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Abstract 
In order t o  reduce false alarms and t o  improve the 

target detection performance of an automatic target 
detection and recognition system operating in a clut- 
tered environment, it is important t o  develop the mod- 
els not only for man-made targets but also of natural 
background clutters. Because of the high complexity of 
natural clutters, this clutter model can only be reliably 
built through learning from real examples. If available, 
contextual information that characterizes each train- 
ing example can be used to  further improve the learned 
clutter model. In this paper, we present such a clut- 
ter model a ided  target detection system. Emphases are 
placed on two topics: (1) learning the background clut- 
ter model from sensory data through a self-organizing 
process, (2) reinforcing the learned clutter model using 
contextual information. 

1 Introduction 
Automatic Target Detection and Recognition 

(ATD/R) is a process that takes as input a collection 
of sensory data (normally in the form of images and 
associated auxiliary data) from one or multiple sen- 
sors, preprocesses the data, detects all potential target 
areas in t,he data., and finally reco nizes the identity 
a.nd pose of the real target(s) [a, 87. It has been rec- 
ognized that ATD/R is a challenging application for 
the general techniques developed by image process- 
ing and computer vision communities [l]. There are 
several reasons that contribute to this challenge: (a) 
a target may appear in many different backgrounds 
and it tends to be mixed up with its surroundings, 
(b) signatures of a target strongly depends upon the 
background surrounding the target and environmental 
conditions, and c) signatures of a target are generally 
not repeatable. L ince the ATD/R algorithms are com- 
monly used in a sequential manner, any target we fail 
to detect during the detection stage will be lost for- 
ever. As a result, in the detection stage, it is desired 
to single out every suspicious target area (region-of- 
interest) in the image, even at the cost that it may 
include some false target areas by doing so. Then it is 
the responsibility of the following recognition stage to 
verify the identity of each real target and to filter out 
the false targets. An ideal ATD/R system is the one 
that (a) does not miss any potential target area in the 
detection stage, and (b) does not verify any non-target 

area as target in the recognition stage. 
To achieve the goal of high detection probability 

and simultaneous low false-alarm rate, we present a 
new strategy called Background Model Aided Tar- 
get Detection and Recognition (BMATDR). The main 
idea of BMATDR is to use explicit background clut- 
ter models, as well as target models, throughout the 
ATD/R process. The background clutter model in the 
BMATDR system is represented by a bank of statis- 
tical models, each of which is constructed using a dif- 
ferent image feature group. In the rest of this paper, 
we will use Background Model Bank (BMB) and back- 
ground model interchangeably with the former empha- 
sizing the background clutter model in the BMATDR 
system. 

Another way to improve the performance of an 
ATD/R or more generally, a computer vision system 
is to use contextual information and other knowled e 
in the recognition process [12]. In a typical ATDfR 
mission, there are many variables that can affect the 
performance of an ATD/R system. Sherman et al. [8] 
categorized 41 such variables into five classes - back- 
ground parameters, target parameters, platform dy- 
namics, atmospherics and sensor parameters. In this 
paper, these variables are referred to as contextual pa-  
rameters because they provide non-imagery informa- 
tion associated with each sensed image. A certain set- 
ting of these contextual parameters is referred to as a 
contextual condztzon. We use a reinforcement learning- 
based approach to associate context with clutter mod- 
els to improve target detection performance. 

2 Feature groups for characterizing 

Previous work has shown that image features can be 
used to address two different ATD/R tasks: (a) quan- 
tify the clutter in infrared images and use the clutter 
measure to understand how the clutter affects the de- 
tection performance in a target detection system with 
man-in-the-loop [ lo ,  131 , (b) build statistical models 
for different natural backgrounds, and use these mod- 
els in an ATD/R system [6]. Our BMATDR approach 
was developed to accomplish the second t,ask. Since a 
natural background only makes sense to human eyes 
when a sufficient area of that background has been 
seen, region-based features are more suitable for char- 
acterizing a natural background than global or pixel 

natural background clutters 
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ba.sed features. To facilitate the discussion in this sec- 
tion, we introduce two terms, feature cell and fea- 
ture cell size, which will be used in the following 
discussions. 
Definition: A feature cell is a rectangular region 
within the image from which an image feature is com- 
puted. Feature cell size measures the two dimensions 
of  this rectangular region in pixels. 
2.1 Gabor transform- based features 

Features in the frequency domain have been widely 
used for accomplishing tasks like texture segmentation 
and texture classification. A special difficulty associ- 
ated with ATD/R applications is that in most situa- 
tions, a target of interest constitutes only a small part 
of the sensed image. Therefore, if a feature is based on 
global transforms like the Fourier transform, it is very 
likely that the existence of the target may not affect 
the spectrum to an extent that it is clearly discernible. 
But if the spectrum can be localized to an area whose 
size is comparable to the size of a target, the spectrum 
would have a recognizable variation when the “atten- 
tion window” is placed on top of the target. One ap- 
proa,ch to achieve these localized spectra is by using 
the Ga.bor transform. Gabor transform can be con- 
sidered as a special case of short-range Fourier trans- 
form. It decomposes an input image into basis func- 
tions which are localized both in spatial and frequency 
doma.ins. This property is particularly desirable for 
ATD/R application. To compute the discrete Gabor 
transform of an image, we implemented an algorithm 
which makes the otherwise complex computation more 
efficient [14]. The 2-D Gabor Elementary Functions 
(GEF) are defined in (1) , 

where h( t )  = t - 9, and M is the feature cell size 
which determines the spatial resolution of the trans- 
form. Function g(u ,v)  is the window function that 
localizes the GEF in spatial domain. For a KM x Ii’M 
square image I m ( z , y ) ,  x = O,l,. . . ,Il’M - 1, and 
y = 0,1,  . . . , liM - 1, the 2-D discrete Gabor trans- 
form can be expressed as 

where amnrs is the Gabor coefficient corresponding to 
y m n r s ( z , y ) .  If ymnrs(x ,y)  is separable, which is the 
case when we use 2-D Gaussian function as the win- 
dow function, the Gabor decomposition can he writ- 
ten in matrix form as Im  = G . A .  G T ,  where A is the 
KA4 x IiM Gabor coefficient matrix. Operator matrix 
G and its transpose can be precalculated based on the 
selected spatial resolution. To compute the transform, 
we have 

A = G - ’ .  I m .  (GT)-l  (4) 

Each element of matrix A is complex and represented 
by its real part ar:in and imaginary part ai?. Here 
m and n a.re the two spatial indexes that locate the 
element in spatial domain, while T and s are the two 
frequency indexes that locate the element in frequency 
domain. The amplitude spectrum of the transform is 
given by 

(5) 

Two feature groups are constructed directly from 
the Gabor amplitude spectrum: 

Two-level mean amplitudes. The firsf group con- 
sists of two features - MA and MA2, which are the 
first and second level mean amplitudes or a feature 
cell. To compute them, the discrete Gabor ,amplitudes 
are first sorted in a decreasing order. If iil(i) denotes 
the sorted Gabor amplitudes of a M x M feature cell, 
i = O , l , . . . , N  = M 2  - 1, then 

. N/4 

Moments of the Gabor amplitude spectrum. 
The second group consists of two features - the first 
order moments of the Gabor amplitude spectrum with 
respect to w, and wy axis. 
2.2 Self-similarity in natural scenes 

It has been recognized that images of na1;ural scenes 
exhibit statistical self-similarity at different scales [9]. 
Field proposed a feature which relates this fractal phe- 
nomenon in an image to the amplitude spectrum of 
the image [3, 41. His conclusion is that if a natural 
scene exhibits sei€-similarity, its amplitude spectrum 
will fall off in a rate of l / k  with respect to the spatial 
frequency k. If we plot the logarithmic amplitude vs. 
logarithmic frequency, the plot will be a straight line 
with a slope of -1. 

Since one of the major functions of our background 
model is to discriminate natural backgrounds from 
man-made objects, this feature can be very useful if 
images of the man-made objects do not show this -1 
slope. Again, since targets may constitute only a small 
part of the image, we use Gabor transform instead of 
the Fourier transform as the basis for computing this 
feature. To compute the slope feature, we first need 
to compute the average Gabor amplitude at each fre- 
quency over all the available orientations. Let u k  de- 
note the average Gabor amplitude at spatial frequency 
fie ( k  = 1 , 2 , .  . . , M -  I), a least-square method is used 
to fit a straight line to the data pairs of (log U,,  , log f k ) .  
The slope of the fitted line (SLP) and the maximum 
error of this linearization (ERR) are then computed as 
features using (7) and (8), 

(7) 
Sf . sa - ( M  - l)Sf, 
Sf2 - (A4 - 1)SfZ 

SLP := 

M - 1  . M - l  { k=l k=l 
ERR = maxi%’, - min W k  cos (tan-’ (SLP))  (8) 
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Figure 1: Two examples of using the local statistics 
of geometric elements ( E E )  feature to detect man- 
made targets in natural background. (a), (b) 200 ~ 2 0 0  
FLIR images. (c),  (d) The LS%E feature computed 
using 50 x 50 feature cell size. 

where 

M-1 

B=-- 
M - 1  

2.3 Local statistics of geometric elements 
In FLIR images, a target normally appears as one 

or several blobs close to each other, but, due to varying 
contrast, the target-background border is not always 
distinct. This observation inspired the idea of using 
the number of blobs and the average size of blobs in 
a feature cell as new features. To find out the blobs 
in a selected feature cell, we first run an adaptive re- 
gion growing algorithm over the image with different 
thresholds. Statistics of the size, shape, and popula- 
tion of blobs in a feature cell are then computed as 
features. We have found in our experiments that the 

change of these local statistics with respect to differ- 
ent thresholding values reveals some important char- 
acteristics of natural clutters. In this paper, we are 
focusing on the number of the blobs vs. the gray value 
threshold. When we plot these two variables on a 
semi-logarithmic plot, it can be seen that the lines 
corresponding to the target regions exhibit smaller 
slope than the lines corresponding to the background 
regions. Two examples using the second generation 
FLIR images are shown in Figure 1. The slope can be 
computed according to (14), 

where 

N is the highest threshold used, and nk denotes the 
number of blobs in a feature cell under threshold IC. 
Two feature groups have been designed based on the 
local statistics of geometric elements (EE). The 
first one is called the absolute LSY=E, which contains 
the SLp6 in (14) and the 10-blob threshold K l o ,  the 
threshold that allows the adaptive-region-growing al- 
gorithm to generate exactly 10 blobs in the given fea- 
ture cell. The number 10 used in this feature is se- 
lected since we can "observe" on the average 10 blobs 
on a man-made target in the training images. The 
second feature is the relatzve E E ,  which is applied 
only when the sensory image contains more than one 
feature cells. 

3 Learning the background model 
through a self-organizing process 

Although many papers in the literature have used 
known statistical distributions in their analysis of nat- 
ural clutters in FLIR images, there is no strong evi- 
dence that thermal natural clutters possess a certain 
statistical distribution [lo]. Instead of artificially as- 
signing a distribution model to background models, we 
construct our BMB from real images through a super- 
vised learning process. Since reliable statistical mod- 
els can only be obtained through analysis of a large 
population of samples, space and time complexities of 
algorithms become a major concern when selecting a 
learning scheme. In our approach, each BMB member 
is represented by a self-organizing map (SOM), which 
captures the distribution of the training data. By con- 
trolling the size of the SOM, we can easily control the 
space and time complexity of the learning process. 

3.1 Self-organizing and near-miss injec- 

Kohonen's self-organizing map algorithm makes it 
possible to discover the distribution of the training 
data as well as the cluster center of the data, enabling 
us to find a certain class in the feature space. This 

tion algorithm 
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information can be used to construct a more sophisti- 
cated statistical classifier, which would be more pow- 
erful than the conventional K-means algorithm. How- 
ever. when we applied this algorithm to our target 
detection problem, we encountered the feature over- 
lapping problem. Because of the complexity of nat- 
ural background, statistical features extracted from a 
target area sometimes overlap with those extracted 
from the background areas. To build an applicable 
background model that can classify these two classes 
(background and target), we developed an algorithm 
that combines Kohonen's SOM algorithm with a novel 
near-miss injection algorithm [ll]. This algorithm has 
been found effective in our experiments for solving the 
feature overlapping problem. 

The first step of our learning algorithm is to use 
the Kohonen's algorithm to train the SOM by us- 
ing positive training examples. By positive examples 
we mean pure background images that have no tar- 
get embedded in them. To make the learning pro- 
cess autonomous, i.e. without the need for humans 
intervention, a metric reflecting the SOM's ordering 
is needed so that the algorithm can determine how 
well the SOM has been trained, and thus determine 
whether it is time to terminate the learning process. 
In our research, we developed two metrics to describe 
the ordering of a SOM. The first one is based on the 
proved asymptotic convergence property of the SOM, 
and the second one is based on a direct analysis of the 
distortion of the SOM grid. 

When the disorder index is below a pre-selected 
threshold the SOM is in a well ordered state, and a 
conventional SOM algorithm can terminate its learn- 
ing process. In our approach, at this time the learning 
process will go into the second stage - refining those 
ambiguous regions in the SOM by using the near-miss 
injection algorithm and negative examples. By am- 
biguous regions we mean regions where features of 
different classes (e.g. background and man-made tar- 
gets) overlap. The near-miss injection algorithm runs 
inside a loop which contains the following two steps: 
(a) given a negative training vector y ,  search the "hit- 
ting" neuron h within the N x N SOM using (16). 

where w, is the weight vector of neuron 2, and i = 
r , l )  while r , l =  1 , 2 , . . . , N  . 

update the weight vectors according to 

(17) 
for i E Nh @U wf + (IIY -w:11+q2 

Wf otherwise 

1 
wi = 4 wj , j E 4-neighbor of i (19) 

j 

where Pt is the learning rate for this near-miss injec- 
tion algorithm, it should decay with time, and we use 
the same dlecay function that is used in Kohonen's al- 
gorithm. Nh is the predefined neighborhood of the 
hitting neuron. 
3.2 The classification criterion 

Since the target detection process has been for- 
mulated as a 2-class classification problem (natural 
background vs. man-made target) in our approach, a 
classification criterion is needed to label a testing fea- 
ture cell according to the learned background model. 
The criterion used in our experiments is based on the 
computation of two confidence values : GonfB, the 
confidence value for a testing feature cell to be back- 
ground and GnfT,  the confidence value for it to be 
man-made target. These two confidence value are 
computed by comparing the Four Nezghbor Average 
Dastance (FNAD) of a testing feature cell to R p ,  the 
average FNAD of a11 the positive training examples, 
and RN, the average FNAD of all the negative train- 
ing examples. To compute the FNAD of a feature cell, 
the feature vector is first projected into the learned 
background model which is represented by a SOM. 
The hitting neuron is found next, and the four neigh- 
bors of this hitting neuron are identified. The FNAD 
can then be calculated according to 

where ri is the Euc1idea.n distance between the test- 
ing feature vector and one of the 4-Neighbor neurons. 
From (20) we have 

(21) 

(22) 

RP = C,"=plCz$=lr1 

R N  = E21 C L  r1 
4Np 

4" 

where N p  is the number of positive training examples 
used in constructing the background model, and NN 
is the number of near-misses used. The two confidence 
values are 

Given COnfB and ConfT, the classification 
ing feature cell is obtained as, 

(23) 

(24) 

of the test- 

I = { Background if ConfB > Conj'T 
(25) Target Otherwise 

The classification confidence Cc is assigned the value 
of ConfB or Confi. accordingly. 
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Figure 2: Context reinforced background model. 

4 Reinforcement of the  background 
clutter model using context 

To be practically applicable, an ATD/R system 
must be able to detect targets under different con- 
textual conditions. One way to achieve this goal is to 
use a learning technique to associate contextual pa- 
rameters with the performance of each feature group 
in the ba.ckground model bank. The rational behind 
this association is that if a feature group can effec- 
tively detect man-made objects under a given contex- 
tual condition, then it tends to be effective for im- 
ages taken under similar contextual conditions. Since 
a human supervisor cannot provide any assistance to 
the ATD/R system in finding this association, except 
telling the system whether it is doing a “good job” 
with respect, to a specific testing image, the most suit- 
able learning technique for this task is the reinforce- 
m e n t  learning scheme [7]. Figure 2 shows how this 
reinforcement learning subsystem fits into the back- 
ground modeling process. If a feature group has a 
good performance under a certain contextual condi- 
tion, its detection result deserves a larger weight in the 
background model bank under similar contextual con- 
ditions. So, the coiztext - performance relationship can 
be replaced by a context - weight relationship, which is 
more complaint for being integrated into an automatic 
learning system. To facilitate the discussion, we define 
the following terms, which are used to formulate the 
following stochastic reinforcement learning algorithm. 
The superscript i ( i  = 1 , 2 , .  . ., n ~ )  refers to the i-th 
contextual parameter available to our BMATDR sys- 
tem. The subscript j ( j  = l , 2 ,  . . . , n ~ )  refers to the 
j-th feature group in the background model bank. 

Contex tual  P a r a m e t e r  ( c i )  is a scalar that quanti- 
fies a specific aspect of a contextual condition, it 
can be defined over continuous or discrete values. 

Contex tual  vector (C)  is a vector with each ele- 
ment being c i ,  a contextual parameter. 

Weight  Vector (W) is a real value vector with 
each element being wj , the weight of the j-th fea- 
ture group. 

Our learning problem can then be defined as: 
Given  a set  of training images  tha t  couer the  en- 
tire range of available contextual parameters ,  wi th  t h e  
background model hank having been built as  a col- 
lection of SOM’s, associate wath each BMB m e m b e r  
SOMj a stochastic t rans form f u n c t i o n  Tj, such  tha t  

The transform function Tj is stochastic because the 
Context(C) - Weight(W) relationship cannot be de- 
scribed by a deterministic function, there are always 
exceptional cases due to the high complexity of the 
real-world. 
4.1 Stochastic reinforcement learning al- 

The reinforcement learning algorithm we selected 
for learning the context-performance relationship of 
each BMB member is shown in Figure 3. It is based 
on the stochastic real valued reinforcement learning 
algorithm, which is developed by Gullapalli for train- 
ing a single actor using reinforcement as feedback [5]. 
This algorithm allows the system to learn outputs that 
take on real values. Since the performance of a feature 
group is best described as a real number, normally be- 
tween 0 and l ,  with l(0) representing the best (worst) 
performance, this algorithm meets our requirement 
very well. However, since we want to use this algo- 
rithm to cooperate the actions of n F  BMB members 
to achieve a better performance in target detection, 
we need to make changes to  the algorithm, so that it 
can handle multiple actors. 

wj = T j ( C ) .  

gorithm 
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In the stochastic reinforcement learning algorithm, 
is implemented as a random number generator ac- 

cording to the normal distribution. The mean p j ,  and 
standard deviation uj are determined by two internal 
vectors, + j  and 9j according to the following formula: 

where n denotes the n-th iteration of the learning pro- 
cess. 

where Fj ,n  is the estimated reinforcement feedback for 
the j-tli feature group after n iterations of learning. It 
can be estimated using the following formula: 

U j T n  = 1 - +j ,n  (27) 

where function f ( . )  often takes the form of 

1 
1 + e-a 

$(a) = ___ 

which maps the real line onto the interval ( 0 , l ) .  Once 
the two parameters ( p j ,  cj) are available, the weight 
for the j-th feature group can be computed by passing 
pj and uj to  a random number generator: 

wj - N ( P j  , q) (30) 
So, in the learning system, each context-to-weight 
transform function T j  is actually “remembered” as two 
internal vectors @ j  and iDj. Starting with randomly 
selected initial values, these two internal vectors learn 
to represent the Context( C )  - Weight(W) relationship 
by updating themselves according to  (31) and (32). 

@j,n+1 = @j,n  +cj,n(rj,n -Fj,n>(wj,n -p j ,n )Cn (31) 

*j,n+l = *j,n + Pn(rj,n - +j,n)Cn (32) 
where rj,,, = g(Pj,,) is the reinforcement provided by 
a critic function g ( . )  for the the j-th feature group in 
the ii-th detection trial. Vector P is the performance 
vector defined below. It is used by the critic to  judge 
the performance of the system after a detection trial. 
Figure 3 shows the data flow path of the modified 
stochastic reinforcement learning algorithm. Gulla- 
palli has provided a convergence proof of the single 
actor reinforcement learning algorithm [5]. The proof 
for the convergence of the multiple actor case can be 
performed in a similar manner. 
4.2 Implementation concerns 

To utilize this complex learning scheme to solve the 
previously defined Context( C )  - Weight( W )  problem, 
we have to  make several implementation decisions: 

Selection of contextual parameters. It is difficult 
to deal with 41 contextual parameters at the same 
time without organizing context in some hierarchical 
manner. One simple practical approach is to select a 
subset of important contextual parameters from the 
available context. In our implementation, we selected 
4 parameters to form the contextual vector. These 
parameters are 

t : Time of the day .  

d : Depression angle. 

s : Range to the target. 

p : Air temperature. 

In order to make the inner product in (26) and (28) 
meaningful, we used relative values of the contextual 
parameters in constructing the contextual vector. The 
relative value of d ,  for example, is -;, where 
d,,, and dmin are the maximum and minimum de- 
pression angle encountered in the training images. 

Performame vector P. Since all our features are re- 
gion based features, given a testing image, the image 
is first dividled into feature cells based on the range- 
to-target information. The detection result is a label 
vector 1, with each of its element being the :label of a 
feature cell. The label of the top-left feature cell is the 
first element in 1, and the label of rest of the feature 
cells are entered in a row-first manner. The easiest 
way to describe the performance of the detection is to 
compare 1 with the label vector L given by i,he learn- 
ing supervisor. Thus, the performance vector P can 
simply be P = 1 - L. 
Selection of the critic function. Since we are deal- 
ing with a two class classification problem, bsoth 1 and 
L can be a bit vector. A simple metric for the detec- 
tion performance is obtained by examining the num- 
ber of bits being set to  1 in P. So, the reinforcement 
feedback can be computed as follows: 

N b  

rj,n = $,n/Nb (33) 
k=l 

where N b  is the total number of feature cells within 
the testing image. denotes the k-th element of 
vector Pj,n which, in turn, describes the performance 
of the j-th feature group in the n-th detection trial. 
4.3 Experimental results 

In this experiment, we compare the detection per- 
formances of two background model banks learned by 
using the SOM and near-miss injection algorithm and 
20 FLIR training images. In the first background 
model bank, no contextual information is involved. 
Thus all the BMB members (each represented by a 
5 x 5 self-organizing map) in the background model 
bank are treated as equally important. Since we have 
five BMB members in our background model bank, 
the weight of each BMB member is 0.2. The second 
background model bank contains the same BMB mem- 
bers that constitute the first background model bank. 
In addition, contextual information is used to  rein- 
force this background model bank. By applying the 
stochastic reinforcement learning algorithrn given in 
Section 4.1 for 200 iterations, a relationshilp is set up 
between the importance of each BMB member and the 
underlying contextual condition. This relationship is 
represented by the two internal vectors @ and @ asso- 
ciated with each BMB member. 
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After the consbruction of these two background 
model banks, another 20 second generation FLIR im- 
ages are used as testing ima.ges. For each testing im- 
a.ge, an accompa,nied image is built by removing rows 
and columns, equal to one-half the size of the selected 
feature cell, from a.11 the four sides. By using the first 
background model bank and the classificat,ion criterion 
given in Section 3.2, out of the 217 feature cells in the 
20 testing images, we achieved a 100% detect'ion rate 
and a 12% false alarm. These 20 testing images and 
their a.ccompanied images are then classified by using 
the second background model bank. The detection 
rate obtained is 100% and false alarm decreased by 
2%. The detection confidence values of the correctly 
classified feature cells in both experiments are shown 
iii Figure 4(a). Figure 4(b) shows the confidence val- 
ues of the misclassified feature cells in both experi- 
ments. From these two figures we can see that by 
reinforcing the background model bank using contex- 
tua.1 information, the confidence values of the correctly 
classified feature cells increase, and the confidence val- 
ues of t8he misclassified feature cells decrease. The fi- 
nal effect is an improved detection performance. In 
Figure 4(c), the result is presented in a different way. 
The confidence values of the misclassified feature cells 
are represented by negative values, as before, the con- 
fidence values of the correctly classified feature cells 
are still represented as positive values. I t  can be seen 
that the context reinforced background model makes 
t,he curve of confidence values shifting upward, which 
produces a better detection result. We expect that 
further reduction in false alarms are possible by in- 
creasing the size of the training image set, which would 
expose the background model bank to more contextual 

Figure 3:  The stochastic reinforcement learning algorithm. 
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conditions. In our experiments, because of the avail- 
ability of limited experimental images, the contextual 
conditions of several testing images are significantly 
different from those of the training images. 

5 Conclusions 
Our work on the construction and enhancement of 

natural background clutter models has shown that,  
by introducing learning capabilities into an ATD/R 
system, we can build a model for the complex nat- 
ural background from real images and improve it as 
we train the system with more examples. Contextual 
parameters which contain non-imagery information of 
the training examples can be used to enhance the 
background models. How beneficial the background 
models can be to ATD/R process depends on two fac- 
tors, (a) the effectiveness of the selected features, and 
(b) better understanding of each feature's importance 
with respect t o  contextual conditions. 
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