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Abstract 

This paper presents a model-based object recognition approach 
that uses a hierarchical Gabor wavelet representation. The 
key idea is to use magnitude, phase and frequency measures of 
Gabor wavelet representation in an  innovative flexible match- 
ing approach that can provide robust recognition. A Gabor 
gr id ,  a topology-preserving map, eficiently encodes both sig- 
nal energy and structural information of an object in a sparse 
multi-resolution representation. The  Gabor grid subsamples 
the Gabor wavelet decomposition of an object model and is 
deformed to allow the indexed object model match with the 
image data. Flexible matching between the model and the im- 
age minimizes a cost function based on local similarity and 
geometric distortion of the Gabor grid. Grid erosion and re- 
pairing is performed whenever a collapsed grid, due to object 
occlusion, is detected. The  results on  infrared imagery are 
presented, where objects undergo rotation, translation, scale, 
occlusion and aspect variations under changing environmen- 
tal conditions. 

1 Introduction 
Model-based object recognition in real-world outdoor situa- 
tions is difficult because a robust algorithm has to  consider 
multiple factors such as, object contrast, signature, scale, and 
aspect variations; noise and spurious low resolution sensor 
data; and high clutter, partial object occlusion and articu- 
lation. Current approaches use shape primitives, silhouette 
and contours, colors, and invariant object features for match- 
ing. The performance of these methods is acceptable when 
objects are well defined, have high contrast, and are at close 
ranges. However, these approaches do not gracefully degrade 
and produce high false alarms when competitive clutter and 
object shape distortion are present in the input data. To 
improve the performance under multi-scenarios and varying 
environmental conditions, model of sensors, atmosphere, and 
background clutter are helpful in addition to  the geometric 
model of an object. Using only a minimum set of models and 
sensor model, multi-scale Gabor representation and a flexi- 
ble matching mechanism described in the paper can help to 
improve the recognition performance under real-world situa- 
tions. 

The goal of the research presented in this paper is to rec- 
ognize 3 0  rigid objects in cluttered multisensor images with 
varying appearances, signatures and possible partial occlu- 
sion using a model-based paradigm. 

2 Our Approach 

The general scheme of our system is depicted in Figure 1. 
It is implemented as an iterative process of matching by first 
finding the optimal global placement of the grid over a region- 
of-interest of the object while the grid is kept rigid (location 
indexing), then deformation of the grid allows model Gabor 
probes match with local features of the distorted image (f lex- 
ible matching). Gabor magnitude is used in probe matching 
based on local structural energy patterns. Gabor frequency 
is used to estimate the scale variation of a given object from 
the model. Gabor phase is used to  evaluate the matching 
result in terms of average local image displacement between 
the model and the data, and support interpolation between 
aspects of the model. 

In our work, 3 0  objects are represented by a series of 
viewer-centered 2 0  images of the objects at various aspect 
and depression angles, M = { M I ,  M z , .  . . , M K } ,  called ob- 
ject aspects. These models are generated offline. Both ob- 
ject and object model are represented by the magnitude and 
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Figure 1: Our object recognition approach. 



phase responses of multi-scale Gabor wavelet filters. Objects 
are recognized when they successfully match with a specific 
model based on distinctive local features in the Gabor wavelet 
representation. 

The most closely related work to our approach is Lades’s 
“Dynamic Link Architecture” technique (41. The key differ- 
ences between our approach and Lades’s techniques are given 
in [l]. The main contribution of this paper is to use Gabor 
wavelet representation to recognize 3-D objects under scale, 
aspect and significant distortions in shape and appearance, 
due to changing environmental conditions. 

2.1 
The general form of a 2 0  Gabor function is given as [2], 

Gabor F‘unction and Gabor Wavelets 

In the above formula, ( x , ,  y , )  is the spatial centroid of the 
elliptical Gaussian window whose scale and aspect are regu- 
lated by u and a, respectively. W k  and 61 are the modulation 
frequency and direction, and (U, U) are frequency components 
of W k  in x and y directions, respectively. The scale u controls 
the size of the filter as well as its bandwidth, while the aspect 
ratio a and the rotation parameter +G control the shape of 
the spatial window and the spectral channel passband and is 
generally set equal to 61. 

By representing Gabor wavelet filters as a propagated 
quadrature pair ( G$ , G ,  ), a representation which is similar 
to the so called wavelet [5] is defined. The log-polar sampling 
in the freque_ncy domain generated by the 2 0  wave propaga- 
tion vector + is given as: 

where W k  = pk.wo, and 81 = 1 . 6 0 .  (2) 

Also, the modulation frequency increases proportionally with 
the reduction in scale, 

&,,k,e, = wli.eref,  

Therefore, the wavelet filter kernel’s frequency and orienta- 
tion bandwidth are defined as: 

h W k  = X W ~ ,  A6i % A. (4) 

whereX is called bandwidth-frequency ratio. 
The Gabor wavelet decomposition of an object image I ( x )  

is an iconic multi-resolution template. To reduce the inter- 
pixel redundancy, subsampling this template forms an elastic 
Gabor grid GD which covers the whole object with N x M 
nodes (vertices V,  and edges E J )  in the x and y directions, 
respectively, GD = (V,, En). 

Each node V k  E V, is a triple, vJ = ( x 3 ,  P:, P;) where 
x3 is the image coordinates of grid node j (with respect to 
some normalized coordinate frame). Nodes are selected with 
fixed distance Dspoce from neighboring nodes for a model 

Figure 2: Gabor probe and grid 

grid, xJ = (20 + nDspacer yo + mDspace ) .  PJ is a vector of 
length K x L which is referred to as a Gabor probe, 

p:[k, l1 = ( I  * G ; k , t ) [ x J ] ,  

‘J-[’? ‘1 = ( I  * G G k , t ) [ x J l .  (5) 

where (G$&., ,  G , , , )  is a Gabor wavelet quadrature filter pair 
with center frequency W& and modulation orientation + l .  The 
role of the graph edges e, ,J E En is to represent neighborhood 
relationships and serve as constraint during matching, where 
they are interpreted as elastic links. An edge can be deformed 
like a spring to make a model probe match with the Gabor 
decomposition of a distorted object. The length between two 
nodes d,, = 1 1 1 ,  - x,I) and grid angle attached to that edge 
serve as initial constraints. Thus, current distortions can be 
measured and penalized immediately during matching. 

Figure 2 shows the Gabor grid and Gabor probe represen- 
tation. The extracted information (both signal energy and 
local pattern structure) associated with each probe spans a 
neighborhood whose size equals the extent of the filter kernel. 

3 Object Recognition-Flexible 
Matching 

The flexible matching for object recognition process includes 
(1) Grid placement to find the location and index of an object 
in an input image; (2) Flexible matching to fine tune the ob- 
ject aspect according to the object distortion present in the 
input data; and (3) Evaluation to select the best matched 
aspect by following the selected rules. Grid repairing is per- 
formed when object is occluded. 

3.1 Location Indexing 
At this stage of the matching process, the indexed aspect 
Gabor grid GI& that potentially corresponds to the object 
aspect At& is positioned ( X & ) ,  scaled (st&), and rotated 
(4&), according to the index elements while the grid is kept 
rigid, 

where 
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for all U, E V,dz and e,,] E E,ds.  The function S5,@( )  performs 
scaling and rotation operations on the grid nodes. 

When the scale factor s is a power of W O  and the orientation 
d is a multiple of 40, it corresponds to deriving a new model 
grid Gb at a given scale by scaling down edges of the Gabor 
grid by factor s. and shifting and rotating Gabor probe PI at 
each node vl from the corresponding frequency index wJ and 
orientation c$+, 

In case s is not a multiple of p or 9 is a not a power of A,, 
we can either, (a) round the scale factor s to s’ which is 
the closest multiple of the frequency index p in ( 7 ) ,  and let 
the subsequent flexible matching overcome this small scale 
distortion in Gabor decomposition. However, the grid edge 
will be scaled according to the exact scale factor s. or, (b) 
implement a suitable interpolation scheme over scale and ori- 
entation. 

The object decomposition by a Gabor filter at a specific fre- 
quency corresponds to an object representation at  a specific 
scale. By comparing the similarities of these representations 
between an object and a model grid, it allows to estimate the 
object scale. 

3.2 Flexible Model Matching 
After location indexing, flexible matching starts to further 
verify the hypothesis for a model aspect by moving nodes 
of the model Gabor grid locally and independently to find 
the best matched image probes. In this process, the 2 0  im- 
ages of an object corresponding to two viewing aspects (with 
small aspect difference) is simulated by “small local” elastic 
deformations of one of the objects. 

When the external forces are applied, an elastic object 
is deformed until an equilibrium state between the exter- 
nal forces and internal forces resisting the deformation is 
achieved. This equilibrium state can be described as, 

f3U 
ax 

pV2u + (Y + p )  - + F = 0 ,  

where x is the coordinate of the object, U is the displace- 
ment of the deformation, F is the external forces, and /I and 
y define the elastic properties of the object. To find the equi- 
librium state when the deformable model grid is matched 
with an object decomposition, equation (8) is formatted as 
an iterative process which minimizes a cost function C bal- 
anced between grid distortions V and local similarities S. 
Therefore, we can rewrite (8) as following, 

N N 

I 

where N is the total number of grid nodes, p is the elastic 
parameter which controls the grid deformation. U, is a grid 
vertex, and PI and P M  are the object Gabor decomposition 
and a model Gabor probe, respectively. ’D and S are defined 
by equation (12)  and (13), respectively. 

Flexible Matching Algorithm 
1. Use the index generated by the grid-placement algorithm 

as the initial placement of the model grid. 

(a) Model image (b) Object image 

(c) Matching result (d) Projected model 

Figure 3: Illustration of the quality of flexible matching 

2. For each grid node (visited in random order), take a ran- 
dom step s. A move s for a node is valid and can be 
accepted if either, 

- the global cost C is reduced due to this move, or 
- AC satisfies a probability exp(-AC/T), where T is 

3. The matching terminates and produces a deformed 
model grid if either the matching reaches a desired cost, 
or the annealing temperature is freezing. If neither condi- 
tion is satisfied, continue previous step with temperature 
decreased by a cooling factor 8. 

4. Compute the similarity between the distorted model grid 
and the object Gabor decomposition, the deformation of 
the model grid, and the Gabor phase-based matching 
error (see section 3.5). 

the annealing temperature. 

To show the quality of flexible matching under distortions, 
an example is given in Figure 3, in which a matched model 
is back projected onto the object image using the transforma- 
tion which is calculated based on the relationship between 
the model grid and the matched deformed grid, and bilinear 
interpolation for gray scale values. The pose of the object is 
also derived in this manner. 

3.3 Evaluation of Matching 
The process of matching always yields a best value for C 
in (9) regardless of whether or not a corresponding object 
is in the model database. Successful recognition tends to 
have small geometric distortions and high similarity mea- 
surements. However, a matching result for the correct object 
class may not be distinctive when large object aspect varia- 
tions and large changes in object signatures are present in the 
input data. To overcome the drawbacks of using only a sin- 
gle evaluation criterion, we introduce a set of comprehensive 
measures. 

1. Flexible matchzng cost c : It is given by ( Q ) ,  < combines 
the similarity measure between probes and grid distor- 
tions. To suppress background probes and compensate 
for grid deformation, the similarity measure term is mul- 
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tiplied by the minimum magnitude of either the model 
or the object probe. 

Dissimilarity E : It is defined as the difference between 
perfect matching and the actual matching results. E is 
zero for perfectly matched probes, and is less than 0.5 
for a randomly matched probe pair. 

N 

Criteria Images Failures 

C 207 79 

E = [l -S(Pt' ,  P;",]2 , 

Recognition 
Performance 

61.8% 

I 

where s is given by equation (13) 

Displacement 6 : It  is defined as the local translational 
displacement between matched Gabor probes. Given 
that a model probe P, matches with an image probe P,, 
the localized phase difference along the direction of mod- 
ulation t$1 for a specific filter frequency W k  can be used 
to estimate this displacement and evaluate the matching 
error, 

(11) 
A @ ( W k l  t$r ) 

d ( W k ,  41) = W k  

To find the correct object aspect after flexible matching, the 
results are evaluated based on the three criteria discussed 
above and the following rules in order. 

1. 

2. 

3. 

4. 

5. 

For all matching results, sort the e ,  E and delta in de- 
scending order. 

Select the model having both the lowest matching cost c 
and the smallest dissimilarity E. If neither the values of c 
or E for the top two matched models are distinguishable 
enough (by a predefined threshold), go to Step 4. 

Select the model having the smallest dissimilarity E while 
its matching cost c and dissimilarity E are both lower 
than a predefined threshold. 

Select the model having the smallest displacement mea- 
sure which is less than a predefined threshold. 

Any matches which fail the above tests are rejected for 
recognition. 

In a separate experiment to recognize 138 objects [l], a suc- 
cess rate of 61.8% was achieved when only the flexible match- 
ing cost is used in matching. The performance is improved by 
using other evaluation criteria, and a successful recognition 
rate of 98% was achieved when the three described evaluation 
criteria are used together (see Table 1). 

~~ 

<+E 11 207 I 14 I 93.2% 

C+P+6 ]I 207 I 5 1 97.6% 

3.4 Computational Issues 
The distortion of the grid is computed to represent the dis- 
tortion of a 2D image due to the aspect changes of a 3 0  
object. To precisely estimate the deformation of a 2 0  image 
by a Gabor grid, length and angular distortion are defined by 

I' 

Figure 4: Illustration of grid deformation 

comparing the current grid with its original structure which 
has fixed length and a rectilinear grid. The distortion for a 
node V k  is then calculated as: 

,=O 1=0 

The first term in (12) measures the grid length distortion, 
while the second term measures the angular distortion. 

Given each Gabor probe as a vector of Gabor wavelet de- 
composition of magnitude at  a spatial location, to match local 
features between two objects corresponds a search of maxi- 
mum similarity between a model Gabor probe and an image 
probe. The similarity between two Gabor probes is computed 
as follow: 

where q is a normalization term that is used to reduce the 
effect of object signature variations. In practice, we choose q 
to be the following: 

3.5 Gabor Phase based Evaluation 
Assume that the matched model and object image are locally 
similar to each other only when a small shift Ax is made. 
Due to the fact that a shift of an image in the spatial domain 
corresponds to a phase shift in the frequency domain (Fourier 
transform), then, in that region we can estimate this shift Ax 
by At$/wk. I t  is approximately true for Gabor filters under 
certain conditions [6, 31. Therefore, it allows far more precise 
model/object alignment by using Gabor phase information. 

The phase difference at  center frequency W k  and orientation 
t $ ~  between a model and an image probe is given as, 

A @ ( W k , t $ t )  = @ r n ( u k , t $ t )  - e t ( W k , t $ l )  

where a+ and a-  are the coszne and sine Gabor probes re- 
spectively. Thus, the translational displacement in the direc- 
tion of t $ ~  can be estimated as (11). To overcome noise using 
all available filter bands, the displacement estimates for a 
probe by different filter frequency bands and orientations are 
averaged [ 11. 
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(a) Model (67.5" aspect) (b) Object (50" aspect) 

(c) Matching error (d) Projected model 

Figure 5: Illustration of phased based evaluation. 

Due to the observation that grid nodes are not necessar- 
ily located at high Gabor magnitude response points, in our 
approach, points selected from the object with high Gabor 
magnitude responses are used and back-projected onto the 
matched model. An average of the amplitude of the local 
displacement estimated for all these points is used as the 
matching error b for comparison. More accurate phase mea- 
sures can be obtained using these projected pairs than using 
grid nodes. 

Figure 5 gives a quantitative illustration of how phase 
based evaluation is used to estimate matching error. In this 
example, the aspect of the object and the model are 50" 
and 67.5" respectively. Points selected from the object im- 
age (Figure 5(b)), which are local high Gabor magnitude re- 
sponses, are back projected onto the matched model (Fig- 
ure 5(a)) using the transformation computed by the matched 
deformed Gabor grid. The matching errors estimated for each 
of these points in terms of local image displacement is dis- 
played by their direction and magnitude in Figure 5(c). Xn 
average local image displacement of 3.4 pixels is measured in 
this example. 

3.6 Recognizing Occluded Objects 
Our approach for recognizing an occluded object can be de- 
scribed by dynamzc modzficatzon of the Gabor grid through 
grid erosion and repairing processes performed during match- 
ing. The idea is to determine which subset of the Gabor grid 
matches with the non-occluded part of the object. Since a 
Gabor grid encodes the localized signal energy and structural 
patterns of an object, following two facts can be used to de- 
tect a potentially occluded object, 

1. During matching, any collapsed grid results due to object 

2.  A sub-Gabor grid corresponding to the occluded part has 
very low similarity measurement ( 5  0.3) due to random 
matching with background clutter. 

occlusion. 

Thus, it is safe to assume that the part of the grid having a 
non-collapsed grid and high similarity matching result corre- 
sponds to the non-occluded part of the object. Grid nodes 

from the hypothesized occluded part of the Gabor grid are 
discarded iteratively during dynamic grid refinement. The 
following processes are repeated until no more refinement is 
necessary: (1) location indexing, ( 2 )  flexible matchzng, and 
(3) grid repairing. (See loop b in Figure 1). 

Grid Repairing Algorithm 
1 

2. 

3. 

4.  
5. 

6. 

4 

Detect collapsed and raIidonily matched results using fol- 
lowing facts: 

- a collapsed grid nodes can be detected by examining 
the relationship between the corresponding nodes in 
the connected and the complementary grid. 

- grid nodes which randomly matched with back- 
ground clutter will have lower similarity measure- 
ment (less than 0.3). When a column or several 
columns of grid nodes have random matching results, 
they are marked as potential occluded object grid 
nodes. 

Find Create the connected and complementary grids. 
and mark the collapsed grid nodes in both graphs. 
Remove collapsed grid nodes and corresponding edges 
according to their spatial locations and relationships. 
Remove isolated subgrids (nodes) 
Remove subgrids that have similarity measures lower 
than a threshold due to the random matching with the 
background clutter. 
Reevaluate matching result based the remaining grid. 

Object Recognition Experiments 
In this paper, Gabor wavelet filters G6 are defined by 7 log- 
arithmically spaced center frequencies (filter bands) and 8 
orientations for each filter band. Thus, we sample the fre- 
quency domain by 56 bandpass spectral channels. These fil- 
ters are indexed by k E { O , .  . . ,6} and l E ( 0 , .  . . 7) Other 
parameters in (2)  are chosen as : 

ir ir 60 = - and X = ~ 1 4 ;  
8 

p = J z ,  W O = -  
16' 

The annealing temperature T is set between 3 and 5, the elas- 
tic parameter p is set between 0.8 and 2.5, such that small 
number allows more grid deformation, and larger number al- 
lows less grid deformation. The cooling factor p is generally 
set to 1.15. 

Example of Single Object 
Figure 6 shows an example where object undergoes scale, 

aspect and signature variations and different object signa- 
tures (Figure 6) .  In this experiment, the distortion values 
(with respect to model) correspond to 105m in viewing dis- 
tance, 11" in depression angle, and 52" in aspect angle. 

When object scale is not a power of the center frequency 
of the Gabor wavelet representation, two scale factors will 
be used. The model Gabor probes will be scaled according 
to the closest power of the center frequency, and the edge of 
the Gabor grid will be scaled using the exact object scales. 
The flexible matching and the Gabor wavelet representation 
is invariant to such distortions. To find the correct object 
aspect, matching results are evaluated based on the criteria 
discussed earlier, and the ranks for matching are shown in 
Figure 6. 
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(a) Model 

(b) Object 1 (c) Object 2 (d) Object 2 

(e) Rank 2 ( f )  Rank 1 ( g )  Rank 3 

Figure 6: An object model is matched with three objects 
having scale, aspect variations, and  different signatures. 
The size of the images is 300x200. They are taken as the 
region of interest from original images of size 512x512. 

Examples of Multiple Objects 
Four object classes with a total of 16 object aspects are 

extracted from the second generation infrared images, as the 
regions of interest of the object for recognition. A successful 
recognition rate of 83% was achieved for 12 experiments. The 
error occurred in object aspects having severe aspect and 
signature distortions from the given object model. Only the 
first two evaluation criteria defined earlier are used to obtain 
the matching results. Gabor phased-based evaluation is not 
used since the interior structure of the object is quite cold 
and phase measured at boundary points suffer wrap-around 
errors. 

Recognizing occluded objects 
An occluded object is selected from the second genera- 

tion infrared image database which is identified as a ASTRO 
shown in Figure 7. Although the grid in the initial match- 
ing results are not collapsed in this example, the similarities 
of those grid nodes which matched with background clutter 
are relatively low with respect to the nodes which matched 
with the non-occluded part of the object. These randomly 
matched nodes are detected and removed from further con- 
sideration. The matching results which include both the ini- 
tial matching and the repaired ones are presented. To il- 
lustrate the performance of matching under distortion, the 
edge boundaries of the object model are back projected onto 
the occluded object using the repaired distorted Gabor grid 
(Figure 7).  

5 Conclusions 
In this work, we have shown that the multi-scale Cabor 
wavelet representation and flexible matching technique are 
robust methods for object recognition under real-world condi- 
tions. The successes of this work lies in the following aspects. 
(a) Our flexible matching approach can tolerate variations of 

(b) Model (c) Result 1 (a) object 

(d) Result 2 (e) Model ( f )  Projection 

Figure 7: Matching with occluded object 

up to 20" in depression angle and 22.5' in aspect. (b) The 
single scale multi-resolution representation of a model can be 
used to recognize objects with the size varying from 256 to 
16k pixels, and a temperature varying from 12°C to 26°C. 
(c) The grid erosion (repairing) can be used to recognize an 
object having up to 50% occlusion. 
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