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ABSTRACT 
This paper develops an error bound for narrow band- 
width Gabor filters synthesized using multiple stages. 
It is shown that the error introduced by approximating 
narrow bandwidth Gabor kernels by a weighted sum of 
spatially offset, separable kernels is a function of the 
frequency offset and the reduction in bandwidth of the 
desired kernel compared to  the basis values, as well as 
the spatial subsampling rate between filter stages. This 
error bound should prove useful in the design of a gen- 
eral basis filter set for multi-stage filtering because the 
maximum frequency offset is largely determined by the 
spacing of the basis filters. 
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as periodic patterns. When the basis filters are ad- 
justed together as a set, the effects of scale changes and 
image rotations, as well as the effect of foreshortening 
due to aspect changes, can be simulated (which could 
be exploited to simplify object and model matching for 
object recognition). The multi-stage filter is eficient 
becauses it allows the choice of a convenient set of basis 
filters. That is, the size and shape of the basis kernel 
can be selected independent of the desired two-stage 
response, thereby exploiting desirable implementation 
properties such as kernel separability. In addition, the 
basis filters can be selected for dual use, so that the 
basis output is used for detecting initial interesting fea- 
tures, as well as the first stage of the two-stage filter. 

1. MULTI-STAGE FILTERING 
2. GABOR THEORY 

A direct spatial implementation of a narrow bandwidth 
filter requires a large size kernel. Multi-stage filtering 
makes it possible to  synthesize a narrow bandwidth re- 
sponse in two or more stages, each comprising wide 
bandwidth filters. In this work, a two-stage implemen- 
tation is used. The first stage performs the bulk of the 
image processing and is designed for computational ef- 
ficiency. The second stage filter adjusts the frequency 
and bandwidth of the image response to the desired 
values. Since the bandwidth of the basis filter output 
is limited, the second stage kernel can be subsampled 
relative to the image, allowing for computational sav- 
ings. The primary restriction in this approach is that 
the synthesized response must have a narrower band- 
width than the basis filters. 

The primary benefits of two-stage filtering, over fil- 
tering with a single kernel, are flexibility and eficiency. 
The second stage provides flexibility in the sense that 
the center frequency and bandwidth of a given filter 
can be adjusted in a continuous manner. This allows 
individual basis filters (or a set of basis filters) to ad- 
just to  the image data, tuning Gabor filter responses to 
match certain narrow-bandwidth image features, such 

The kernels of the basis set and the desired impulse 
response of the two-stage filter are 2D Gabor func- 
tions. The general form of the Gabor function Gn(x, y) 
is given by [a]  [3] 

where z and y are the horizontal and vertical image 
coordinates, respectively; i and i denote the axes that 
are rotated by 4 ~ ~ ;  w, and $, are the modulation fre- 
quency and orientation, respectively; and un and a, 
are the scale and the aspect ratio of the elliptical Gaus- 
sian window, respectively. The “bandwidths” of the 
Gabor function, measured along the principal axes of 
the Gaussian window, are defined as a;’ and a; ’ c;’. 

In this work, the basis filter set is comprised of spa- 
tially separable Gabor kernels with log-polar frequency 
spacing. Each quadrature pair of basis kernels is given 
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2.1. Computational Efficiency 

Two-stage implementations require less computations 
than an equivalent single-stage filter if the outputs of 
the basis filters are subsampled before applying the sec- 
ond filter. The computational cost of a filter is propor- 
tional to  the area of the kernel. Assume that a rectan- 
gular mask has been applied to truncate the elliptical 
Gaussian window at n, standard deviations in each 
direction along the principal axes. For the case of a 
single-stage filter, the cost of filtering an image of size 
N,  by N y  is 

x exp { j W b [ Z  cos 4 b  + y sin 4 6 1 )  

where = (Q ,Wb) - ’  and U ; ’ ,  w b ,  and 4 b  are the band- 
width, frequency, and orientation, respectively, of the 
basis kernel. Since, in this work, Gn is synthesized us- 
ing a single basis channel (a  sine-cosine pair), the fre- 
quency spacing of the basis channels determines the 
maximum frequency offset between the Gn and the 
“best” basis channel (with respect to minimum syn- 
thesis error). The relationship between the frequency 
offset and the error in synthesizing Gn is discussed in 
section 2.2. The computational efficiency associated 
with using separable basis kernels is discussed in sec- 
tion 2.1. 

The spatially sampled output of the Gabor filter is 
referred to  as a Gabor coeficient, and is given by 

an = / / I ( x l Y ) G n ( Z n  - 2 , Y n  - Y l W n i 4 n ) d z  d y ,  (4) 

where I(z, y )  is the input image. In a multi-stage fil- 
tering approach, a non-separable, narrow bandwidth 
kernel, G,, is synthesized using a weighted combina- 
tion of spatially offset basis kernels: 

Gn(Z,y)  = C C * G b ( Z - - 2 i r Y - Y i i W b i O b ) ;  (5) 
2 

where e, are complex weights. Instead of forming a new 
kernel G n ( z ,  y) and then re-filtering the original image 
I(z, y),  it is possible to  create the same filter response 
by a weighted summation of the basis filter outputs 
( a b ( i ) ) :  

Y* 3 . 1  

Since the bulk of the image processing is performed by 
the basis filters, the computational advantage of sepa- 
rable filtering is preserved. 

The expansion coefficients C = [CO . . + .;IT , which are 
the complex weights for the second stage of the two- 
stage filter, are obtained by solving b = QC, where b 
is a vector of inner products between Gi and G b ( i ) ,  Q 
is a Grammian matrix (see [l]). The resulting least 
squared error is given by 

Jlms = (b - Q C ) T ( b  - Q C ) .  (7) 

This error measure has limited value because C must 
be first calculated. It is not apparent how the error 
wilt change as the sampling density of the second stage, 
the parameters of the basis filter set, and the frequency 
offset between the basis kernel and the desired kernel 
are altered. 

If implemented as a two-stage filter, with the second 
stage filter subsampled by a factor S, we get 

(9) 

where c b a s i s  is the computational cost of each basis 
filter, and n b a s i s  is the number of basis filters used in 
the second stage filter. The cost of filtering with a 
separable basis kernel is given by 

The ratio of the two-stage and the single-stage costs, 
for a separable basis kernel implementation, is given by 

In this work, the sine and cosine responses from a single 
basis channel are used in the two-stage approach, which 
makes n b a s i s  = 2. As an example, for w b  = 2, = $, 

the two-stage computational cost, for separable basis 
kernels, is reduced to  0.054 of the single-stage cost. 

u b  = ( x W b ) - ’ ,  (Tn = 2(Tb,  an = 1, s = 8 ,  72, = 2 ,  

2.2. Predicting the Synthesis Error 

The impulse response of the two-stage filter is not, 
in general, exactly the same as the desired Gabor re- 
sponse. The difference between the two responses is 
referred to as the “synthesis error.” In this subsection, 
an expression for the upper bound of the synthesis er- 
ror is provided. This upper bound considers the effects 
of frequency offsets and bandwidth reductions of the 
desired filter (compared to the basis filters), and the 
effects of subsampling before applying the second stage 
filter. It does not account for errors associated with the 
truncation of the kernel’s Gaussian window. 

Throughout this subsection, the responses of the 
basis filter, the second stage filter, and the desired fil- 
ter are represented by their frequency domain transfer 
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functions, and are denoted by 6 b ,  FS , and 6, , respec- 
tively. The term G indicates that the filter response in 
the frequency domain is Gaussian. When the second 
stage filter response is Gaussian, it will be denoted by 

The relationship between the basis function 6 b ,  the 
second stage filter Fs, and the desired filter G, is given, 
ideally, by 

Both fin and G b  are Gaussian responses in the fre- 
quency domain and are given by 

G, . 

6, = F s G b .  (12) 

(13) 
G, = exp(-m; [U’ + a,w 2 2  I ) ,  

6 b  = exp(-nui [ ( U  - A U ) ’  + ( v  - A V ) ’ ] ) ,  (14) 
respectively, where U and w are the frequencies mea- 
sured along the principal axes of the elliptical Gaussian 
G,, and ( A u ,  A w )  are the frequency offset values mea- 
sured relative to  the basis frequency. The frequency 
offset values, or the frequency shifts to be introduced 
by the second stage filter Fs,  are given by 

Au = W n  COS(& - dg)  - wb cos(4b - 4 g )  (15) 

AV = w, sin(+, - dg) - Wbsin(4b - 4g). (16 )  
Although we know the basis response and the desired 
response; we need to know the shape of F, in order to 
predict the synthesis error. In the ideal case, the shape 
of Fs is a Gaussian defined by GnGrl .  

When the output of G b  is subsampled compared 
to the original image, an aliasing error arises. The 
sampling process causes the basis response G b  to be 
replicated throughout the spectral domain at intervals 
equal to the x and y sampling frequencies. The repli- 
cated basis responses are given by 

G(b(l, m) = eXp[-Taz(Ld* - W b  C O S d b  - 1 ws(z ) ) ’ ]  

x exp[-nai(wg - ~b sin d b  - m 

where us(.) and are the sampling frequencies in 
the x and y directions, respectively, and 1 and m are 
integers. The replicated basis responses overlap with 
the original basis response. Thus, the filter F, must 
shape the synthesized response ( F s G b )  to  best approx- 
imate Gn from a spectrum containing both Gb and G,, 
where 

G, = G b ( l , m ) ,  (17) 
(l,m)#(o,o) 

If it assumed that the basis response Gb and the aliased 
response Ga are uncorrelated then the optimal F, min- 
imizes 

and is given by 

where 

The filter Fc attenuates the replicated (aliased) part of 
the spectrum. 

Although optimal under the uncorrelated assump- 
tion, the above expression for F, does not provide an 
analytical solution for the squared synthesis error J .  
To allow for a tractable solution, a sub-optimal win- 
dow Gs, which ,has a Gaussian shape, is used: 

Gs = GnG;lGc (21) 

where 
G<; = exp(-nra,2 [u2 + w 2 ] ) .  (22) 

Note that Gc is a circular Gaussian with bandwidth 
uC-’ and frequency ( U ,  U )  (same frequency as G,). 

The synthesis error for the Gaussian solution has 
the following form: 

(23) 
where J ,  is the “basis-only” reconstruction error (no 
aliasing) and J ,  is the aliasing error. These two error 
components are given by 

h, = exp[-27razyu(w,(,) - y L l A u ) ’ ]  
x exp[-2na~yW((ws(,) - ~ ; ‘ A v ) ~ ] .  (28) 

(29) 
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For given values of oc and on, the basis-only recon- 
struction error, J,, is constant. The aliasing error, J,, 
is a function of the frequency offset (Au,Av) and the 
sampling frequencies in addition to  uc 
and un. It can be seen, by substituting (29) and (30) 
into (27) and (28), that reducing the bandwidth of the 
desired filter Gn (that is, increasing on), greatly re- 
duces the aliasing error J,. Similarly, the filter Gc is 
effective at reducing the aliasing error because it re- 
duces the bandwidth of the synthesized response from 
U;’ to  ( ( ~ 2  +u;)-O ’. However, a bandwidth reduction 
using G, increases in the basis-only reconstruction er- 
ror ( J n ) .  

3. RESULTS AND CONCLUSIONS 

Figure 1 shows the impulse responses of narrow band- 
width filters (cosine part) with various frequency and 
orientation offsets from the basis values. The synthesis 
error for each filter is listed in table 1. It should be 
noted that the predicted error values in table 1 mea- 
sure the complex error (that is, both sine and cosine 
kernels), so it should overestimate the measured error 
(based on the cosine kernel, only). However, it can be 
seen in table 1 that this is only the case for figure 1 (f). 
The measured error includes the effects of truncation 
of the Gabor function (Gaussian window) and of the 
spatial lattice used in the second stage, none of which 
are accounted for in the predicted errors. The trun- 
cation errors in these examples are small, and hence 
are discernible only when the error is small. For fig- 
ure 1 (f) ,  the large orientation offset results in a 1.5 
percent error whereas the prediction based on (7) is a 
1.9 percent error. This overestimation, by a factor of 
1.3, is close to the 4 factor that should appear on 
average. The prediction based on (23) is larger, a 3.3 
percent error (factor of 2.2), because the shape of the 
optimal filter Fe becomes less like a Gaussian as Au 
and/or AV increases (relative to the second stage sam- 
pling frequencies, and us(.)). 

In conclusion, the synthesis error can be made arbi- 
trarily small by reducing the maximum frequency offset 
(increasing the number and density of the basis chan- 
nels) and/or increasing the second stage sampling fre- 
quencies. When the maximum allowable error is small, 
equation (23) is a good prediction, allowing one to pre- 
dict how adjustments to the basis filter set and the sec- 
ond stage sampling frequencies will affect the synthesis 
error. 
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