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Abstract 

This paper focuses on developing self-adapting auto- 
matic object detection systems to achieve robust per- 
formance. Two general methodologies for performance 
improvement are first introduced. They are based on 
optimization of parameters of an algorithm and adap- 
tation of the input to  an algorithm. Different modified 
Hebbian learning rules are used to  build adaptive feature 
extractors which transform the input data into a desired 
form for a given object detection algorithm. To show 
its feasibility, input adaptors for object detection are de- 
signed and tested using multisensor data including SAR, 
FLIR, and color images. Test results are presented and 
discussed in the paper. 

1 Introduction 

Automatic object detection is of great importance for 
many vision based real-world applications. An auto- 
matic object detection system should be able to locate 
objects of interest in the input images produced by dif- 
ferent sensors such as CCD cameras, infrared sensors, 
radars and multispectral scanners. Although many au- 
tomatic object detection systems have been developed, 
their performance is still limited [$I. This paper is mo- 
tivated by the increased demand for new theories and 
methodologies to improve system performance [3, 8, 91 
and to  minimize the effort needed for the development of 
robust object detection systems. The original contribu- 
tion of this paper is the idea that the performance of a 
given algorithm can be improved by adding an adaptor 
between the input data and the algorithm. This is an 
input adaptive process and is based on the observation 
that most algorithms would perform well if the desired 
input data can be provided to them. Different kinds of 
Hebbian-like learning rules are introduced and applied to 
developing such adaptors. The feasibility of this method- 
ology for performance improvement is demonstrated by 
experimental results using multisensor data. 

*This work was supported by ARPA, AFOSR grants F49620-93- 
1-0624, F49620-95-1-0424 and MDA972-93-1-0010. The contents 
of the information do not necessarily reflect the position or the 
policy of the U.S. Government. 

2 Parameter Optimization Versus Input 
Adaptation for Performance Improve- 
ments 

The first methodology is based on the consideration 
that some algorithms and systems have certain control- 
lability and their performance can be improved by tun- 
ing their parameters [l]. To find the best parameter set 
for the given input data a learning and optimizing pro- 
cess is usually required. This methodology is, therefore, 
parameter optimizing oriented. As shown in Figure 1, 
parameter optimizing based methodology employs dif- 
ferent parameter set for different input data in order to 
obtain the optimal output. However, this methodology 
suffers from some inherent shortcomings: (a) It is driven 
by both the input data and the output data. It has to  
have an off-line learning phase. This leads to the diffi- 
culty of sample collection because some input situations 
are not predictable. Besides, the off-line learning pro- 
cess is usually time consuming. (b) In order to  use the 
trained algorithm, information about the possible cate- 
gory of the input data is needed before the appropriate 
parameter set can be switched on. This means that the 
trained algorithm works only with an additional input 
identifier which triggers the corresponding parameter set. 
Certainly the design of such an identifier is as hard as 
that of the algorithm itself. (c) The performance of an 
algorithm cannot be always improved by optimizing the 
parameter set because the gradients of objective func- 
tions of some algorithms with respect to  their parame- 
ters are too small. So not all algorithms can be improved 
by using this methodology. 

The second methodology for performance improve- 
ment is based on the observation that most algorithms 
would perform well if their input data are “friendly”, as 
discussed above. Thus, the performance of almost all 
commonly used algorithms can be improved by adding 
an adaptor between the input data and the algorithm 
(see Figure 2). An ideal adaptor should automatically 
judge the input data, provide the desired input data to 
an algorithm, and learn something from this process in 
order to improve itself in the future. 

In comparison with the parameter optimizing based 
methodology, the input adapting methodology presented 
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Figure 2: Input adapting methodology for performance 
improvement. 

n 5 m) and salient (because of E ( p ( u ) )  -+ min,v E v).  
Thus E(.) is a measure of saliency which depends on the 
loss function p(.). 

A simple example of the representation transforma- 
tion is the linear mapping W which transforms the m- 
dimensional input representation x to  n-dimensionalout- 
put representation by using 

Figure 1 : Parameter optimizing methodology for perfor- 
mance improvement. 

in this papaer has some positive features such as: (a) It 
is suitable for almost all algorithms because the desired 
input data (not always the perfect input data) always ex- 
ists for a given algorithm. (b) It is driven only by the in- 
put data. So it can work both on-line and off-line. This is 
very important for real-world and real-time applications. 
(c) This methodology makes it possible to  combine some 
simple, ready-made available algorithms to  build vision 
systems that exhibit high level performance. Without 
adding adaptors, these simple algorithms may be unreli- 
able for practical applications, although they have simple 
structures and are not time consuming. 

3 Representations Versus Salient Fea- 
tures 

Most commonly used algorithms can show good 
performance only if their input representations have 
some “friendly” characteristics. To keep their perfor- 
mance high even if the input representations are not so 
“friendly”, adaptors are needed which transform the in- 
put representations to some salient features. Thus, an 
adaptor can also be regarded as a salient feature extrac- 
tor. The key issue in input adapting methodology for 
performance improvement is how to design an adaptor 
or feature extractor for each algorithm at each stage of 
the representation transformation. 

3.1 Optimal Feature Extraction 

From a mathematical viewpoint, feature extraction is 
a transformation from a m-dimensional input represen- 
tation x to  a n-dimensional output representation v,  so 
that n 5 m and for each v E v the expected value of 
p(v)  is minimized: 

E(p(v ) )  = /+a p(v )p (v )dv  + min, (1) 
--CO 

where p ( . )  is a “loss” function, E(.) is the risk (the ex- 
pected value of the loss), and p ( . )  is the probability den- 
sity function of U. This means that the transformed 
representation v should be less redundant (because of 

v = w x  = (Wl, wg, . . . , Wm)TX. (2) 

In this case, W is a feature extractor if v has some nice 
properties. The feature extractor W can be realized by 
using a single-layer linear feed-forward netwcrk. 

As can be seen, the basic unit of this network is a m 
to 1 mapping 

v = WTX = XTW, 2, E v. ( 3 )  

The basic unit can also be nonlinear. In this case the m 
to 1 mapping is formulated by 

(4) 
T T 

2, = T ( W  x) = T ( x  w),  2, E v ,  

where T(.) is nonlinear function. The mapping ( 3 )  or 
(4) is salient or interesting if E(p(v ) )  is minimized. The 
key issue of constructing a feature extractor is thus the 
design of the loss function. 

Before the loss function can be designed, the question 
of which 2, is “salient” or “interesting” should be first 
defined. Certainly, no universal agreement on this ques- 
tion can be expected. Two general definitions about the 
saliency of v that we have are: 

Expressiveness: U is salient if it is expressive. 

0 Discrimination: v is salient if it is dzscrzminatzng. 

In the following the problem of how to extract these fea- 
tures is addressed. 

3.2 Expressive Feature 

Let us consider a set of m-dimensional input repre- 
sentations X = { X I ,  x2,. . . , xt} which builds a “cloud” 
of points in the m-dimensional space. It is clear that 
each point x E X can be projected onto a direction de- 
termined by the vector w by using Equation (3) or (4) 
and the result of this projection is U. Figure 3 just shows 
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Figure 3: A point cloud in a 2-dimensional space. 

a case of m = 2. Now the problem is which projection 
direction is interesting. 

As shown in Figure 3 the first interesting direction 
is V E  because the projections of all points onto this di- 
rection have the maximal variance and V E  is, therefore, 
expressive. It can be proved that WE is determined by 
that w which is the largest eigenvector associated with 
the largest eigenvalue of the correlation matrix 

Q = E ( x x ~ ) .  (5) 

Let us first define a loss function 

The risk E(pc)  can be calculated by 

1 1 
2 2 E(pc)  = -E(v2 )  = -wTQw. 

Minimizing E ( p c )  requires 

dE 
d W  

aw = - = QW = Q .  

This leads to famous plain Hebbian learning rule 

(7) 

A w ~  = V V X ~ ,  (9) 

where wi and xi are the ith component of w and x re- 
spectively, and v controls the learning rate as usual. It 
can be seen that Hebbian learning is controlled by both 
the input (through x i )  and the output (through w). 

Equation (8) tells that w is an eigenvector of Q with 
eigenvalue 0. But this could never be stable, because 
Q necessarily has some positive eigenvalues; any Auc- 
tuation having a component along an eigenvector with 
positive eigenvalue would grow exponentially. It might 
be suspected that the direction with the largest eigen- 
value of Q would eventually become dominant, so that w 
would gradually approach the eigenvector corresponding 
to the largest eigenvalue with a increasingly huge norm. 
Certainly, w does not settle down in any case. There 

are only unstable fixed points for plain Hebbian learning 
procedure (9). 

Let us modify the loss function (6) to  

1 
PE = - 2 [w2 - E(w’)wTw]. 

The risk E ( ~ E )  can be calculated by 

1 
E ( p E )  = ?(E(”’) - E ( V 2 ) W T W )  

1 
= ;(wTQw - E(v’)w~w) .  

L 

Since the risk is continuously differentiable, the opti- 
mization of (11) can be achieved, via a gradient descent 
method, with respect to  w: 

AW = - dE = QW - E(w’)w = 0. 
aw 

Clearly, an equilibrium can be reached if w is the eigen- 
vector associated with one eigenvalue, say the largest 
one, of Q and E(w2) is just the eigenvalue. 

Equation (12) leads to the learning rule suggested by 
Oja [6]. According to  this rule, each input x E X is 
applied to  adapt the weight w by using 

A w ~  = v ~ ( x i  - U W ~ ) ,  (13) 
where wi and xi are the ith component of w and x re- 
spectively, and v controls the learning rate. The learn- 
ing rule (13) is a generalized version of Hebbian learning 
rule (9) which has been so widely applied to  develop un- 
supervised learning networks. 

Comparing the loss function (10) with (6) shows that 
these Hebbian-like learning rules are based on second 
order statistics as they usually use second order poly- 
nomials for measuring the interest and they lead to ex- 
traction of principal components (PC) of the input data 
[5,6,7]. It can be proved [5] that minimizingthe risk (11) 
is equivalent to maximizing the information content of 
the output representation in situations where that has a 
Gaussian distribution. 

The direction V E  found in this way allows faithful rep- 
resentation of the input data and the projection of the 
point cloud onto this direction can also show interest- 
ing structure if the cloud contains a few clusters and the 
separation between clusters is larger than the internal 
scatter of the clusters. However, the direction V E  can 
lead us astray if the cloud shows too many isotropically 
distributed clusters or if there are meaningless variables 
(2i’s) with a high noise level. In these two cases, the 
output representation W E  doesn’t allow discrimination 
between clusters (see the example in Figure 3) .  This 
means that second order polynomials are not sufficient 
to characterize the important features of an input dis- 
tribution and all second order statistics based feature 
extractors cannot provide features which are discrimi- 
nating enough for recognizing the structure in the input 
representation. 
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3.3 Discriminating Feature Adaptor 

As shown in Figure 3, the second interesting direc- 
tion is V D  because the projections of all points onto this 
direction can enable us to better distinguish the inter- 
esting structure (clusters) presented in the cloud and w~ 
is, therefore, dascrzmaaating. 

In order to  find this direction, a measure sensitive 
to  distributions which are far from Gaussian is needed. 
As already discussed, second order polynomials such as 
shown in (10) cannot be used for measuring deviation 
from normality. To emphasize bi- or multi-modality of 
the projected distribution, higher order polynomials are 
required and care should be taken to avoid their over- 
sensitivity to small number of outliers. 

Let us define a loss function 

where r(v) can be regarded as a weighting function. 
The loss function p~ is small if v is close to zero or 
to 3E(w2)/4. Moreover, it remains negative for v > 
3E(w2)/4. Thus, p~ as an index can exhibit the fact 
that bimodal distribution is already interesting, and any 
additional mode should make the distribution even more 
interesting. 

Actually, any radial basis function (see [9]) can be 
used as the weighting function in Equation (14) to de- 
sign interesting loss functions. The advantage of r ( ~ )  
used in Equation (14) is its connection to the Bienen- 
stock, Cooper, and Munro (BCM) theory of visual cor- 
tical plasticity [2, 41. 

The expected value of p~ is given by: 

1 1 
4 3 

1 1 
4 3 

E ( p D )  = -E2(v2 )  - - E ( v 3 )  

(15) = -E(v2)wTQw - -E(w3). 

To achieve E ( ~ D )  t min, the equation 

should be satisfied. This leads to  a learning rule 

a w i  = q [WZ - E(w2)vl xi, (17) 

where zi is the ith component of x and q controls the 
learning rate. 

The difference between the learning rule (17) and Heb- 
bian learning rule (9) is the fact that the influence of the 
output on the learning process (the feedback) has been 
changed from v in (9) to v 2 - E ( v 2 ) v  in (17). This enables 
the learning rule (17) to discover bimodal distributions 
as Awi in (17) (unlike in (9)) has opposite value depend- 
ing on if v is larger or smaller than E ( v 2 ) .  

Figure 4: Input adapting for the image thresholding al- 
gorithm. 

Unfortunately, the learning rule (17) has the same di- 
vergence problem like Hebbian learning rule (9) and in 
any case w does not settle down. One way to  prevent 
the divergence of w is to constrain the growth of w by 
modifying the loss function (14): 

pz = v 2  [T E(v2 1 - y ]  - E(v2)wTw. (18) 

This leads to a new learning rule obtained by adding a 
weight decay to the learning rule (17): 

A w ~  = 7 [v2 - E ( v ~ ) v ]  ( ~ i  - W W ~ ) .  (19) 

So far four different learning rules have been intro- 
duced. They are based on four different loss functions 
(see Table 1) and can be applied to  extracting expressive 
and discriminating features. In Table 1, EF denotes "ex- 
pressive features" and DF denotes "discriminating fea- 
tures". 

4 Adaptive Object Detection 

4.1 Adaptor Design 

Figure 4 shows an adaptor which is designed for the 
image thresholding algorithm. The key idea for design- 
ing this adaptor is to  decompose the input image into 
some local measure images and then to  adaptively ex- 
tract salient features from these local measure images 
based on the modified Hebbian learning rules presented 
above. In order to derive local measures for each pixel 
in the input image, the quadrature Gabor filter kernels 

+ cos[w (z cos qh + y sin q h ) ]  (20) 

. sin[w (Z cos qh + y sin q h ) ]  (21) 
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The Loss Function 

PG = 7" 1 2  

I11 

~ IV 

The Learning Rule Suitability 

Aw; = ?pxj EF 

where w and q5 are the modulation (center) frequency 
and orienttation, respectively, of the Gabor filter kernel; X 
is the ratio of the channel bandwidth and the modulation 
frequency; andI+(x ,y ,w ,4 )  andI-(z,y,w,q5) are Gabor 
space image descriptions. From these descriptions it is 
easy to derive some local measures. In Figure 4 the power 

P ( Z ,  U, , 4) = 1: (z, Y, U, 4) + 1: (.l Y, w ,  4) (23) 

is used as a local measure of the input image I(x, y). So 
far m power images can be obtained and m depends on 
the quantization of w and 4. This means a local measure 
vector with m elements is associated with each pixel of 
the input image. 

Each element of the local measure vector is a represen- 
tation to describe the local property of the input image 
but it is not just the right feature to discriminate clus- 
ters depicted in the input image. The most discriminat- 
ing feature should be found in the m-dimensional local 
measure space based on the structure presented by all 
local measure vectors in the input image. This requires 
a m to  1 feature extractor A which is trained by using 
the learning rule (17) or (19) as described above. 

To reduce high frequency components in the input 
data two feature extractors B* and C* are introduced 
into the adaptor shown in Figure 4. They are actually 
two convolution kernels with n x n elements which should 
be trained by using the learning rule (9) or (13) as de- 
scribed above. 

After the convolution using BI and C* two feature 
images can be produced which should be integrated by 
the feature extractor D in order to supply desired images 
for the thresholding algorithm. The feature extractor D 
performs a 2 to 1 transformation and is trained by using 
the learning rule (17) or (19). 

Now the adaptor is able to produce desired input im- 
ages for the thresholding algorithm (see Figure 4). It 

a b C 

Figure 5: Test Result Using SAR Images. 

is obvious that the output images in Figure 4 are bet- 
ter than the input images in Figure 4 to be used as 
the input images for the thresholding algorithm because 
the object in the center is better discriminated from the 
background. Thus, the performance of the thresholding 
algorithm can be improved by using the adaptor. 

4.2 Experimental Result for Adaptive Tar- 
get Detection 

Figure 5 shows the test result of target detection sys- 
tem using SAR image data. The column a shows the 
input images. The column b shows the test results using 
the thresholding algorithm. The column c shows the test 
results using the thresholding algorithm plus the input 
adaptor. It can be seen that even a simple algorithm 
can perform well if its input data are properly prepared 
by an input adaptor. This means that adding an input 
adaptor can enlarge the dynamic range of an algorithm 
and improve its performance. 

Figure 6 shows another example of target detection in 
a FLIR (Forward Looking Infrared) image by using the 
same system. Again, the image a is the input image. The 
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image b and c show the test results using the threshold- 
ing algorithm without and with the input adaptor. As 
can be seen, the performance of the system is satisfied 
even when the input image has different properties as 
used before. 

9 

13 

a 

0.583240 0.567947 0.580755 

0.585854 0.577843 0.568225 

b C 

Figure 6: Test Result Using a FLIR Image. 

4.3 Detection of Colored Objects 

The first step to design a system for object detection 
from a color image is the specification of an object. An 
object, for instance, can be defined as a connected re- 
gion in a color image which has a special shape such as 
circle or rectangle. It can also be defined as a connected 
region which has a given color topology such as a red 
region surrounded by a yellow region. In this paper, an 
object in a color image is defined as a connected region 
which is small and well colored. Figure 7 shows a sam- 
ple image. The scene is photographed approximately ev- 
ery 15 minutes over a four hour period by using a fixed 
JVC GXF700U color video camera. A total of 20 im- 
age frames are obtained in this way and only four of 
them are selected for the experiment. The time and the 
weather condition of these four color images are: Frame 
1, 1:20pm, Sunny; Frame 5, 2:15pm, Sunny; Frame 9, 
3:15pm, Sunny; and Frame 13, 4:45pm, Sunny. 

The colors of the car and traffic sign in Frame 13 
are subdued since they are located under the shadow 
of the trees when Frame 13 was taken. However, these 
objects are well colored in Frame 1, because there was no 
shadow at 1:20 pm when Frame 1 was taken. This can be 
seen if all the pixels of both Frames are mapped into the 
RGB color space (see Figure 8). The R, G, and B val- 
ues of all pixels in Figure 8 are normalized in the range 
[-0.5,0.5]. As shown in Figure 8,  all pixels in Frame 
13 are located along the line segment between the point 
[-0.5, -0.5, -0.51 and the point [0.5,0.5,0.5]. This line 
can be thought of as a colorless line. This means that the 
saturation or the color of all pixels in Frame 13 is rela- 
tively low because they are located close to the colorless 
line. 

On the contrary, some pixels in Frame 1 are located 
away from the colorless line and the saturation of these 
pixels is relatively good. These pixels are well separated 
from the pixel group around the colorless line and can be 
regarded as outliers of this pixel group. Thus, they can 

Figure 7: An outdoor scene with a car and a yellow traffic 
sign near the car. 

Table 2: Weights after training by using the learning rule 
I1 

Image Used for 

Training 

5 I 0.585867 I0.590048 10.555533 I 

be defined as well colored pixels which build regions of 
interest in Frame 1. In the following we describe how to 
develop an adaptive system to find these outlier pixels. 

It is first interesting to know what happens if all pixels 
in a color image are applied to train the 3 to  1 feedfor- 
ward network by using Hebbian-like learning rules shown 
in Table 1. The weights of this 3 to 1 feedforward net- 
work obtained after training by using the learning rule I1 
and I11 in Table 1 are shown in Table 2 and Table 3, re- 
spectively. The trained network can then be used to map 
a color image into a gray scale image. Figure 9 shows 
the gray scale images mapped for Frame 1 and Frame 
13. The first row in Figure 9 shows the images mapped 
by using the weights listed in Table 2, while the second 
row in Figure 9 shows the images mapped by using the 
weights listed in Table 3. 

If the two mapped images shown in the second row 
of Figure 9 are compared, we can see that the car and 
the traffic sign are much better separable from the back- 
ground in Frame 1 than in Frame 13. This means that, 
although Frame 13 has three color channels R, G and B, 
the color information encoded in this frame is so weak 
that this frame can be regarded as almost colorless. In 
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Frame 1 Frame 13 

I 

Figure 8: Image pixels are mapped into the RGB color space. 

Table 3: Weights after training by using the learning rule 
I11 

Training 

0.691818 

0.685157 

0.727544 

13 0.657560 

fact, most of the information in 

w2 

-0.716642 

-0.724709 

-0.685147 

-0.749287 

w3 

0.088382 

0.073194 

-0.035408 

0.078640 

kame 13 is encoded in a 
gray scale image which is the right image in the first row 
of Figure 9, because it was obtained by using the most 
expressive mapping and this mapping was determined by 
using all the pixels in Frame 13 as the training data and 
the modified Hebbian learning rule I1 in Table 1. 

The well colored objects such as the car and the traffic 
sign in this image (the left image of second row shown 
in Figure 9) are separable from the background. To un- 
derstand this, all selected frames are transformed by US- 

ing such mapping (see the first row of Figure 10) and 
compared with their saturation (see the second row of 
Figure 10). It is clear that the adaptive mapping ob- 
tained by using the modified Hebbian learning rule I11 
or IV in Table 1 discriminates well-colored objects from 
the background. The left image of Figure 11 shows the 
object detection result from Frame 1 after thresholding 
the results shown in the top left image of Figure 10. This 
image can be further used for post-processing. The right 

Frame 1 Frame 13 

Figure 9: Grey scale images obtained by adaptive map- 
ping. 

image of Figure 11 shows the post-processing result using 
morphological filtering followed by color based filtering. 

5 Conclusions 

In this paper, the attention was paid on how to to 
improve the performance of object detection systems by 
adding the adaptability to ready-made available algo- 
rithms without changing their internal structure. The 

639 



Frame 1 Frame 5 

Figure 10: The discriminati 

Before Post-Processing 

Frame 9 Frame 13 

; mapping used to color images and compared with the saturation mapping 

After Post-Processing 

Figure 11: The object detection from Frame 1, before 
and after post-processing 

input adapting based approach presented here provides 
a promising solution to improve the performance of pat- 
tern recognition and computer vision algorithms and sys- 
tems to meet requirements of real-world applications. 

References 

[l] B. Bhanu and S. Lee. Genetzc Learnzng for Adaptzve 
Image Segmentatzon. Kluwer Academic Publishers, 
1994. 

[2] E. L. Bienenstock, L. N. Cooper, and P. W. Munro. 
Theory for the development of neuron selectivity: 
Orientation specificity and binocular interaction in 
visual cortex. Journal Neurosczence, 2:32-48, 1982. 

[3]  R. M. Haralick. Performance characterization pro- 
tocol in computer vision. In Proc. Performance Ver- 

sus Methodology zn Computer Vision, pages 26-32, 
Seattle, WA, June 1994. 

[4] N. Intrator and L. N. Cooper. Objective function 
formulation of the BCM theory of visual cortical 
plasticity: Statistical connections, stability condi- 
tions. Neural Networks, 5:3-17, 1992. 

[5] R. Linsker. Self-organisation in a perceptual net- 
work. Computer, 21(3):105-117, 1988. 

[B] E. Oja. A simplified neuron model as a principal 
component analyzer. Journal of Mathematzcal Bz- 
Ology, 15~267-273, 1982. 

[7] T. D. Sanger. Optimal unsupervised learning in a 
single-layer linear feedforward neural network. Neu- 
ral Network, 2:459-473, 1989. 

[8] Y.-J. Zheng. Feature extraction and image segmen- 
tation using self-organization networks. Machzne 
Vzszon and Applzcatzons, 8(5):262-274, 1995. 

[9] Y.-J. Zheng, W. Ritter, and R. Janssen. An adap- 
tive system for traffic sign recognition. In Proc. In- 
tellzgent Vehzcles Symposzum, pages 165-170, Octo- 
ber 1994. 

640 


