingly complex
images could be effectively and efficiently processed
by increasing numbers of processors. Contrary to this
expectation, however, all of these plots indicate that
there is a limit to the processor utilization. In particu-
lar, the plot for the four processor configuration
shows a slight decline in the processor utilization
when increasing image complexity from 5 to 7 objects.
This seems to suggest that if more complex images
were available, the utilization of processors may not
increase significantly. This apparent limitation is most
likely the result of "hot spots" or memory contention
between processors attempting to access the same
global data structures at the same time. It is probable
that there are refinements, possibly at a low level
utilization of the Butterfly memory and processors,
which would improve these results somewhat. In order
to make more definite conclusions such refinements
should be studied, and tests with more complex
images should be made.

5. C O N C L U S I O N S

A new method of surface characterization using
curvatures is presented. It uniquely classifies each
surface type according to a plot of its principal
curvatures in conjunction with a histogram analysis.
Goal-directed search is used for the recognition of
objects. Range information is used to resolve ambi-
guities associated with occlusion. Combining rule-
based control with distributed processing leads to
several interesting control issues, which are discussed
in detail. The performance of the system is evaluated
with respect to the number and types of objects, size
of the images, location of objects, occluded/non-
occluded objects, speed vs number of processors
and processor utilization. By applying the use of
multiprocessing, not only to process image objects
simultaneously, but also to accelerate processing
within each object, near linear speedups were
obtained. Results from this study seem to indicate
that multiprocessing is warranted any time there is a
great deal of computationally intensive processing,
independent of whether a rule-guided approach is
used. The requirements of this system were such that
most of the processing time was spent performing
low-level tasks, which had to be accomplished before
sufficient knowledge was available to prioritize the
work. Consequently, greater advantage was achieved
through the use of multiprocessing than was realized
using the rule-guided search.

By equally equipping all processors with the ability
to locate and process work, this system was able to
achieve a balanced work load between as many as 16
processors when processing images with as few as 5
objects. As expected, however, the average processor
utilization depended directly upon the amount of
work (i.e. the number of objects), in the image. It
appeared that there may be a utilization limit for this
system of about 88%, due most likely to the overhead
involved with the control algorithms, and delays due
to memory contention. It would be valuable to explore
in more depth the exact nature and extent of this
apparent limitation.

Processor
Utitization

2° T 10

0 I I I

R1 R3 R5 R7
Images

Fig. 24. Utilization summary. The plots from top to bottom
show processor utilization for 4, 8, 12, and 16 processors
respectively, as image complexity increases from one to seven
pR 22:1-E objects in images R1-R7.

S U M M A R Y

The recent advent of Multiple Instruction Multiple
Data (MIMD) architectures together with the poten-
tially attractive application of range images for object
recognition, motivated the development of a successful
goal-directed 3-D object recognition system on a 18
node Butterfly multiprocessor.

A new method of surface characterization using
curvatures is presented. It uniquely classifies each
surface type according to a plot of its principal
curvatures in conjunction with a histogram analysis.
Goal-directed search is used for the recognition of
objects. Range information is used to resolve ambi-
guities associated with occlusion. Combining rule-
based control with distributed processing leads to
several interesting control issues, which are discussed

64 BIR BHANU and LAWRENCE A. NUTTALL

in detail. The performance of the system is evaluated
with respect to the number and types of objects, size
of the images, location of objects, occluded/non-
occluded objects, speed vs number of processors
and processor utilization. By applying the use of
multiprocessing, not only to process image objects
simultaneously, but also to accelerate processing
within each object, near linear speedups were
obtained. Results from this study seem to indicate
that multiprocessing is warranted any time there is a
great deal of computat ionally intensive processing,
independent of whether a rule-guided approach is
used. The requirements of this system were such that
most of the processing time was spent performing
low-level tasks, which had to be accomplished before
sufficient knowledge was available to prioritize the
work. Consequently, greater advantage was achieved
through the use of multiprocessing than was realized
using the rule-guided search.

The system was able to achieve a balanced work
load between as many as 16 processors when process-
ing images with as few as 5 objects. As expected,
however, the average processor utilization depended
directly upon the amount of work (i.e. the number of
objects), in the image. It appeared that there may be
a utilization limit for this system of about 88%, due

most likely to the overhead involved with the control
algorithms, and delays due to memory contention.

REFERENCES

1. B.G. Baumgart, Geometric modeling for computer vision,
Technical Report AIM-249, STAN-CS-74-463, Depart-
ment of Computer Science, Stanford University (1974).

2. P. Besl and R. Jain, Invariant surface characteristics for
3D object recognition in range images, Comput. Vision,
Graphics Image Processing 33, 33-80 (1986).

3. T. J. Fan, G. Medioni and R. Nevatia, Description of
surfaces from range data, Proc. DARPA Image Under-
standing Workshop, pp. 232-244 (1986).

4. C. Hansen and T. Henderson, Utah range data base,
Technical Report UUCS-86-113, Department of Com-
puter Science, University of Utah (1986).

5. D. M. McKeown, W. A. Harvey and J. McDermott,
Rule-based interpretation of aerial imagery, IEEE Trans.
Pattern Analysis Mach. Intell. 7, 570-585 (1985).

6. A. M. Nazif and M. D. Levine, Low level image segmen-
tation: an expert system, IEEE Trans. Pattern Analysis
Mach. Intell. 6, 555-577 (1984).

7. B. Bhanu, Representation and shape matching of 3-D
objects, IEEE Trans. Pattern Analysis Mach. Intell. 6,
340-351 (1984).

8. D. J. Ittner and A. K. Jain, 3-D surface discrimination
from local curvature measures, Proc. IEEE Conf. on
Comput. Vision Pattern Recognition (1985).

About the Author--Bin BHANU received the S.M. and E.E. degrees in electrical engineering and computer
science from the Massachusetts Institute of Technology, the Ph.D. degree in electrical engineering from
the University of Southern California and the M.B.A. degree from the University of California, Irvine.

Dr Bhanu is a Staff Scientist at Honeywell Systems and Research Center, where he serves as Principal
Investigator of the Strategic Computing Computer Vision Program from DARPA, Obstacle Detection
Program from NASA, and Machine Learning Program from a government agency. Additionally, he is
conducting IR&D research efforts in contextual analysis, robotic combat vehicle navigation, multisensor
integration, parallel algorithms, photointerpretation and surveillance. He has also worked with IBM on
image processing, INRIA-France on 3-D object recognition, and Ford Aerospace and Communications
Corporation on Automatic Target Recognition. While on the faculty of the University of Utah he was
the Principal Investigator on several NSF and industry-funded research projects in machine intelligence.
Presently he is also an Adjunct Associate Professor of Computer Science at the University of Utah.

His current interests include computer vision, robotics, target modeling, distributed sensing and control,
parallel computer architectures, pattern recognition and artificial intelligence. He has more than 100
publications in these areas and is a reviewer for over a dozen technical publications and government
agencies. He has given national short courses on intelligent automatic target recognition. He is the guest
editor of a special issue of IEEE Computer on "CAD-Based Robot Vision". He is listed in the American
Men and Women of Science, Who's Who in the West and Personalities of Americas.

He is a member of ACM, AAAI, Sigma Xi, Pattern Recognition Society, SPIE, IEEE (Senior member)
and IEEE Computer Society.

About the Author--LARRY A. NUTTALL received a B.A. degree in Physics and a B.S. degree in Computer
Science from Brigham Young University in 1974 and 1981 respectively. Mr Nuttall received the M.S.
degree in Computer Science from the University of Utah in 1987.

Mr Nuttall was previously employed as a Staff Engineer with the Hercules Advanced Methods group,
Hercules Aerospace Division, Magna, Utah. He is currently employed as a Senior Engineer with the
Computer Vision and Imaging Technology Group of Perceptics Corporation, Knoxville TN. In both
positions he has worked on various image processing design and implementation problems, including the
detection and tracking of moving objects in digital images, and the design and development of NDE
image inspection systems.

