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Abstract 
a b d 

This paper focuses on the issue of developing self-adapting au- 
tomatic object detection systems for improving their performance. 
’ b o  general methodologies for performance improvement are first 
introduced. They are based on parameter optimizing and input 
adapting. Different modified Hebbian learning rules are developed 
to build adaptive feature extractors which transform the input data 
into a desired form for a given algorithm. To show its feasibility, 
an input adaptor for object detection is designed as an example 
and tested using multisensor data (optical, SAR, and FLIR). Test 
results are presented and discussed in the paper. 

1. Introduction 

This paper is motivated by the increased demand for new the- 
ories and methodologies to characterize and improve system per- 
formance [3 ,7 ,8]  and to minimize the effort needed for the devel- 
opment of robust systems for practical applications of computer 
vision and pattern recognition. The original contribution of this 
paper is the idea that the performance of a given algorithm can 
be improved by adding an adaptor between the input data and the 
algorithm. 

When a pattern recognition and computer vision system is not 
performing satisfactorily, generally, we find that the new input data 
consist of variations which are not modeled and considered during 
the design process of the system. To show this, four synthetic 
images with different grades of “complexity” are generated (see 
the first row in Figure 1) and used as the input data to an algo- 
rithm which groups each image pixel into two classes (target or 
background). The algorithm is developed based on the K-Means 
principle and A‘ is set to 2 for the test. The second row in Figure 1 
shows the performance of the image thresholding algorithm. It 
can be seen that the algorithm performs well if the input image is 
ideal or just contains a normally distributed random perturbation 
(cases a and b). This is because this perturbation is considered 
and modeled in the algorithm. Actually each algorithm has its 
own perturbation model and can, therefore, deal with some input 
perturbations. However, if the input perturbation is unexpected 
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Figure 1. The performance of an image 
thresholding algorithm. 

and does not fulfill its model in the algorithm, the algorithm cannot 
produce reasonable results (see the results for cases c and a). 

2. Parameter Optimization or Input Adapta- 
tion 

Generally speaking, there are two methodologies for adapta- 
tion. The first methodology is based on the consideration that 
some algorithms and systems have certain controllability and their 
performance can be improved by tuning their parameters [ 13. To 
find the best parameter set for the given input data a leaming and 
optimizing process is usually required. This parameter optimizing 
oriented methodology, as shown in Figure 2, employs different 
parameter set for different input data in order to obtain the optimal 
output. However, this methodology suffers from some inherent 
shortcomings: 

e It is driven by both the input data and the output data. It 
has to have an off-line learning phase. This means that 
the correspondence between the input data and the appro- 
priate parameter sets should be first established during an 
off-line learning process before the algorithm can possess 
the required adaptability. To perform the off-line learning 
requires good and enough data samples. 
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Figure 2. Parameter optimizing methodology 
for performance improvement. 

0 In order to use the trained algorithm, information about the 
possible category of the input data is needed before the 
appropriate parameter set can be switched on. This means 
that the trained algorithm works only with an additional 
input identifier which triggers the corresponding parameter 
set. Certainly the design of such an identifier is as hard as 
that of the algorithm itself. 

0 The performance of an algorithm cannot always be im- 
proved by optimizing the parameter set because the gradi- 
ents of objective functions of some algorithms with respect 
to their parameters are too small. Not all algorithms can be 
improved by using this methodology. 

Due to these shortcomings,the potential application of this method- 
ology to a real-world problem is limited, although some research 
has recently been done in this area [I] .  

The second methodology for performance improvement is 
based on the observation that most algorithms would perform well 
if their input data are “friendly”, as discussed above. Thus, the per- 
formance of almost all commonly used algorithms can be improved 
by adding an adaptor between the input data and the algorithm (see 
Figure 3). An ideal adaptor should automatically judge the in- 
put data, provide the desired input data to an algorithm, and leam 
something from this process in order to improve itself in the future. 

In comparison with the parameter optimizing based methodol- 
ogy, the input adapting methodology has some positive features 
such as: 

0 It is suitable for almost all algorithms because the desired 
input data (not always the perfect input data) always exists 
for a given algorithm. 

0 It is driven only by the input data. So it can work both 
on-line and off-line. This is very important for real-world 
and real-time applications. 

0 It makes it possible to combine some simple, ready-made 
available algorithms to build vision systems that exhibit 
high level of performance. Without adding adaptors, these 
simple algorithms may be unreliable for applications, al- 
though they may have simple structures and may not be 
time consuming. 

3. Representations Versus Salient Features 

Pattem recognition and computer vision can be thought of as 
a multistage process of representation transformation from an im- 

Figure 3. Input adapting methodology for per- 
formance improvement. 

plicit raster image of a given scene to an explicit map describing 
the meaning of that scene. Each two adjacent stages are linked by 
algorithms which transform an input representation to an output 
representation. As mentioned above, many commonly used algo- 
rithms are only designed to deal with those input representations 
which are relatively “friendly”. This means that these input rep- 
resentations contain less spurious and erroneous information and 
have more explicitness. To distinguish these desired representa- 
tions from others, we define them as salient features. So, salient 
features are those input representations which possess some “nice” 
properties, and therefore, desired by a given algorithm. To keep 
an algorithm’s performance high even if the input representations 
are not so “friendly”, adaptors are needed which transform the in- 
put representations to some salient features. Thus, an adaptor can 
also be regarded as a salient feature extractor. The key issue in 
input adapting methodology for performance improvement is how 
to design an adaptor or feature extractor for each algorithm at each 
stage of the representation transformation. 

3.1. Optimal Feature Extraction 

From a mathematical viewpoint, feature extraction is a trans- 
formation from a m-dimensional input representation x to a n- 
dimensional output representation v, so that n 5 m and for each 
o E v the expected value of p (  v )  is minimized: 

E ( p ( u ) )  = Itm p(w)p(w)dw + min, (1) 
J -CO 

where p ( . )  is a “loss” function, E(.)  is the risk (the expected 
value of the loss), and p(.) is the probability density function 
of v .  This means that the transformed representation v should 
be less redundant (because of n 5 m) and salient (because of 
E ( p ( u ) )  -+ min, v E v). Thus E(.)  is a measure of saliency 
which depends on the loss function p (  .). 

A simple example of the representation transformation is the 
linear mapping W which transforms the m-dimensional input rep- 
resentation x to n-dimensional output representation v by using 

v = wx = (W!, w2,. ’ .  , W,)TX. 

In this case, W is a feature extractor if v has some nice properties. 
The feature extractor W can be realized by using a single-layer 
linear feed-forward network and its basic unit is a m to 1 mapping 

2) = W T X  = XTW, v E v. (3) 
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This leads to famous plain Hebbian learning rule 

Aw, = t p x , ,  (8) 

where w, and xl are the a t h  component of w and x respectively, 
Awl is the change in w,, and q controls the leaming rate as usual. 
It can be seen that Hebbian leaming is controlled by both the input 
(through 2,) and the output (through U). It is well-known that 
there are only unstable fixed points for plain Hebbian leaming 
procedure (8) ( [6] ) .  

Let us modify the loss function (5) to 

Figure 4. A point cloud in a 2-dimensional 
space. 

The basic unit can also be nonlinear. In this case the m to 1 
mapping is formulated by 

U = T(WTX) = T(XTW),  U E v, (4) 

where T (  .) is nonlinear function. The mapping (3) or (4) is salient 
or interesting if E(p(u)) is minimized. The key issue of con- 
structing a feature extractor is thus the design of the loss function. 
Before the loss function can be designed, the question of which u 
is “salient” or “interesting” should be first defined. N o  general 
definitions about the saliency of w that we have are: 

Expressiveness: w is salient if it is expressive. 

0 Discrimination: U is salient if it is discriminating. 

3.2. Expressive Feature 

Let us consider a set of m-dimensional vector X = 
{xi, x2,. . . , xt} which builds a “cloud” of points in the m- 
dimensional space. It is clear that each point x E X can be 
projected onto a direction determined by the vector w by using 
Equation (3) or (4) and the result of this projection is u. Figure 4 
just shows a case of m = 2. Now the problem is which projection 
direction is interesting. 

As shown in Figure 4, the first interesting direction is U E  be- 
cause the projection of all points onto this direction has the max- 
imal variance and u E is, therefore, expressive. It can be proved 
that U E  is determined by that w which is the largest eigenvector 
associated with the largest eigenvalue of the correlation matrix 
Q = E(xxr).  Let us first define a loss function 

The risk E(pc) can be calculated by 

(6) 
1 1 

E(PG) = -E(w2) 2 = - w ~ Q w .  2 

Minimizing E( p ~ )  requires 

aE 
dW AW = - = QW = 0. (7) 

1 
P E  = - 2 [W’-  E(W2)WTW]. 

The risk E(PE) can be calculated by 

1 
E ( P E )  = -(E(v2) 2 - E ( w ’ ) w ~ w )  

1 
2 = -(w’&w - E ( w ’ ) w ~ w ) .  (10) 

Since the risk is continuously differentiable, the optimization of 
(10) can be achieved, via a gradient descent method, with respect 
tow: 

(1 1) AW = - = QW - E(u*)w = 0. 

Clearly, an equilibrium can be reached if w is the eigenvector 
associated with one eigenvalue, say the largest one, of Q and 
E(.’) is just the eigenvalue. 

Equation (1 1) leads to the leaming rule suggested by Oja ( [6]) .  
According to this rule, each input x E X is applied to adapt the 
weight w by using 

dE 
aw 

Aw, = qu(x, - W W ~ ) .  (12) 

The leaming rule (1 2)  is a generalized version of Hebbian learning 
rule ( 8) which has been widely applied to develop unsupervised 
leaming networks. 

Comparing the loss function (9) with (5) shows that these 
Hebbian-like leaming rules are based on second order statistics 
as they usually use second order polynomials for measuring the 
interest and they lead to extraction of principal components (PC) 
of the input data [5 ,  61. It can be proved [5 ]  that minimizing the 
risk (10) is equivalent to maximizing the information content of the 
output representation in situations where the data has a Gaussian 
distribution. 

The direction U E  found in this way allows faithful representa- 
tion of the input data and the projection of the point cloud onto this 
direction can also show interesting structure if the cloud contains 
a few clusters and the separation between clusters is larger than 
the intemal scatter of the clusters. However, the direction W E  can 
lead us astray if the cloud shows too many isotropically distributed 
clusters or if the data has a high noise level. In these two cases, 
the output representation UE doesn’t allow discrimination between 
clusters (see the example in Figure 4). This means that second 
order polynomials are not sufficient to characterize the important 
features of an input distribution and all secondorder statistics based 
feature extractors cannot provide features which are discriminating 
enough for recognizing the structure in the input representation. 
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3.3. Discriminating Feature 

As shown in Figure 4, the second interesting direction is V D  

because the projections of all points onto this direction can enable 
us to better distinguish the interesting structure (clusters) presented 
in the cloud and U D  is, therefore, discriminating. In order to find 
this direction, a measure sensitive to distributions which are far 
from Gaussian is needed. As already discussed, second order 
polynomials such as shown in (9) cannot be used for measuring 
deviation from normality. To emphasize bi- or multi-modality of 
the projected distribution, higher order polynomials are required 
and care should be taken to avoid their over-sensitivity to small 
number of outliers. Let us define a loss function 

where r(u) can be regarded as a weighting function. It is clear that 
the loss function p~ is small if U is close to zero or to 3E(u2)/4. 
Moreover, it remains negative for U > 3E(u2)/4. Thus, p~ as 
an index can exhibit the fact that bimodal distribution is already 
interesting, and any additional mode should make the distribution 
even more interesting. 

Actually, any radial basis function (see [SI) can be used as 
the weighting function in Equation (13) to design interesting loss 
functions. The advantage of r(u) used in Equation (13) is its 
connection to the Bienenstock, Cooper, and Munro (BCM) theory 
of visual cortical plasticity [4]. 

The expected value of p~ is given by: 

TO achieve E ( ~ D )  + min, the equation 

should be satisfied. This leads to a leaming rule 

AW; = q [U’ - E ( U ~ ) U ]  X i .  (16) 

The difference between the leaming rule (16) and Hebbian 
leaming rule (8) is the fact that the influence of the output on the 
leaming process (the feedback) has been changed from U in (8) to 
U’ - E( U’). in (16). This enables the leaming rule (1 6) to discover 
bimodal distributions as Aw, in (16) (unlike in (8)) has opposite 
value depending on if U is larger or smaller than E(u2) .  

Unfortunately, the leaming rule (1  6) has the same divergence 
problem like Hebbian leaming rule (8) and in any case w does not 
settle down. One way to prevent the divergence of w is to constrain 
the growth of w by modifying the loss function (1  3): 

This leads to a new leaming rule obtained by adding a weight decay 
to the leaming rule (16): 

(18) 

So far four different leaming rules have been introduced. They 
are based on four different loss functions and can be applied to 
extracting expressive and discriminating features. 

Awl = q [U’ - E(u’)u] (zI - U W ~ ) .  

Adaptor 

I I 

Figure 5. Input adapting for the image thresh- 
olding algorithm. 

4. Adaptor Design 

Figure 5 shows an adaptor which is designed for the image 
thresholding algorithm. The key idea for designing this adaptor is 
to decompose the input image into some local measure images and 
then to adaptively extract salient features from these local measure 
images based on the modified Hebbian leaming rules presented 
above. In order to derive local measures for each pixel in the input 
image, the quadrature Gabor filter kemels 

exp [ - X2w2(z2 + Y”] 
47r 

cos[w(z cos 4 + y sin 4)] (19) 

exp [ - X2w2(z2 + Y7] . 
4 r  

sin[w(z cos 4 + y sin 4)] (20) 

are applied to decompose the input image I ( z ,  y) by using 

where w and 4 are the modulation (center) frequency and ori- 
entation, respectively, of the Gabor filter kemel; X is the ratio 
of the channel bandwidth and the modulation frequency; and 
I+ (z, y, U, 4) and Z-(z, y, w ,  4)) are Gabor space image descrip- 
tions. From these descriptions it is easy to derive some local 
measures. In Figure 5 the power 

P ( z , Y , w , 4 )  = I;(z,Y,w,4)+ I Z ( z , y , w , 4 )  (23) 

is used as a local measure of the input image Z(z, y). So far m 
power images can be obtained and m depends on the quantization 
of w and 4. This means a local measure vector with m elements is 
associated with each pixel of the input image. 

Each element of the local measure vector is a representation to 
describea local property of the input image but it is not just the right 
feature to discriminate clusters depicted in the input image. The 
most discriminating feature should be found in the m-dimensional 
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b C d 

Figure 6. Improving the performance of the 
image thresholding algorithm. 

a b C 

Figure 7. Sample test result using SAR im- 
ages. 

local measure space based on the structure presented by all local 
measure vectors in the input image. This requires a m to 1 feature 
extractor A which is trained by using the leaming rule (16) or (18) 
as described above. 

To reduce high frequency components in the input data two 
feature extractors B* and C* are introduced into the adaptor shown 
in Figure 5. They are actually two convolution kemels with n x n 
elements which should be trained by using the leaming rule (8) or 
(1 2) as described above. After the convolution using B* and C* 
two feature images can be produced which should be integrated by 
the feature extractor D in order to supply desired images for the 
thresholding algorithm. The feature extractor D performs a 2 to 
1 transformation and is trained by using the leaming rule (16) or 
(18). 

5. Experimental Results 

The adaptor shown in Figure 5 is able to produce desired in- 
put images for the thresholding algorithm. The output images in 
Figure 5 are better than the input images in Figure 5 because the 
object in the center is better discriminated from the background. 
Thus, the performance of the thresholding algorithm can be im- 
proved by using the adaptor. Figure 6 shows the performance of 
the thresholding algorithm with the adaptor. Obviously, the object 
in the center is better discriminated from the backgroundeven if the 
input image d, which is not desired by the thresholding algorithm 
(see Figure I) ,  is presented. 

Figure 7 shows the test result of object detection system using 
real SAR image data. The image a shows the input image. The 
image b shows the test result using the thresholding algorithm. 

a b C 

Figure 8. Sample test result using a FLIR im- 
age. 

The image c shows the test result using the thresholding algorithm 
plus the input adaptor. Figure 8 shows another example of target 
detection in a FLIR (Forward Looking Infrared) image by using the 
same system. Again, the image a is the input image. The image b 
and c show the test results using the thresholding algorithm without 
and with the input adaptor. 

6. Conclusions 

In this paper, the attention was paid on how to improve the 
performance of an object detection system by adding the adapt- 
ability to ready-made available algorithms without changing their 
intemal structure. Other researchers can make use of the approach 
and the results presented in this paper for 1) information fusion 
and integration and 2) robust object detectiodrecognition. 

Acknowledgment: The  help of Yeli Chen in preparing 
this paper is gratefully acknowledged. 

References 

[I] B. Bhanu and S. Lee. Genetic Learning for Adaptive Image 
Segmentation. Kluwer Academic Publishers, 1994. 

[2] Y. Chen. Vergleichende untersuchung neuronaler netze zur 
dimensionsreduzierung. Master’s thesis, Fakultate Informatik, 
University of Stuttgart, Germany, 1995. 

[3] R. M. Haralick. Performance characterization protocol in com- 
puter vision. In Proc. Pe$ormance Versus Methodology in 
Computer Vision, pages 26-32, Seattle, WA, June 1994. 

[4] N. Intrator and L. N. Cooper. Objective function formulation 
of the BCM theory of visual cortical plasticity: Statistical 
connections, stability conditions. Neural Networks, 5:3-17, 
1992. 

[5] R. Linsker. Self-organisation in a perceptual network. Com- 
puter, 21(3):105-117,1988. 

[6] E. Oja. A simplified neuron model as a principal component 
analyzer. Journal ofMathematical Biology, 15:267-273,1982. 

[7] Y.-J. Zheng. Feature extraction and image segmentation using 
self-organization networks. Machine Vision and Applications, 

[SI Y.-J. Zheng, W. Ritter, and R. Janssen. An adaptive system for 
traffic sign recognition. In Proc. Intelligent Vehicles Sympo- 
sium, pages 165-170, Oct. 1994. 

8(5):262-274, 1995. 

168 


