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Abstract 

Object recognition is a multi-level process requiring a 
sequence of algorithms at low, intermediate and high levels. 
Generally, such systems are open loop with no feedback be- 
tween levels and assuring their robustness is a key challenge 
in computer vision research. A robust closed-loop system 
based on “delayed” reinforcement learning is introduced in 
this papel: The parameters of a multi-level system employed 
for model-based object recognition are learned. The method 
improves recognition results over time by using the output at 
the highest level as feedback for the learning system. It has 
been experimentally validated by learning the parameters 
of image segmentation and feature extraction and thereby 
recognizing 2 - 0  objects. The approach systematically con- 
trols feedback in a multi-level vision system and provides a 
potential solution to a long-standing problem in the$eld of 
computer vision. 

1 Introduction 

Most vision systems use a sequence of algorithms that 
operate at various stages of abstraction to perform a given 
task, such as object recognition. In earlier work that com- 
bines learning and vision [ 11, the inherent multi-stagenature 
of vision systems has not been addressed adequately. In this 
paper an approach that takes the output of the final stage and 
uses it as a feedback in a reinforcement learning framework 
to influence the performance of the lower stages of vision 
algorithms is proposed. The overall system performance is 
improved over time with this method. 

The typical approach for model-based object recognition 
[2] segments the image at the first stage, then extracts and 
selects appropriate features from the segmented image at 
the second stage, and finally matches the selected features 

‘This work was supported by ARPA/AFOSR grants F49620-93- 1-0624 
and F49620-95-0424. The contents of the paper do not necessarily reflect 
the position or the policy of the U.S. Goverment. 

1015-4651/96 $5.00 0 1996 IEEE 
Proceedings of ZCPR ’96 

to the stored model. The segmentation and feature extrac- 
tion modules use default parameters. These parameters are 
usually obtained by the system designer by following a trial 
and error method. However, the designer cannot anticipate 
all possible inputs to the algorithms; the content of the three- 
dimensional scene and the environmental conditions are not 
known apriori. The simultaneous adjustment of even a few 
system parameters is time-consuming and difficult and has 
yet to be solved satisfactorily for multi-stage systems. As 
a result, this approach is inadequate for real-world applica- 
tions because default parameters of segmentation and feature 
extraction often lead to poor recognition performance. 

If it is assumed that the model matching produces a con- 
fidence measure indicating the closeness of the selected fea- 
tures to the model, then it is natural to use this confidence 
as feedback to influence the system’s performance for seg- 
mentation and feature extraction. The broad goal of such a 
scheme is to try to find, for any given image, a set of param- 
eters for image segmentation and feature extraction in ways 
that minimize recognition errors. Applying a reinforcement 
learning algorithm to the parameters can be viewed as a 
means of doing just this when the matching confidence is 
used as reinforcement. Figure 1 shows our closed-loop re- 
inforcement learning-based system to achieve this goal. 

An additional strength of our system is that it is capable 
of providing, to the extend possible, a real solution to the 
dilemma of the desire for robust performance vs. lack of 
sufficient training data in vision research. This is possi- 
ble because the inherent stochastic nature of reinforcement 
learning allows the system to search for a large proportion of 
the search space. As a by-product, experiences captured at 
lower stages can act as a rich source of training data that can 
then be used at later stages to obtain robust performance. 

In contrast, it would be difficult, if not impossible, for 
a conventional search method to accomplish the same task. 
Simply, there are no well-defined evaluation functions at 
each of the stages for a method to search for. Furthermore, 
if a method uses the confidence of model-matching as eval- 
uation, then it is not clear how the process should proceed 
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Figure 1. Reinforcement learning-based 
multi-stage system for object recognition. 

in a systematic way. Finally, at each stage, any such method 
will have to delay its decision as to where to search next until 
the confidence of model-matching becomes available. How- 
ever, this need not be the case for the approach presented 
in this paper. From a computational standpoint, therefore, 
our approach is more attractive since the computation can 
be distributed over time more evenly, and thus under many 
circumstances can ease overall demands on the memory and 
speed. 

The original contribution of this work is to provide an in- 
cremental method based on “delayed” reinforcement learn- 
ing for inducing a general mapping from images to parame- 
ter settings in a multi-stage model-based object recognition 
system. A theoretical model is provided and its efficacy is 
validated using real-world data. 

2 Reinforcement Learning 

Reinforcement learning is a branch of artificial intel- 
ligence that studies computational approaches to learning 
from rewards and punishments (called reinforcement). In 
this paper, reinforcement corresponds to the confidence 
measure generated by the model matching (see Fig. I ) .  
This type of learning has a wide variety of applications, 
ranging from modeling behavior learning in experimental 
psychology to building active vision systems. 

A distinction can be made between non-associative and 
associative reinforcement learning. In the non-associative 
paradigm, reinforcement is the only information the sys- 
tem receives from its environment. This type of learning 
has been studied extensively in the fields of function op- 
timization and learning automata theory. Whereas, in the 
associative paradigm, the system receives input informa- 
tion that indicates the state of its environment as well as 

reinforcement. In computer vision, this state information 
corresponds to current input image and our object recogni- 
tion applications require us to take into account the changes 
appearing in the input images as a result of changing envi- 
ronmental conditions with time. The objective of the system 
is to make sequences of decisions to maximize the sum of 
future reinforcements (possibly discounted) over time. 

An additional complication to reinforcement learning is 
the timing of reinforcement. In simple tasks, the system 
receives, after each decision, reinforcement indicating the 
goodness of that decision. Immediate reinforcement often 
occurs in function optimization tasks [6], and its application 
to computer vision can be found in 111. In most complex 
tasks, however; reinforcement is often temporally delayed 
because immediate reinforcement regarding the goodness of 
a decision is unavailable. For example, in the object recog- 
nition system, the goodness of segmentation and feature 
extraction may not be reliably known until model matching 
has been performed. 

One set of effective methods for delayed reinforcement 
learning is given by the theory of dynamic programming. 
These methods involve first determining the “optimal state- 
value function”, V, which assigns to each state the expected 
total discounted reward obtained when an optimal policy is 
followed starting in that state, where apolicy is a set of rules 
for selecting actions at each state. As in 171, one can define 
a closely related function, called Q function, that assigns to 
each state-action pair a value measuring the expected total 
discounted reward obtained when the given action is taken in 
the given state and the optimal policy is followed thereafter. 
That is, using the notation that II: denotes the current state, a 
the current action, T the resulting immediate reward, and y 
the resulting next state from taking a in E, then Q(z,  a) = 

V(z) = max, Q(z, a), Pzy(u) is the probability of making 
a state transition from z to y as a result of applying action 
a, and y E [O, 1 )  is a discount factor. Note that once the 
Q-function is known it is straightforward to determine the 
optimal policy. For any state z the optimal action is simply 

The method for learning the &-function developed by 
Watkins [7], called the @learning algorithm, is based on 
maintaining an estimate 0 of the &-function and updating it 
so that equation defining Q(z, U )  above, with estimated val- 
ues substituted for the unknown actual values, comes to be 
more nearly satisfied for each state-action pair encountered. 

The advantage of the Q-learning algorithm is that when 
combined with sufficient exploration it can be guaranteed to 
eventually converge to an optimal policy [7]. The disadvan- 
tages, however, are that it is very slow to converge and may 
work poorly in problem domains that are non-Markovian. 
To overcome these weaknesses, Peng and Williams [6] have 
introduced the Q(X) learning algorithm in which the current 

fqz,  U )  +YE, ~ , , ( ~ ) V ( Y ) ,  where R(z ,  U )  = E { + I  a ) ,  

argmaa Q(z7 a).  
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1. Initialization: $(x, 3) t 0 for all 2, jj, where 2 is either an image or a segmented image and 

2 .  LOOP: 

is either an 
instance of segmentation parameters G or feature extraction parameters 6. 

0 For each image i in the training set do 
(a) Segment image i using 13; is: resulting segmented image. 
(b) Update Q(i ,  G )  according to Q(X) learning with e’ = 7 P ( i s )  - o(i, E ) ,  e = rp(i,) - Q(i)  
(c) Perform feature extraction with current value of 6 from is. 
(d) Compute the matching of each connected component (which is close to the size of the current 

(e) Update ojis, 6) and o(i, ii) according to Q(A) learning with e’ = r - $ ( i s ,  6) and 
model) against stored model and return the highest confidence level r 

e = T - V(i , )  
3. UNTIL terminating condition 

Figure 2. Main steps of the delayed reinforcement learning algorithm for parameter adjustment for 
segmentation and feature extraction. 

prediction error is used to correct previously experienced 
state-action pairs in addition to the current one. The pa- 
rameter X controls the proportion in which corrections are 
made. This is done by using the mechanism of the “activity” 
trace of state-action pair (x, U). It assigns a value to each 
experienced state-action pair with more recent ones having 
higher value. See [6] for details. 

3 Reinforcement Learning for Object Recog- 
nition 

In the multi-stage system for model-based recognition 
described in Figure I ,  there are unknown parameters for 
both the segmentation and feature extraction modules. The 
segmentation module is based on the “Phoenix” algorithm 
[4]. Phoenix uses region splitting based on histograms of 
color features and is critically dependent on system param- 
eters Hsmooth and Maxmin. While Hsmooth is the width 
of the histogram smoothing window, Maxmin defines the 
peak-to-valley height ratio threshold. The learning system 
is to search for a combination of these parameters that will 
give rise to a segmentation from which the best recognition 
can be achieved. The ranges for each of the two parameters 
are the same as those used in [3]. The resulting search space 
is about one thousand sample points. 

The feature extraction module finds polygon approxima- 
tion for borders of each of the regions obtained after image 
segmentation. The polygon approximation obtained using a 
split and merge technique, critically depends on neighbor- 
hood parameters, named M1 and M2, that affect maximum 
curvature estimations [8]. For the purpose of this paper only 
M2 is subject to adaptation. 

Object recognition employs a cluster-structure matching 
algorithm [ 5 ]  which is based on the clustering of transla- 
tional and rotational transformation between the object and 
the model for recognizing 2-D and 3-D objects. The al- 
gorithm takes as input two sets of tokens, one of which 
represents the stored model and the other represents the in- 
put region to be recognized. It then performs topological 
matching between the two token sets and computes a real 
number that indicates the confidence level of the matching 
process. This confidence level is then used as a reinforce- 
ment signal to drive the algorithm. 

The objective of the system is to autonomously find a 
set of segmentation and feature extraction parameters that 
achieve the maximum matching confidence for a given input 
image. It can be seen clearly that our model-based recog- 
nition system is a multi-stage decision process where the 
parameters Hsmooth and Maxmin are at the first stage of 
the process and the parameter M2 is at the second stage. 
Furthermore, the goodness of a particular decision such as 
selecting a combination of the segmentation parameters is 
not known until themodel matching has been performed. To 
achieve the objective, therefore, the Q(X) learning algorithm 
with the confidence as reinforcement is used to adjust the 
parameters at both the first and second stages. 

Let i be an input image to the segmentation module and 
E be an instance of segmentation parameters and 6 be an 
instance of feature extraction parameters. Also, let i s  be the 
segmented image resulting from applying 5 to image i. Then 
according to the Q-learning algorithm &( i, G )  measures how 
good the instance G is when applied to image i. Likewise, 
Q(is , 6) measures the quality of extracted features when 
b is applied to the segmented image is. When the Q(X) 
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Figure 3. A sample outdoor color image 
(Frame 1 of a 20 frame sequence) and (b) 
polygonal model of the car. 

learning algorithm is applied to the parameters the value 
of Q(i,  6) will be corrected to look more like the value of 
the segmented image, V(i , )  = maxb &(is, 6), which will in 
turn be estimated according to the matching confidence. 

Figure 2 shows the main steps of the algorithm described. 
The algorithm terminates when either the number of itera- 
tions has exceeded a prespecified value or the recognition 
confidence level has reached a given threshold. Note that in 
general there can be multiple objects in the images. 

4 Experimental Validation 

There are several representation schemes for the Q- 
function in the reinforcement learning paradigm. However, 
the goal here is to demonstrate the effect of learning for 
multi-stage recognition, a look-up table based representa- 
tion suffices. 

The two dimensions of the look-up table are the follow- 
ing: (1) input or segmented (feature-extracted) image, (2) 
action represented by a particular combination of system 
parameters. All the table entries are initialized to zero. The 
“activity” trace T r  is similarly indexed. The focus of the 
experiments is to demonstrate the feasibility of using learn- 
ing for multi-stage recognition. Also, y is set to 0.95 and X 
is set to 0.3 for all the experiments reported here. 

Figure 3(a) shows a sample of outdoor color images (1 20 
by 120) obtained under varying environmental conditions. 
These images were collected approximately every 15 min- 
utes over a - 2 and 1 /2 hour period [3]. The images exhibit 
varying shadow and reflection on the car as the position of 
the sun changed and clouds came in and out the field of view 
of the camera that had auto iris adjustment turned on. The 
overall goal is to recognize the car in the image. It should 
be noted that although the image is in color, for publication 
purposes it is being shown in grayscale. 

1.04 

Figure 4. Experimental results (training) for 
the image in Fig. 5. (a) matching confidence 
level (b) paremeter M2 (c) parameter HSMOOTH (d) 
parameter MAXMIN. 

Figure 3(b) shows the 2-D model of the car located in 
Figure 3(a). The dark squares in Figure 3(b) correspond to 
labels of the vertices in the polygonal approximation of the 
car. It is extracted manually in an interactive session from 
the first frame in the sequence and is used as the model in 
the cluster-structure matching algorithm [5]. 

Figure 4(a) shows how the confidence, averaged over 5 
runs, changes over time for the image shown in Figure 3(a). 
It should be noted that over time the confidence shown in 
Figure 4(a) increases. At the end of the training phase the 
confidence of the match is over 0.9 on a scale which varies 
between 0 and 1. For acceptable recognition, the confidence 
of matching has to be greater than 0.75 in the experiments 
reported here. 

Figures 4(b), 4(c), and 4(d) show how the M2, Hsmooth 
and Maxmin change over time for a particular run, respec- 
tively. It can be seen clearly that the learned values of M2, 
Hsmooth, and Maxmin are considerably different from their 
starting values. 

To illustrate the results further, Figure 5 shows how the 
segmentation of the image improves over time during train- 
ing. Figure 5(a) depicts the segmentation before applying 
the learning algorithm. Figures 5(b) and 5(c) depict the seg- 
mentation after 1/3 and 2/3 of total time (600 iterations) for 
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Figure 5. Improvement of the segmentation 
over time. (a) initial segmentation (b) segmentation 
at time step 200 (c) segmentation at time step 400 (d) 
segmentation at time step 600. 

Figure 6. Polygonal approximation of the car. 
(a) default M2 parameter (b) learned M2 parameter. 

training has elapsed, respectively. Figure 5(d) depicts the 
segmentation at the end of the training phase. It can be seen 
that the results improve considerably. While Figure 6(a) 
shows the extracted features (polygonal approximation of 
the car) using the default M2 parameter, Figure 6(b) shows 
the same feature using the learned M2 parameter that results 
in high matching confidence. 

5 Conclusions 

In the experiments we have used a look-up table to repre- 
sent the Q function. However, look-up table representation 
may not be highly adequate in complex systems since search 
space is often too large to allocate entire memory. A poten- 

tial solution to this problem is to first classify input images 
into representative groups using algorithms such as the K- 
Means algorithm, and then allocate memory only to these 
groups. In general, however, compact function represen- 
tation schemes that can generalize across spaces must be 
sought. 

The model-based system presented in this paper uses the 
recognition component as part of the evaluation functions 
for controlling feedback and learning parameters for image 
segmentation and feature extraction in a systematic way. If 
vision systems could be designed in one-stage as a single 
black box, the “simple” reinforcement paradigm would have 
sufficed [ 11. However, in reality vision systems have mul- 
tiple stages for real-world tasks with parameters that need 
to be adjusted at each stage. Delayed reinforcement learn- 
ing based approach presented here provides an elegant and 
effective solution to the problem of object recognition in 
multi-stage systems. 
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