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Abstract 
This  paper  presents  a new representation called “hi- 

erarchical G a b o r  f i l ters” and associated novel local 
measures which are used t o  detect potent ial  objects of 
interest in  images.  The  “first stage” of the approach 
uses  a wavelet set  of wide-bandwidth separable Gabor  
f i l ters  t o  extract local measures f r o m  an image.  The 
“second stage makes certain spatial groupings explicit 
by creating smalbbandwidth,  non-separable Gabor  fil- 
t ers  that are tuned t o  elongated contours or periodic 
pat terns.  T h e  non-separable f i l ter  responses are ob- 
tained f r o m  a weighted combinat ion of the separable 
basis f i l ters ,  which preserves  the computat ional  e@ 
ciency of separable f i l ters  while providing the distinc- 
t iveness  required t o  discriminate  objects f r o m  clutter. 
This  technique is  demonstrated on images obtained 
f r o m  a forward  looking infrared (FLIR) sensor.  

1 Introduction 
Automatic object recognition in the image under- 

standing context attempts to find instances of mod- 
eled objects within an image. The steps leading up 
to recognition include the detect ion of interesting im- 
age features, the indexing of object models, and the 
verification of the hypothesized model-image corre- 
spondences. This paper focuses on the image process- 
ing used for object detection, while considering the 
requirements for model indexing. The proposed im- 
age processing approach uses hierarchical, multi-scale 
Gabor filters that are suitable for object detection in 
coarse-resolution infrared images. 

Detection in images is complicated by the imag- 
ing process which involves a viewpoint-dependent 2D 
projection of an object. As a consequence, the ap- 
pearance of an object in an image can vary greatly 
with its aspect and scale. The aspect is the rotational 
position of the object relative to the viewin direc- 
tion; the scale is the object’s image size whica varies 
with the object’s range from the viewer. Detection 
in infrared imagery is further complicated by coarse 
resolution and a multi-modal behavior that highlights 
only certain parts of an object [6]. The approach used 
in this paper is less sensitive to these effects because 
detection is based on distinctive local features. 

This paper uses the Gabor representation for object 
detection. The Gabor representation of an image has 
many degrees of freedom that can be adjusted to high- 
light interesting local intensity patterns. A small num- 

ber of wide-bandwidth separable filters, referred to as 
basis filters, are used for detection. For discriminating 
between object and clutter, small-bandwidth filters 
are created that are tuned to specific intensity pat- 
terns. The small-bandwidth filters are implemented 
as hierarchical f i l ters  where the bulk of the processing 
has already been performed by the basis filters. The 
tuning of the filters is driven by local measures. The 
approach adjusts with the specific image information 
instead of using a fixed trade-off between detection 
and discrimination. 

The outline of this paper is as follows. Section 2 
discusses the image processing performed by separable 
wavelet Gabor filters and the resulting local measures 
used to identify significant image features. Section 3 
describes how non-separable filter responses are cre- 
ated from the output of the basis filters. Section 4 
demonstrates this approach on infrared imagery. 

2 Image Processing 
The filter kernels used in this paper are 2D Gabor 

functions which are oriented sine-wave gratings that 
are spatially attenuated by an elliptical Gaussian win- 
dow. The general form of the Gabor function Gi(z, y) 
is given by [3] [5] 

where 2 and y are the horizontal and vertical image 
coordinates, respectively; i and y denote the axes that 
are rotated by $G; wi and #i are the modulation fre- 
quency and orientation, respectively; and u and a are 
the scale and the eccentricity of the elliptical Gaus- 
sian window, respectively. The parameters (T, a ,  $GI 
w i ,  and q5i define the passband of the Gabor channel 
and the spectral characteristics of the Gabor kernel. 

Scale and aspect dis tort ions represent the image 
transformation undergone by the 2D projection of the 
object when it is viewed from different camera posi- 
tions. Both scale and aspect distortions cause shifts in 
the spectral characteristics of an image pattern. For 
the case of scale distortion, the frequency shift is omni- 
directional; for aspect distortion, the frequency shift is 
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along the foreshortened axis. Note that, for a Gabor 
function, the ratio of the channel bandwidth in the 
modulation direction and the modulation frequency is 
a scale/aspect invariant parameter because the “dis- 
tortion transformation” affects the modulation band- 
width and frequency equally. This ratio is referred to  
as the “fractional bandwidth” and is given by 

The spatial phase gradient, [wz,wy] = [afI/az, bfI/ay], 
is used to  estimate the mean frequency wn and mean 
orientation q5n of the signal energy within a basis chan- 
nel [4]: 

(3) 

where Awi is the channel bandwidth and w j  is the 
channel modulation frequency. Note that Awi = 6-l 
when 4i = 4 ~ .  

When a viewed object comprises an image feature 
with a low fractional bandwidth or high eccentricity, 
the object can be detected reliably by a lone feature. 
During initial detection, when the appropriate values 
for a, 4 ~ ,  wi, and 4j are unknown, a set of well-spaced 
Gabor channels with large fractional bandwidths are 
used. Large bandwidths allow for large scale or aspect 
mismatches, thereby simplifying object detection. Af- 
ter detection, a single small-bandwidth kernel, with 
spectral characteristics ( a ,  &, w,, and Oi) tuned to 
the image intensity pattern, is then used to discrim- 
inate narrow-bandwidth object features from back- 
ground clutter. 

In this paper, the basis filter set used for initial ob- 
ject detection is comprised of separable wavelet Ga- 
bor kernels. Kernel separability reduces the compu- 
tational requirements of the filtering. The separa- 
ble wavelet restriction requires that X is constant and 
a = 1 for each kernel. The quadrature Gabor filter 
kernels [3] in a separable wavelet representation are 
given by 

G + ( z , ~ , w i , 4 i )  = g(z,y)coS[wi(xcos4i + ysin4i)Ii 

G - ( z , ~ , w i , 4 i )  = g(z,~)s in[wi(ccos4i  + ysinOi)], 

The resulting Gabor channels are characterized by two 
responses: (a) a magnitude response that measures 
localized signal energy, and (b) a phase response that 
encodes the relational structure of an intensity pattern 
with respect to its spatial neighborhood. The magni- 
tude response is useful for identifying si nificant fea- 
tures. The spatial phase gradient is used to estimate 
local spectral characteristics. 

The spatially sampled output of the Gabor filter is 
referred to as a Gabor coeficient, and is given by 

Multi-channel “local measures” can be obtained 
by combining the magnitude responses from a com- 
posite passband comprising basis channels with dif- 
ferent orientations, but a common modulation fre- 
quency. These local measures are used for feature de- 
tection and channel selection. A marginal magnitude 
m is obtained by summing the magnitude responses 
within the composite passband: m(zi, yi, wi,) = 
E+, m(zj ,  yi, w i ,  4i). The dominant spectral orzenta- 
lion and variance are defined by the moment of iner- 
tia of the spectral energy within the composite pass- 
band. The dominant spectral orientation, O d ,  is the 
axis which produces the minimum moment of inertia: 

(10) 
The variance in the orientation is defined as the nor- 
malized minimum moment of inertia, J :  

E+, m(4i)sin2 [On($i) - 4d(zijYi,Wi)] 
E+, m(zi, Yi I w i  7 Oi) J(zi,yi,wi) = 

(11) 
The marginal magnitude measures local signal en- 

ergy, highlighting image features such as contours, pe- 
riodic patterns, and corners. The normalized mini- 
mum moment of inertia is used to  discriminate be- 
tween directional patterns (J % 0) and patterns com- 
prising orthogonal, or no dominant, orientations ( J  x 
0.5). When a directional pattern is detected, subse- 
quent stages, such as the filter tuning discussed in Sec- 
tion 3, can be restricted to  the basis channel contain- 
ing the dominant orientation. I t  is important to  note 
that (10) produces two orientations within the interval 
from -8 to  5 that correspond to  the minimum and 
maximum moments of inertia 

3 Creating New Tuned Filters 
This section discusses a hierarchical filtering ap- 

width filter response using a weighted combination 
of the outputs from the separable, wide-bandwidth 

ing is performed by the basis filters, the computa- 
basis filters. 

tional advantage of separable filtering is preserved. At 
the same time, the improved discrimination associated 
with smaller bandwidth kernels is obtained. 

The initial stage of the tunable filter approach at- 

= // ‘ ( z , y ) G * ( z * - z , y i - y , w * , 4 * ) d z  dy, ( 5 )  proach that can create a non-separable, small band- 

where I(x, y is the inpuf, image. The local magnitude 

bor coefficients, are given by 
m and the P h ase 0, obtained from the quadrature Ga- 

B(zi,yj,wj,c$i) = arctan [ - :;[:;] ’ 

Since the bulk of the image process- 

m ( q ,  yi, wi,  4;) = ,/-, (6) 

(7) tempts to  find regions in the basis output that exhibit 

629 

. . . .... . I . . . . . . - . . . . 



a Gaussian-shaped local magnitude response and a co- 
herent phase response (constant phase gradient). Pe- 
riodic patterns and elongated contours are identified 
by regions with elliptical magnitude responses and no 
rapid changes in the phase gradient (mean frequency 
and orientation). The orientation of the ellipse’s ma- 
jor axis ( 4 ~ )  and the channel modulation (4,) are 
aligned for periodic patterns and orthogonal for elon- 
gated contours. Once these image regions are iden- 
tified] the window shape and modulation parameters 
are extracted. If X or CY of the image feature is signif- 
icant (i.e. A-’ . a is large), a sine-cosine pair of tuned 
Gabor kernels is formed. 

The synthesis of new filters is performed using a 
variation of the Gabor expansion [l] [2]. The Gabor 
expansion represents an image pattern P ( x , y )  by a 
weighted sum of basis functions Gnmkl: 

P(x1y) = CnmklGnmkl(2 - x n , Y - Y m , w k , d / ) ,  
nmkl 

(12) 
where Cnmkl is an expansion coefficient and sn and 
ym are spatial locations in the expansion lattice. In 
the hierarchical filter approach, the pattern of inter- 
est is the impulse response of the new filter. Since 
the new kernel P ( x l  y) has a smaller fractional band- 
width than the basis kernel, it is possible to  synthesize 
c ( t ,  y) by considering one basis channel only: the ba- 
sis channel whose passband most overlaps with the 
desired kernel’s passband. Instead of forming a new 
kernel P(x ,  y) and then re-filtering the original image 
I ( z ,  y), it is possible to  create the same filter response 
by a weighted summation of the basis filter outputs: 

/’ ~ ( x ,  y > ~ ( a : i  - 2, Yi - y ) d t  dy = Cnmanm 
Ym 2% 

(13) 
where 

anm = SJ ~ ( s ,  Y)Gnmkl ( tn  - 2, ym - y)dx  dy.  (14) 

After selecting the appropriate basis channel (wk 
and + I ) ,  it is necessary t o  select the spatial lattice 
points (i.e., the set of 2, and ym) to  be used in the 
filter synthesis. The spatial lattice points are selected 
as a rectangular grid centered on the spatial position 
of the desired filter kernel (xi, yi). The spacing of the 
lattice points is much larger than the pixel spacing, 
but no larger than ( 2 A w ) - l ,  where A w  is the band- 
width of the basis kernel. A reasonable choice for the 
lattice spacing, for basis kernels with X = 0 . 2 5 a ,  is 
Sa: = b y  = a ( w ) - l .  Note that the number of lattice 
points must be increased in each of the x and y di- 
rections inversely with the bandwidth of the desired 
filter. 

The inner product of the desired filter kernel with 
a selected basis function is given by 

b; = //P(x,y)G:(xi - z,y; - y)  dx d y .  (15) 

The relationship between the expansion coefficients 
and bi is given by b = QE where b = [ b o . .  . b ~ - 1 ] ~  

and = [CO.. . ~ ~ - 1 1 ~ .  The elements of the matrix 
Q are the overlaps between pairs of basis functions. 
For two basis functions belonging t o  a common Ga- 
bor channel, but separated in t and y, the pair-wise 
overlap is given by 

X 2 W 2  

8a q i , j  = exp { -- [(xi - xj)’ + (yi - ~ j ) ~ ]  

x exp { j w  [(si - xj) cos dl  + (yi - yj) sin 4i]} . 
To ensure accuracy in the filter synthesis, the spa- 

tial lattice is slightly over-sampled with respect t o  the 
minimum sampling interval, (2Aw)-’. As a result, Q 
does not have full rank. One soluti n to the Gabor 
expansion is given by = Q + rI]-’bl where r is a 

Note that the solution to  [Q + r1I-l can be calculated 
off-line, because it is only dependent on the number of 
lattice points, the lattice spacing, and the basis ker- 
nels, but not the new kernel. 

To synthesize the new filter response, b is required. 
This overlap between the basis functions and an ellip- 
tical, non-separable Gabor kernel is given by 

regularization constant, an 6 I is the identity matrix. 

a,  2U,- 2( 6 y)2 

where wc(i) = w cos(& - 4 ~ ) ,  us(*) =. w sin(di - d ~ ) ,  
wc(n) = wn COS(& - 4 ~ 1 ,  W s ( n )  = wn sln(4n - d ~ ) ,  

and an,  U,, wn ,  and 4, are the eccentricity, scale (in- 
verse of bandwidth) , modulation frequency, and (mod- 
ulation) orientation] respectively, of the new filter. 

4 Results 
This section demonstrates the use ot local mea- 

sures and the tuning of filters for detecting interesting 
features. Figure 1 shows a forward-looking infrared 

image of a tank seen at an oblique view. The 
lter will be tuned to  the periodic pattern correspond- 

ing to  the row of guide wheels. Figure 1 also shows 
the results of combining the four basis orientations 
into local measures: the marginal magnitude, the peak 
region of the marginal magnitude, and the dominant 
spectral orientation. Since a dominant orientation ex- 
ists in the peak region, the subsequent analysis can be 
restricted t o  a single channel. 
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Figure 1: (upper- lef t )  FLIR image of tank. (upper-  
right) Marginal magnitude. ( l o w e d e f t )  Dominant 
spectral orientation. ower-right) Peak of mar inal 

values of local measures. 
magnitude. Dark (lig 6‘ t,) values indicate high tow) 

Figure 2: Tank responses for channel $1 = 0: (upper-  

measurements within the channel bandwidth. Black 
(white) values denote measurements above (below) the 
channel passband. 

Figure 2 shows the magnitude, mean frequency, and 
mean orientation of the tank for the selected basis 
channel (41 = 0). Note that the row of wheels ap- 
pears as a region with a large magnitude response and 
a nearly constant frequency. The mean frequency in 
this region is 1.16 times the channel modulation fre- 
quency, and the mean orientation is -0.04 radians. 

The impulse response of the tuned filter and the 
resulting magnitude response of the filtered tank im- 
age appear in Figure 3. The eccentricity of the el- 
liptical window is a = 0.5, the bandwidth is half the 
basis value, and the orientation of its major axis is 
& = -0.44 radians from horizontal. By comparing 
Figures 2 and 3, it is clear that the tuned magnitude 
response displays improved detection of the periodic 
pattern and suppression of secondary responses. 

Figure 3: ( le f t )  Tuned filter kernel and right) tuned 
magnitude response of the tank. Dark (light values 
in the right figure denote high (low) magnitu d es. 

5 Conclusion 
This paper has presented a hierarchical Gabor fil- 

tering approach for object detection in FLIR images. 
Hierarchical filtering allows one to build non-separable 
filter responses from a spatial combination of sep- 
arable basis filter outputs, which results in signifi- 
cant computational savings. This paper has also pre- 
sented local measures based on magnitude, phase, and 
frequency, which are used to  extract important im- 
age features and provide information for tuning the 
non-separable filters to interesting image patterns. 
It allows the tasks of feature detection and feature- 
based model indexing to be decoupled, thereby avoid- 
ing the trade-off between the flexibility required for 
scale/aspect insensitive detection and the distinctive- 
ness required for unique indexing and for discriminat- 
ing objects from clutter. 
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