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Abstract--Clustering techniques have been used to perform image segmentation, to detect lines and curves 
in images and to solve several other problems in pattern recognition and image analysis. In this paper we 
apply clustering methods to a new problem domain and present a new method based on a cluster-structure 
approach for the recognition of 2-D partially occluded objects. Basically, the technique consists of three steps: 
clustering of border segment transformations; finding continuous sequences of segments in appropriately 
chosen clusters; and clustering of sequence average transformation values. As compared to some of the earlier 
methods, which identify an object based on only one sequence of matched segments, the new approach allows 
the identification of all parts of the model which match in the occluded scene. We also discuss the application 
of the clustering techniques to 3-D scene analysis. In both cases, the cluster-structure algorithm entails the 
application of clustering concepts in a hierarchical manner, resulting in a decrease in the computational effort 
as the recognition algorithm progresses. The implementation of the techniques discussed for the 2-D case has 
been completed and the algorithm has been evaluated with respect to a large number of examples where 
several objects partially occlude one another. The method is able to tolerate a moderate change in scale and 
a significant amount of shape distortion arising as a result of segmentation and/or the polygonal 
approximation of the boundary of the object. A summary of the results is presented. 

Clustering Occlusion Recognition Segment matching Sequencing 
Shape matching 

I. INTRODUCTION 

The problem of occlusion in a two-dimensional scene 
introduces errors into many existing vision algorithms 
which cannot be resolved. Occlusion occurs when two 
or more objects in a given image touch or overlap one 
another. In such situations vision techniques using 
global features to identify and locate an object fail 
because descriptors Of part of a shape may not have 
any resemblance with the descriptors of the entire 
shape. Since occlusion will be present in all but the 
most constrained environments, the recognition of 
partially occluded objects is of prime importance for 
industrial machine vision applications and to solve 
real problems in the military domain and factory 
automation. ~s) Several methods have been 
developed (1"3"4"9"1~'23) which do not rely on global shape 
features. The approaches to solve the occlusion 
problem can be classified either as boundary- 
based (3'~°'~?'231 or local-feature-based. ¢9~ The former 
approaches use methods such as relaxation or 
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boundary-matching while the latter approach makes 
use of the available local features such as holes or 
corners and their relationships. However, these 
techniques are computationally intensive. They can- 
not handle minor distortion in the shape, change in 
scale and do not give good matching results over a 
wide range of industrial objects. 

Some of these factors led Price (~9) to use a 
conceptually simple technique to solve the occlusion 
problem by following the order of matched line 
segments in the model and the apparent object; the 
apparent object is formed as a result of occlusion of 
two or more objects. Price uses a device called a 
disparity matrix. Initially, the algorithm assumes that 
we have a linear border approximation of a given 
model and an image (apparent object). Price's method 
then compares every line segment in the model with 
every line segment in the image. If the segment pairs 
are compatible in terms of length and angle between 
successive segments, the rotational offset between the 
two segments is entered into the disparity matrix. The 
entry is indexed by the segment number in the model 
and the segment number in the image. If the segments 
are incompatible, an error code is placed at the 
appropriate location in the matrix. After all line 
segments have been compared, the matrix contains the 
offsets, or disparities, for all line segments. By 
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Fig. I. Block diagram of the clustering-based occlusion 
algorithm. 

traversing this newly formed matrix diagonally, the 
longest sequence in the matrix that contains compat- 
ible entries is found. From this longest sequence, the 
Price method then computes the transform dictated by 
the segment pairs in the sequence. This value is the 
final result of the procedure. 

Unfortunately, the Price technique is also very 
expensive computationally. Since it must treat every 
entry in the disparity matrix as a possible starting 
location of a sequence, it traverses the matrix once for 
every entry that exists. While this fact does not pose a 
problem in the simplest cases, matching takes a long 
time for models and images with more than about 
20-30 segments each. Another major problem 
encountered by the Price procedure concerns the 
ability to use more than one sequence in the overall 
matching of the model to the image. It uses only the 
longest sequence found in the traversal because it 
cannot determine the compatibility between multiple 
sequences. In the cases where a large amount of 
occlusion is pre.sent, Price's technique will not be very 
successful. Thus, while Price's early attempt to solve 
the occlusion problem met with limited success, it did 
not fully deal with the problem. 

In order to overcome the factors which caused the 
Price method to fail, we have used a cluster-structure 
approach which allows the recognition of a given 
object and provides information about the orientation 
and position of the objects in the image.( ~ Some 

techniques and structures used by Price have been 
retained, but the method of matching is entirely new. 
In the past, Stockman et al. ('~ have used clustering to 
recognize 2-D objects. They identify several types of 
local features and perform clustering on the rotation 
and translation values of similar features present in 
both the model and image. However, our cluster-struc- 
ture algorithm applies the clustering concepts in a 
hierarchical fashion, which reduces the amount of 
computational effort and time required by the 
recognition process. The clustering algorithm contains 
three major steps: clustering of line segment trans- 
formations; locating sequences of line segments in 
specific clusters; and secondary clustering of sequence 
average transformations. Sequencing is efficient since 
the sequences are found in one pass over the data. In 
addition, the method only relies on boundary 
segments, eliminating the need for feature extraction 
within the images. The motivation behind the 
cluster-structure approach and how the clustering 
techniques can be useful in solving the occlusion 
problem is given in Section II. Section III presents the 
algorithmic description of the new method. Section IV 
provides a number of examples illustrating the 
capabilities of the technique. A comparison with the 
Price method is also presented here. Section V 
discusses the applications of the clustering methods in 
three dimensions. Finally Section VI presents the 
conclusions of the paper. 

II. PRINCIPLE OF THE TECHNIQUE 

In an unstructured environment, for example parts 
going over a conveyor belt, occlusion may occur in a 
large number of images that have to be processed. This 
problem requires the development of an algorithm 
which can easily handle occluded scenes. Figure 1 
shows the block diagram of the clustering-based 
occlusion algorithm. It is based on the premise of 
successive applications of clustering to the model and 
image data and the use of structural information in an 
environment in which the data reduction takes place as 
the recognition process progresses and the confidence 
in recognition is increased. 

Clustering, in its most general form, groups a set of 
objects into subsets where objects in a subset are more 
similar than the objects in other subsets. ('3'14) Cluster- 
ing techniques are commonly used in pattern 
recognition and image processing. ['For a recent 
review see Ref.(16).'l A significant problem inherent in 
using the clustering techniques involves the choice of 
the number of clusters to be used at any given time. 
Since the choice depends on the structure of the data 
that is being clustered, the number of clusters cannot 
usually be a constant value in a given application. As 
an example, when applying clustering techniques to 
solve the occlusion problem, the number of clusters 
must be altered, depending on the lighting conditions, 
the segmentation techniques used, the amount of 
occlusion present, and many other factors. Fortunate- 
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Fig. 2. A clustering quality measure. 

ly, there are measures which can be used to find the 
intrinsic number of clusters. (s'tL'2'~6~ These perfor- 
mance measures determine the scattering of the 
samples within each individual cluster as well as the 
distance between each of the cluster centers themsel- 
ves. This information is held in a matrix form known as 
a scatter matrix/~4) The scattering of the samples in a 
particular cluster is defined as within-cluster scatter 
matrix, S,, The overall position of all clusters in 
relation to each other becomes the between-cluster 
scatter matrix, Sh. By definition, the /i value for a 
certain clustering equals the trace of the within-cluster 
scatter matrix multiplied by the trace of the 
between-cluster scatter matrix, i.e.//= Tr(S,.)TR(Sb). As 
the number of clusters increases, the value of/ /wil l  
reach a maximum and then slope towards 0. The 
number of clusters at which the value of // is a 
maximum is the desired value and gives the best 
results. Figure 2 shows the behavior of/ /with respect 
to the number of clusters. Thus, by setting the number 
of clusters to be one, clustering the samples, computing 
the ~ value, comparing the/~ value with its last value, 
and continuing until the maximal ~ value is reached, a 
program can find the best number of clusters in a given 
data set. 

In determining the number of clusters using the 
above method, a clustering technique such as the 
K-Means Algorithm could be used. After every sample 
has its feature vector computed, the algorithm creates 
an arbitrary set of K cluster centers into which all 
samples will be placed. In order to determine which 
center to place a given sample in, the algorithm 
computes the distance from the sample to each of the 
cluster centers. This distance is merely the Euclidean 
distance from the sample to the cluster center in 
the feature space. The sample belongs to the cluster 
which is closest to it. When every sample has been 
assigned to a unique cluster, the algorithm recomputes 
the value of each of the cluster centers. The new cluster 
center is the average of all samples which are currently 
in that cluster. After the new cluster centers have been 
determined, the algorithm then redistributes all of the 
samples again, using the new centers this time. The 
process continues until no further changes take place 
in the location of the cluster centers. At that point, the 
samples in each of the clusters are said to be 
compatible with each other. Thresholds help to 
determine when cluster centers have become stable. 
Since the Euclidean distance may be affected by the 
choice of the features present in the feature vector, the 

feature values are normalized so that each feature 
contributes equally to the overall distance. 

The above techniques are computationally efficient, 
even when the number of samples is very high, thus 
allowing the vision process to be fast as well as 
accurate. Since the clustering method groups all sets of 
compatible matches into a single cluster, regardless of 
their position in the image, 'it can find multiple 
sequences in a model which may match in the given 
image. While the Price method was only able to find a 
single best matching sequence, the new procedure will 
find as many sequences in the image as possible. Also, 
since the traversal of matrices in Price's method is 
computationally expensive, the new technique im- 
proves the speed of the matching as well. The use of 
clustering and the performance measures in the body 
of the algorithm are discussed in the next section. 

IlL ALGORITHM DESCRIPTION 

As shown in Fig.l, the algorithm consists of the 
following main computational steps: 

(1) Disparity matrix 
(2) Initial clustering 
(3) Sequencing 
(4) Final clustering 
(5) Transform computation. 

Each of these steps will be described individually in 
this section. Two sets ~ d a t a  are assumed to be given. 
The first set contains the object model data, which is a 
set of vertices that define the boundary of the model. 
This model is the object that we are searching for in the 
image. The second data set contains the description of 
the image that has been acquired. This data is also a set 
of vertices on the boundary that describe the scene that 
was taken by a video camera. 

Disparity matrix 

The first step of the algorithm consists of the 
formation of the disparity matrix. From the set of 
vertices for the object and the image, the algorithm 
determines the length of each border segment and the 
interior angles between successive segments. These 
interior angles are referred to as successor angles for 
each segment. The length of each of these segments as 
well as the angle between successive segments 
comprise the only information needed by the 
algorithm to recognize objects and find their position 
arid orientation. At this point, every segment in the 
object model will be compared with every segment in 
the image in order to find all possible matches of the 
model segments in the image. This comparison utilizes 
the segment length and successor angle for each model 
segment. Ifa segment in the image has the same length 
and successor angle, within thresholds, as a segment in 
the model, the pair of segments are considered 
compatible and the rotational and translational 
disparity between the pair of segments is computed. 
These disparity values are stored in the disparity 
matrix, indexing the entry according to the segment 
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number in the model and the image. 
This process continues until all segments have been 

compared. Now the range of rotational and transla- 
tional values present in the matrix are determined, and 
the disparity matrix values are normalized so that the 
rotation and translation values contribute equally in 
the clustering step described next. The normalized 
values are kept in a normalized disparity matrix, since 
the initial disparity matrix needs to be retained for 
later use. This matrix is similar in structure to the 
matrix used by Price. °9) However, in addition to the 
rotational offsets, we also place translational offsets in 
the disparity matrix. 

The computation time required to complete this 
step comprises about 10-20?/0 of the total execution 
time. Since all of the values must be compared with 
each other, the exact percentage depends on the total 
number of segments present in the model and image. 

Initial clustering 
After all of the normalized values have been placed 

into the disparity matrix, the algorithm clusters these 
values where the feature vector is merely the 
normalized rotational and translational offsets for 
each of the pairs of line segments. The initial number of 
clusters is set equal to one and in the application of 
K-means algorithm the first sample becomes the first 
cluster center. The clustering proceeds as described in 
the previous section. At each step, all of the samples are 
clustered, the value of the new cluster centers are 
recomputed, andthis process continues until none of 
the cluster centers change their positions. Now for the 
current cluster results, scatter matrices are computed 
and the value of//is determined. The algorithm then 
compares the current p value with the last fi value. If 
the value has decreased, then the previous l/value and 
the number of clusters become the final result of this 
processing step. Note that the initial clustering step is 
similar to the generalized Hough transform (~) in its 
ability to detect similarities in local border shapes of 
objects. The generalized Hough transform might 
provide a faster alternative to the initial clustering step. 

This step of the algorithm takes the most 
computational time of all of the steps due to the large 
number of samples that are clustered. For example, if 
the model contains 25 segments and the image 
contains 100 segments, the disparity matrix will 
contain 2500 entries. Out of this number, 500 samples 
may be present in the disparity matrix which satisfy the 
length and angle thresholds. If the program has to 
cluster these samples three times until p is maximized, 
1.500 distances must be computed. However, this 
amount of computation is far less than the comparable 
computation that would need to be done by the Price 
method. 

After the number of clusters have been determined 
and the results are known for that particular value, the 
program selects the cluster with the largest number of 
samples. The data in this cluster will be used by the 

remaining steps in the algorithm to determine the 
location and orientation of the model in the image. 
However, since some of the other clusters may contain 
approximately the same number of samples as the 
largest one, the program also uses any cluster which is 
within 209/o of the largest cluster. Each cluster is 
considered separately and the final transform comes 
from the cluster .which yields the highest confidence 
level. The confidence metric is discussed below. The 
program now passes each cluster that has been selected 
to the following algorithm steps, one at a time. 

Sequencing 
Since the clustering results provide no information 

concerning the physical structure of the model, this 
information must be provided at this time. Using the 
samples in the current cluster, the program finds all 
sequences in these samples. For instance, if the 
previous sample indicates that segment one in the 
model matches segment 27 in the image (represented 
by the notation) [1,27"], the program then searches for 
the pair [2,28], since this pair should logically follow 
the first pair on the borders of the model and the 
image, respectively. If [2,28] is found, we then check 
for [3,29] and so on. Each of these samples is marked 
with the current sequence number. Once the current 
sequence can no longer be continued, we find the next 
unmarked sample in the cluster data and repeat the 
process with this new sample. Since there may be some 
missing and extra segments in the model and the image 
as a result of segmentation, polygonal approximation, 
and various other reasons, we allow up to two extra or 
two missing segments when finding the sequences. This 
procedure continues until all possible sequences have 
been located in the data of the current cluster. All 
sequences of border segments are found in one pass 
over the cluster data so this step is quite efficient. 
Sequencing provides the only structural information 
within the algorithm and cannot be omitted. 

Any samples in the current cluster which were not 
placed in any sequence are discarded. Since these 
samples are not members of any sequence, they usually 
represent the extraneous data in the cluster. The 
program also removes any sequences which have a 
segment count of less than three. Three segments make 
the basic local shape structure. This removal insures 
that arbitrary data included in the initial clustering 
and sequenced by the current step is not included in the 
final processing steps. Because of their small length, 
these sequences are assumed to be invalid and have 
low confidence. Even if the sequences indicated valid 
matches, their removal from the set of sequences does 
not introduce any error into the final matching that 
will be computed. 

The final task to be accomplished at this step of the 
algorithm is to compute the rotational and transla- 
tional average of each sequence that has been located. 
These averages are merely the averages of all of the 
samples that are present in each sequence. These 
sequences and their averages will be used in the final 
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clustering step of the program. 
The sequencing step requires the second largest 

amount of execution time within the entire program. 
Since it is still very costly to check the possibility of a 
sequence occurring at any given sample, the program 
must check every sample in order to locate the best 
choices. However, because the clustering results have 
greatly reduced that number ofchoices that need to be 
checked, this step takes far less time than does the Price 
method. It is a one-pass algorithm over the data. 

Final clustering 
Using the sequence averages obtained from the 

previous step, the algorithm clusters these values to 
find those sequences which lead to the same rotational 
and translational results. Note that in this application 
of clustering we are clustering sequence average 
rotations and translations. In other words, we are now 
working at a higher symbolic level of recognition. As 
with the initial clustering, the program uses the 
iterative technique ofclustering, evaluating, clustering, 
etc. After the value of fl has reached its maximum, the 
program again selects the cluster which contains the 
largest number of sequences and passes this cluster to 
the final program step. 

While the initial clustering step had to deal with a 
large number of samples present in the disparity 
matrix, this step is much faster since we have 
eliminated so much data in the earlier steps. In all the 
examples discussed here, the number of sequences is 
less than I00, with an average somewhere near 30-40. 
Also, since the sequencing step has eliminated a good 
deal of the erroneous data, the fl value quickly reaches 
its maximum and this steps ends. 

Transformation computation 
After all clusters which were selected have been 

sequenced and clustered a second time, the program 
determines the confidence level of the transformation 
determined by each cluster. The cluster with the 
highest confidence level is selected as the final 
transformation cluster. The program assembles the set 
of matched segments included in the sequences in this 
cluster. These segments are sorted into increasing 
model segment number so that the sequences will 
indicate successive segments around the object 
boundary. The final output of the program is the 
rotation and the vertical and horizontal translation 
necessary to locate the object model within the image. 
The program also produces a confidence level which 
indicates the likelihood that the final matching is 
correct. The confidence level is found by dividing the 
cumulative length of all segments in the final matching 
by the total length of all segments in the object model. 
So, if the confidence factor is 80/200, we are 40*/, s u r e  

of the program results. This factor will be used by later 
versions of the program to decide if further processing 
should be done in order to insure the proper results. 
Confidence levels of 10% or more usually lead to the 

correct transformation. Of course, its value depends 
upon the degree of occlusion within the image. 

IV. RESULTS 

Image acquisition and polygonal approximation 
In order to determine the ability of the program to 

find objects in an occluded scene, a set of 14 models 
was obtained and used in the matching algorithm. The 
models consist of a set of tools such as a hammer, 
screwdriver, pliers, wrench, and so on. The model for 
each of these tools was created by first acquiring an 
image of the object lying by itself on a backlit table. 
The image is obtained with a camera and a 
commercially available digitizer. The digitized picture 
ofthe scene is 576 pixeis wide by 720 pixels high. These 
dimensions correspond to about 68 pixels/in. After the 
image has been digitized, it is then transferred to a Vax 
11/780 computer for the remainder of the processing. 
Several of the images of the models that were collected 
appear in Fig.3. 

Once the image has been obtained, the program 
finds the border of the tool using a simple border- 
follow algorithm. This procedure traverses the 
boundary of the object in the image and marks the 
pixels which lie on the border. The number of 
boundary points for the tools range from 567 to 1425 
pixels. After locating the boundary of the object, the 
program uses a curvature-maxima algorithm to 
compute an initial border approximation of the object. 
This procedure uses the local curvature at every border 
pixel in conjunction with a smoothing factor to find the 
approximation of the object. The smoothing factor 
controls the quality of the initial polygonal 
approximation of the object. (:°) Using a smoothing 
factor of eight results in a range of 18-52 segments in 
the models. 

Using both the initial border approximation and the 
border pixels themselves, the program then uses the 
split-merge technique (m to determine the final border 
approximation for each of the objects. This method 
splits all border segments with bad approximations 
and combines all pairs of adjacent segments that do 
not cause a dramatic change in the model representa- 
tion. The number of final border segments varies from 
five to 33 for the 14 models that were used. The final 
polygonal approximations of the model images which 
appear in Fig. 3 are shown in Fig. 4. 

The task of obtaining images to be processed 
proceeds in exactly the same manner as in the model 
acquisition. The images are obtained using the same 
hardware and are then moved to the Vax 11/780. These 
images are then processed with the border-follow, 
curvature-maxima, and split-merge algorithms. Some 
examples of the images collected in this test run appear 
in Fig. 5. For this particular experiment, 20 images 
were collected and then processed. In these 20 images, 
56 instances of the 14 models are present. The number 
of boundary points varied from 1123 to 4025 pixels. 
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(a) (b) 

(c) 
(d) 

(e) 

(g) (h) (i) 

Fig. 3. Images of the object models (a-i). 

The smoothing factor used to obtain the initial image 
approximation is 24 for all images. The number of 
curvature maxima segments ranges from 21 to 71. The 
final number of border segments received from the 
split-merge procedure range from 26 to 71 segments. 
The polygonal approximations of these images are 
presented in Fig. 6. 

Model based recognition 

Once all of the models and images have been 
collected, the clustering algorithm is used to locate the 
models in the images. When the clustering program 
was run on the 20 images that were collected, the 
results were very good. Of the 56 models present in 
these images, 47 (84~) models were correctly matched. 
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Fig. 4. Polygonal approximation of the object models (a-i). 
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Four of the 56 models were mistakenly matched to a 
different model. The remaining five model instances 
could not be matched. Figure 7 shows the matching 
results for the five images that were shown in Fig. 5. 

Solid lines show the polygonal approximation of the 
images using the split-merge algorithm. The dashed 
and dot-dashed lines show the polygonal approxima- 
tion of the model at its matched location in the image. 
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(a) (b) 

(c) 

(d) 

Fig. 5. Images of the 

Dot-dashed lines indicate the segments which were 
matched while the dashed lines show the segments 
which did not contribute to the matching. 

Out of the 47 models that were correctly matched in 
the images, seven of these matches were not 
successfully found until the polygonal approximation 
of the appropriate model was improved. Of the five 
model instances that were not located in the images, 
the failure to find these objects is due to the substantial 
difference in the polygonal representations of the 
particular tool in the model and in the image. When 
the polygonal approximations of the object become 
too diverse, clustering is not able to overcome this 

occluded objects (a-e). 

problem. However, if the representation of the model is 
improved within the image, matching occurs and the 
transformation determined by the program is better. 
For example, in Fig 7(c), the pipe wrench has been 
properly matched, but the transformation of the model 
is not very good due to the large difference in 
polygonal approximation. Figure 8 shows the results 
after the representation of the model has been 
substantially improved within the image. Now the new 
transformation is only slightly improved. However, 
more model segments were matched in this case which 
led to a higher confidence level. Note that a small 
visible change in scale occurred between the models 
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Fig. 6. Polygonal approximation of the occluded objects 
(a-e). 

and their representations in the image during the 
process of image acquisition. 

Execution times for the clustering method range 
from 0.5 to 3.2s on a Vax 11/780. No attempt was made 
to optimize the C code. After each matching has been 
determined, the program also computes a confidence 
level based on the segments which contributed to the 
matching. This value is computed by dividing the 
cumulative length of all matched segments by the 
cumulative length of all segments in the model. For  

this set of images, confidence levels vary from 0 to 98%. 
The error analysis of the matchings which were correct 
yield a mean rotational error of -0 .14  ° and a standard 
deviation of 8.68 ° . The mean translational errors are 
-11.83 and -7 .65  pixels for translation in x and y, 
respectively. These translational error values corres- 
pond to -0 .174 in. in x and -0.1125 in. in y. 

To contrast this new method with Keith Price's 
earlier work, we have run Price's algorithm on several 
of the examples used above. Figure 9 shows the results 
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Fig. 7. Results of matching for the occluded images shown in Fig. 5. Solid lines show the polygonal 
approximation of the image. Dashed lines indicate the model segments that did not match while dot-clashed 

lines represent the model segments which were matched in the image. 

of this matching. Out of the seven models present in 
Fig. 9, only two were properly matched. These results 
can be compared with the clustering results in Figs 7(a) 
and (e). The clustering method, which obviously yields 
far better results, also finds the matches in much 
shorter time. The model transformations also tend to 
be better because clustering can find several sequences 
along a boundary which may contribute to the final 
transformation. Price's method, on the other hand, 
only selects the longest sequence. 

V. ~I-D APPLICATIONS 

We have identified several problems in three dimen- 
sional scene analysis which can be solved using 
clustering techniques. ~5) The recognition method 

described in the previous sections can readily be 
extended into three dimensions. Stockman and 
Esteva (2~) have used clustering techniques in the past to 
determine 3-D object pose from two dimensional 
image points. However, we extend our two dimension- 
al methods to 3-D under the assumption that our data 
set is the position and orientation of the planar faces of 
the objects in a range image. If we have a three 
dimensional description of the model as well, the 2-D 
clustering technique can be directly extended into the 
3-D realm. In addition, we have investigated applica- 
tions of clustering on range data to find planar patches. 
As with the 2-D algorithm, the clustering techniques 
are applied in a hierarchical fashion to reduce the 
amount of data computation. Each of these areas will 
now be described briefly. 
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Fig. 8. Results of matching using the improved polygonal 
approximation for the model wrench [in Fig. 5(c)] only. By 
comparing this figure with Fig, 7(c) note that the 
transformation results did not change substantially. How- 
ever, more segments of the model were matched, which 

provided a higher confidence level in the matching. 

d I 

"-..../ (b) 

Fig. 9. Results of matching using the Price algorithm. Figures 
9(a) and (b) correspond to Figs 7(a} and (e) resl~Ctively. 

If we know the position and orientation of the 
planar faces on the surface of an object, we can use this 
information to aid in the recognition process when we 
are given only one view or an occluded view of the 
object and a 3-D model having a similar representa- 
tion. The clustering method discussed earlier can be 
naturally extended into three dimensions. The line 
length and angle between successive segments in 2-D 
now become the planar area and angles between 
adjacent planes in the three dimensional domain. 
These features are used to determine compatibility 
between planar faces. The disparity matrix is formed 
by comparing all faces in the known model with the 
faces in the image. If compatible, the three dimensional 

rotation and translation disparities are entered in the 
disparity matrix. Clustering can then be used to group 
sets of planar faces that have similar transformations. 
In this case, we are merely clustering with a larger 
feature vector than the one used in the 2-D technique. 
Sequencing in two dimensions corresponds to planar 
region growing in the 3-D algorithm, providing the 
necessary structural information. In each of the initial 
clusters, the algorithm marks all compatible groups of 
adjacent faces. The planar region is allowed to grow in 
any direction until no further compatible faces can be 
located. The next unmarked face is then found and the 
region growing method is repeated on the set of 
remaining unmarked faces. This process continues 
until all regions of compatible planar faces have been 
located. Once this procedure is complete, the 
algorithm computes the average transformation 
determined by each of these regions. This step is 
analogous to the computation of the sequence 
averages in the two dimensional case. In the second 
clustering stage, we cluster these average transforma- 
tions to obtain the groups of planar regions that yield 
the same rotation and translation. The algorithm now 
computes the confidence level of the matching 
determined by the regions in each of the initial clusters. 
Finally, the matching that leads to the best confidence 
level is selected as the final model transformation. The 
development of the 3-D algorithm is under investiga- 
tion and will be reported in the future. 

Identification of planar patches or faces on the 
surface of a three dimensional object using range data 
is also one of the current areas of interest. This range 
data is available from several sources, including range 
information from a laser range finder as well as data 
points obtained from a CAD (Computer Aided 
Design) model of the object. The first step of this 
process is to compute the surface normals for every 
point in our data set. We first identify all the neighbors 
of each point using a k-d tree algorithm "~) and then 
use a least-squared method to represent the plane 
which approximates the local surface patch. The 
surface normal is then obtained from this plane. The 
surface normals are converted to unit normal vectors 
for consistency in the clustering step. Once the surface 
normals are known, the use of clustering allows surface 
points with similar normal values to be easily grouped 
together. The K-means algorithm along with the 
performance measures previously discussed are again 
used in the clustering process. In this step of the 
algorithm, the normals at each point are clustered. 
Once the initial clustering has been completed, we 
perform an additional clustering on each of these 
clusters separately. Since the first step only considered 
the orientation of the surface normals, it is possible 
that non-adjacent surface patches that have similar 
orientations on the object have been included in the 
same cluster. By applying the clustering methods on 
the x, y and z values of each of the data points, the 
algorithm separates any samples in these clusters that 
are not spatially adjacent. Since the performance 
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measures are used to find the inherent number of 
clusters, the initial clusters that contain more than one 
planar face are split up while the clusters that contain 
only one face are left intact. The algorithm then uses 
the least-squared procedure on each of the final 
clusters to determine the theoretical position and 
orientation of each of the planar faces on the surface of 
the object. This symbolic representation of the surface 
of the object can then be used in the cluster-structure 
algorithm as discussed earlier. 

VI. CONCLUSIONS 

Based on the results presented in this paper, we 
conclude that the cluster-structure algorithm is a 

robust approach to solve the occlusion problem in 
2-D. The data and the amount of computation reduce 
in a systematic and hierarchical manner. Since the 
technique does not limit itself to a single sequence of 
line segments on the border of an object, it can locate 
all of the matched segments of the model, which 
accounts for the high success rate. The program was 
not highly successful in the instances of severe 
occlusion, where a given model has only about five 
percent of the total number of segments visible in the 
image. In those situations, even an expert would have 
problems locating a model within the image. The final 
matching results of the algorithm are in a form well 
suited for higher-level analysis, if necessary. The 
reliability of this technique might be increased by 
including relationships of prominent object features 
such as holes, parallels, and perpendiculars. 

Future modifications to this algorithm will include 
the ability of the algorithm to handle cases when the 
model has a large amount of symmetry and 
considerations for grasping strategies by a 
manipulator, qT) 

In addition to the success of the 2-D work, we also 
believe that the application of the clustering methods 
to the three dimensional domain also holds good 
promise of success. Note that in 3-D, both symbolic 
representation and matching can be obtained using 
the same clustering techniques used in the 2-D 
cluster-structure approach. Work completed to date 
suggests that the extension to three dimensions should 
provide reliable results. 

SUMMARY 

The recognition of partially occluded objects is of 
prime importance for industrial machine vision 
applications and to solve real problems in the military 
domain and factory automation. The problem of 
occlusion in a two dimensional scene introduces errors 
into many existing vision algorithms which cannot be 
resolved. Occlusion occurs when two or more objects 
in a given image touch or overlap one another. In such 
situations vision techniques using global features to 
identify and locate an object fail because descriptors of 

part of a shape may not have any resemblance with the 
descriptors of the entire shape. 

Clustering techniques have been used to perform 
image segmentation, to detect lines and curves in 
images and to solve several other problems in pattern 
recognition and image analysis. In this paper we apply 
clustering methods to a new problem domain and 
present a new method based on a cluster-structure 
approach for the recognition of 2-D partially occluded 
'objects. Basically, the technique consists of three steps: 
clustering of border segment transformations; finding 
continuous sequences of segments in appropriately 
chosen clusters; and clustering of sequence average 
transformation values. As compared to some of the 
earlier methods, which identify an object based on only 
one sequence of matched segments, the new approach 
allows the identification of all parts of the model which 
match in the occluded scene. We  also discuss the 
application of the clustering techniques to 3-D scene 
analysis. In both cases, the cluster-structure algorithm 
entails the application of clustering concepts in a 
hierarchical manner, resulting in a decrease in the 
computational effort as the recognition algorithm 
progresses. The implementation of the techniques 
discussed for the 2-D case has been completed and the 
algorithm has been evaluated with respect to a large 
number of examples where several objects partially 
occlude one another. The method is able to tolerate a 
moderate change in scale and a significant amount of 
shape distortion arising as a result of segmentation 
and/or the polygonal approximation of the boundary 
of the object. A summary of the results is presented. 
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