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Abstract 

Real-world applications of computer vision usually involve a 

variety of object models making a single model representa- 
tion somewhat inadequate for object recognition. Multiple 
representations, on the other hand, allow different matching 
strategies to be applied for the same object, or even for dif- 
ferent parts of the same object. This paper is concerned with 
the use of CAD-derived hierarchical models having multiple 
representations - concave/convex edges and straight homoge- 
neous generalized cylinder - for generic object recognition in 
outdoor visible imagery. It also presents a refocused match- 
ing algorithm that uses a hierarchically structured model 
database to facilitate generic object recognition. Experimen- 
tal results demonstrating generic recognition of objects in 
perspective, aerial images are presented. 

1 INTRODUCTION 

The success of a three-dimensional (3-D) model- 
based object recognition scheme is dependent on several 
factors: representation of the model (e.g., wireframe, 
constructive solid geometry, surface boundary or B-rep), 
types of features in the input image, choice of search 
technique to match the model and the data. In real- 
world image understanding (IU) problems, there are ad- 
ditional factors that complicate the overall model-based 
object recognition process. These include occlusion, 
shadow, cloud cover, haze, seasonal variations, clutter, 
and various other forms of image degradation. Typically, 
CAD models of objects are used in IU tasks involving 
man-made objects [2]. However, most IU systems use a 
single representation for the models or a matching tech- 
nique based on a single representation for object recog- 
nition. On the other hand, for real-world applications 
of IU, it is unlikely that a single representation-based 
recognition strategy would suffice for a variety of ob- 
jects; multiple representations allowing different match- 
ing strategies to be applied for the same object, or even 
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for different parts of the same object, is a better alter- 
native that has not been explored in the past. 

This paper is concerned with (a) building appropri- 
ately detailed, hierarchical models of objects with mul- 
tiple representations and (b) using these models to 
perform generic object recognition in outdoor imagery. 
From a computational point of view, hierarchical repre- 
sentation simplifies the complexity of the problem and 
provides a solution for recognition of partially visible ob- 
jects even under self occlusion. Moreover, psychological 
studies [3, 71 have given evidence of the role of parts 
in human visual recognition. Apparently, multiple rep- 
resentations are derived for each subpart and are used 
to guide the extraction of image features. During the 
matching phase, these representations admit cooperative 
matching strategies and simultaneous verification of the 
subparts of a hypothesized object. Generic object recog- 
nition is the process of determining the class of objects 
that is most similar in shape to the actual image and 
is accomplished using shape models of unknown dimen- 
sions. The generic object recognition systems proposed 
in the past [l, 4, 81 are either simplistic or inadequate 
for handling shadows, clutter and other image degrada- 
tions encountered in complex image interpretation tasks. 
The imaging conditions and the viewpoint location can 
affect the sensory data in such a way that their valida- 
tion using detailed CAD models may be difficult. Thus, 
this paper also emphasizes the use of approximations of 
CAD models for generic object recognition. 

In the following sections, we discuss the details of the 
generic object recognition approach that utilizes hierar- 
chical CAD models with multiple representations. Sec- 
tion 2 describes creating appropriately detailed, hierar- 
chical vision models with multiple representations. Sec- 
tion 3 discusses the recognition algorithm using these 
hierarchical models. Section 4 gives the details of imple- 
mentation and the experimental results using real-world 
data. Section 5 presents the concluding remarks. 
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2 BUILDING GENERIC OBJECT 
MODELS WITH MULTIPLE 
REPRESENTATIONS 
We begin with a discussion on the need for view- 

dependent model descriptions and derivation of the con- 
ditions, as functions of the imaging geometry, under 
which these descriptions may be obtained for given CAD 
models. 

2.1 Viewpoint-dependent Representation 

There is a need for an adequate model description, 
even for generic CAD models, which can be supported 
by the sensory data. We, therefore, emphasize the use of 
appropriately detailed models (for the purpose of model- 
image matching), to be called the diffused models, where 
the degree of detail is determined by the viewing condi- 
. tions or the imaging parameters. 

Consider the perspective projection of a planar curve, 
C ,  as illustrated in Figure 1. Let XI = (Xl,Y1,20) 
and Xz = ( X ~ , Y ~ , Z O )  denote two points on C whose 
image projections are (r1, c1) and ( r z ,  C Z ) ,  respectively. 
According to  Figure 1, 

fkY f kr  
2 0  zo Ar=--IXz-XlI and A c = - I Y z - Y l ( ,  (1) 

where Ar = Irz - r1( and Ac = Ic2 - c l ( ,  f is the focal 
length of the imaging system, and k ,  and ky are internal 
parameters of the sensor. In order for XI and Xz to 
be distinct, Ar 2 1 pixel and Ac 2 1 pixel, i.e., the 
resolution a t  the plane must be 

2 0  2 0  AX = IXz-X1I >_ - 
fkY f k r  

(2) 

and AY = IYz-YlI 2 -. 

A diffused model of C for the given resolution (AX,  AY)  
is such that the two shapes (due to the original and dif- 
fused models) are equivalent. 

To compare two shape models, we utilize the notion 
of “e-neighborhood” of a point ([6], a spherical region 
of radius E centered at that point). The “distance” be- 
tween two shapes is the smallest value of E for which 
each shape is completely contained within the spherical 
neighborhood of the other, perhaps after some arbitrary 
displacement. 
Proposition 1 Two shapes are said t o  be equivalent if 
their distance is within the limit of the specified resolu- 
t ion. 
In our case, the smallest E corresponding to the dis- 
tance between C and its diffused model is E = 
J(AX)z + (AY)2 .  This tolerance can be used to de- 
rive diffused models of objects as discussed next. 

Q 
/ /  

Y / /  

Figure 1: Perspective projection of a planar curve. 

Figure 2: A generic airplane model: (a) B-spline model 
of an airplane, (b) Edge detection using a polyhedral 
approximation of the B-spline model, (c) Decomposition 
of the polyhedral approximation along concave edges. 

2.2 Diffused Models with Multiple 
Representations 

The CAD system used in this work is the Alpha2 
solid modeling system developed at the University of 
Utah. Figure 2(a) shows an airplane CAD model whose 
decomposition is shown in Figure 2(c). The decomposi- 
tion is obtained by first deriving a polyhedral approxima- 
tion of the B-spline model of Figure 2(a), and then find- 
ing the concave discontinuities of surface normals (Fig- 
ure 2(b)) that separate the different subparts. The final 
object models are represented by constructing relational 
links between their respective part decompositions. The 
details of the approach appear in Bhanu and Ho [2]. 

Given a space curve and a diffusion limit E based on 
resolution it is possible to obtain a (nonunique) dif- 
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Figure 3: Generalized cylinder representation of sub- 
parts of an airplane: (a) Axes of GCs, (b) Axes of SHGC 
approximations of GCs in (a). 

fused model of the curve by incrementally deforming the 
original curve to obtain progressively lower-order space 
curves. At each step of the iterative process, position 
and orientation of the most recent deformed curve can 
be calculated with respect to the original curve to  verify 
that the amount of displacement is within the resolu- 
tion limits. To illustrate this procedure, consider a GC- 
based description of a CAD model whose axes and cross- 
sections are typically described by low-order polynomi- 
als. For every subpart of a decomposed object model 
represented using a GC, it is tested whether a straight 
homogeneous generalized cylinder (SHGC) approxima- 
tion is feasible for that part, i.e., the axis curve can 
be approximated by a straight line and all the different 
cross-sectional functions can be replaced by a single ho- 
mogeneous function. If the conditions are satisfied, then 
an SHGC-based representation is obtained for that sub- 
part. Figure 3(a) shows the axes of GC representations 
of the subparts of the original (non-diffused) airplane 
model and Figure 3(b) describes the axes of the corre- 
sponding subparts of the diffused model using the SHGC 
representation. The model of Figure 3(b) can be further 
approximated depending on &-value to obtain a diffused 
model in which small SHGCs, i.e., ones with axes lengths 
nearly equal to or smaller than E ,  are ignored, e.g., the 
SHGCs connecting the wings or the tails to the fuselage 
in Figure 3(b). 

Multiple-representation descriptions are maintained 
for each of the decomposed subparts using polyhedral ap- 
proximation, concave/convex edges, curvature extrema, 
surface normals, and generalized cylinders. Two ex- 
amples of multiple representations of object models are 
shown for the airplane model: the edge (or curvature ex- 
trema) points of Figure 2(b), and the generalized cylin- 

Figure 4: A flow diagram of the generic object recogni- 
tion algorithm. 

der representation of Figure 3. 

3 RECOGNIZING GENERIC 
OBJECT MODELS WITH 
MULTIPLE REPRESENTATIONS 

Given multiple representations of hierarchical, dif- 
fused CAD models, the goal of object recognition is 
to utilize these multiple representations of the subparts 
during the recognition process. The use of multiple 
representations facilitates cooperative interaction among 
different matching strategies. The recognition process 
initiates with the most generic, diffused CAD models, A 
cycle of increasingly specific feature extraction and finer 
recognition, called refocused matching, then allows the 
system to interpret a scene in terms of individual (more 
specific) CAD models. The algorithm for generic object 
recognition consists of the steps indicated in Figure 4 
that are monitored by a supervisory controller. 

The input to the recognition system is a 2-D image and 
ancillary data about the imaging and platform param- 
eters and scene conditions. Initially, a multiresolution 
search is performed to determine the regions of interest 
(ROIs) that are likely to contain the target objects. Once 
the ROIs have been identified, each of them is subjected 
to the recognition process described below in succession. 

3.1 SHGC Representation-Based Dominant 
Axes Extraction 

The dominant axes correspond to the longest axes 
of the SHGC representations of CAD models. Normally, 
the contours of SHGCs are used for determining the axes 
of SHGCs fiom edge images. However, in outdoor im- 
ages, where contrast and image quality can vary greatly, 
a reliable extraction of edges is often not possible. In 
our approach, the 2-D shapes of objects are used to ex- 
tract the dominant axes from the images. Such shapes 
are identified by segmenting image regions that may 
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correspond to the objects of interest. The segmenta- 
tion is based on the joint relaxation of a two-class (ob- 
ject/background) region-based approach and a twc-class 
(edge/no edge) edge-based approach. 

To extract dominant axes of an SHGC-based represen- 
tation, we note that the curvature at an end point of an 
SHGC is inversely proportional to the distance from its 
origin of scaling. The approach to extracting the p- 
tential dominant axes of an SHGC representation-based 
shape involves identification of the high curvature points 
of the region boundaries corresponding to the contours 
of the subparts represented using SHGCs. To determine 
the high curvature points along the region boundaries, 
the minimum bounding polygon (MBP), i.e., the small- 
est (area-wise) convex polygon, that completely encloses 
the object region is found. It can be shown that the 
vertices of the MBP lie close to  the local extrema of cur- 
vature points along the region boundaries. 

Now, more than one “extreme” point may be identified 
within a small neighborhood along the region boundary 
in the vicinity of a polygon vertex, e.g., when there are 
multiple local extrema points in a certain segment of the 
boundary. In that case, nearby “extreme” points are 
grouped into clusters and the cluster centers are chosen 
to represent the region extremities. A potential domi- 
nant axis is a line that connects two such extreme points 
that are not the centers of adjacent clusters. Lines whose 
significant portions are not contained within the seg- 
mented region are ignored. 

3.2 Edge Representation-Based Primitive 
Feature Extraction 

Edge pixels in images are detected by applying multi- 
ple thresholds and are thinned to one-pixel width. Next, 
long edge segments that are made up of high magni- 
tude edge pixels are found to form linked edge segments 
through an optimization step. Each set of linked edge 
segments or a configuration level constitutes perceptually 
salient contours corresponding to one threshold value. 
These sets are handed over to the primitive feature ex- 
traction process in a regulated manner, starting with the 
top-level configuration (see Figure 4). 

The extraction of primitive features involves edge- 
based representation of shapes. Since this representation 
is derived from polygonal approximations of B-spline 
CAD models, the primitive features comprise linear seg- 
ments. The input to  this line extraction algorithm is 
a set of regulated intensity-edge segments. Now, the 
model edges intersect in 3-D corners whose projections 
are 2-D corners. Thus, in addition to lines, our algorithm 

also detects corners by obtaining gradient and curvature 
measurements at pixels in the grey scale image. 

3.3 Symbolic Feature Extraction 

Symbolic features may be derived using percep- 
tually grouped primitives. We adopt a two-stage ap- 
proach for the extraction of symbolic features. First, 
the line primitives are organized into convex groups us- 
ing domain-independent perceptual measures. Second, 
SHGC-based representation of the hierarchical object 
models are used to extract symbolic features from these 
convex groups that may correspond to the different sub- 
parts of a generic object. 

3.3.1 Edge representation-based convex 
grouping 

Polyhedral edges are either convex or concave; sub- 
parts modeled using convex edges give rise to convex 
groups of lines in the images. Initially, groups of lines 
are formed based on the perceptual measures of proxim- 
ity and collinearity. The motivation here is that if the 
elements of a group belong to a region boundary, then 
the segmentation results would help to determine the in- 
terior of the region and hence to verify the “convexity” 
of the group. 

A convexity test is performed for every pair of lines 
in a selected group. If a line of a selected pair fails the 
above convexity test, then that line is removed and put 
in a new group by itself. After all the initial groups have 
been considered, this process creates the first set of con- 
vex groups and isolated lines removed during the convex- 
ity test. The second pass considers whether an isolated 
line can be put in a convex group based on proximity, 
collinearity, and convexity. 

3.3.2 SHGC representation-based symbolic 
feature extraction 

The high-order symbolic features are obtained as 
assemblies of the lower-order perceptual groups by ac- 
cessing the object models. When these models are rep- 
resented using SHGCs, the symbolic features correspond 
to the contours of SHGCs. Since the rules for deriving 
the symbolic features are based on one representation 
(viz., SHGC) while the primitive features are extracted 
based on another representation (viz., convex edges), 
there must exist a transformation from one represen- 
tation to the other. To facilitate this transformation, 
we consider one class of SHGC, the linear right SHGC 
(LRSHGC), whose contour can be represented using a 
convex group of lines. For generic models such as the air- 
craft model of Figure 2(a), subparts can be represented 
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using LRSHGCs for certain degree of diffusion. Conse- 
quently, convex groups of lines are used to extract these 
subparts such as wings, tails, and the rudder sections of 
the generic aircraft. 

3.4 Evidence-Based Reasoning for Recognition 
by Parts 

Our approach to reasoning is “exact” or non- 
monotonic which we shall refer to as evidence-based. 
This particular reasoning method accumulates evidence, 
i.e., determines the number of positive evidences, in sup- 
port of the hypothesized generic object. (In this work, 
we do not consider negative evidences for a hypothesized 
object .) 

Once the symbolic features have been derived, these 
need to be matched to the generic object model through 
the evidence accumulation process. It primarily involves 
verifying the mutual connectedness of the symbolic fea- 
tures that represent the different parts of a generic ob- 
ject. The exact manner in which this verification is to be 
carried out is specified by the production rules associated 
with this object model, but in all cases we emphasize si- 
multaneous verification of hypotheses. The combined 
support of a body of evidence for a hypothesis is the t e  
tal number of positive evidences that can be found in the 
input data. The final output are the identified symbolic 
parts of the generic object. 

3.5 Refocused Matching 

The labeled symbolic parts are now used to direct 
the image-based search for more localized features that 
are available at lower levels of the database hierarchy. 
The symbolic features may have associated qualitative 
or quantitative information. When the latter is avail- 
able, it may be used to derive constraints for the subse- 
quent identification of the detected generic object. We 
now describe a method for utilizing quantitative infor- 
mation in refocused matching. It makes use of the pose 
computation approach of DeMenthon and Davis [5]. 

Referring to Figure 5,  let the model coordinate axes 

be centered at a point MO and let Mi denote any other 
model point. Also, let Xo and Xi denote the coordi- 
nates of these points in the sensor-based world coordi- 
nate system and ro and ri denote the same in the frame 
coordinates, respectively. Then, by using perspective 
projection relations one obtains 

co - ci = fk”(X0 - Xi) = s z j .  MoMi, (3) z 

Figure 5: The coordinate systems relating an object 
model to its projection for pose computation. The vec- 
tors in the systems U-v-w and i-j-k are unit vectors. 

where it is assumed that ZO = Z, = Z and i, j, k denote 
the unit vectors along X, Y, and Z-axes, respectively. 
The unknown multiplicative factors so = fk./Z and 
sy = f k y / Z  signify the scaling of the model in X -  and 
Y-directions, respectively. Let U, v, and w denote the 
unit vectors along the three axes of the model-centered 
coordinate system where the sensor and the model unit 
vector systems are related as [i j kIT = R[u v w ] ~ ,  
R being a 3 x 3 orthonormal rotation matrix with rows 
[iu i, iw], [ju j ,  jw], and [leu k, kw]. For m model points, 
i.e., i = 1, ..., m, the corresponding systems of equations 
are represented using matrix-vector notation as 

r = A I ,  c = A J .  (4) 

Here, A is an m x 3 matrix of the coordinates (in the 
model-based system) of the m model points, r and c are 
m x 1 vectors of the frame coordinates of these points 
relative to that of MO,  and I = [syiu syiv syi,IT and 
J = [s,j, s,j, s,j,IT. If m = 3 and the correspond- 
ing points are non-coplanar, then A has a full rank and 
I and J can be uniquely solved and hence i j, k and 
R. The magnitude of the translation vector is obtained 
as IT1 = J X t  + Y: + Zi and its direction is given by 
the vector 01x0. The translation vectors correspond- 
ing to all other model points can be similarly obtained. 
These together with T allow updating the estimates of 
MoMi’s, which are known only approximately due to 
the generic nature of the object model, and refining the 
pose computations in an iterative manner. Once the al- 
gorithm has converged, this will yield better estimates of 
the model parameters than is available initially. These 
improved estimates can be subsequently used in the iden- 
tification step. 
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Figure 6: Descriptions of hierarchical CAD models with 
multiple representations: (a) A generic aircraft, and the 
three aircraft classes (b) Large, (c) Medium (d) Small. 

4 EXPERIMENTAL RESULTS 
The results reported in this paper are based on one 

generic object - aircraft - and its three subclasses - large, 
medium, and small (see Figure 6) .  Figure 7(a) shows an 
aerial photograph (4K x 4K) which has several aircraft 
- four G130's  and one F-18. Using the multiresolution 
focusing approach, several regions of interest are identi- 
fied as shown in Figures 7(b)-(d) and these are analyzed 
by the object recognition system in succession. Here, we 
present the results of analyzing one ROI (162 x 240) from 
Figure 7 that contains the F-18 aircraft. The ROT and 
the output of the multi-threshold edge detection step 
are shown in Figures 8(a)-(c). In our implementation, 
we have selected five threshold ( t )  values which are fixed 
for all images. The result of extracting globally salient 
edge contours is presented in Figure 8(d) which shows 
the top-level configuration, consisting of the aircraft in 
this case. The following step is to extract the primitive 
features from this global structure. The result of line 
fitting to the salient structures is shown in Figures 8(e). 
Segmented regions and the dominant aies of regions are 
shown in Figures 8(f). Figure 9(a) shows the six convex 
seis of lines identified using convex grouping procedure. 
These are used to extract trapezoid-like features shown 
in Figure 9(b) that are the symbolic descriptions of some 
of the subparts, such as wings, tails, and rudder. 

During the generic object recognition step, the domi- 
nant axes are used to support or refute a selected sym- 
bolic feature as a wing of the aircraft or the fuselage. 
Once all the conditions of connectivity and relative lo- 
calization of the different subparts have been satisfied, 
can their ensemble be recognized as a generic aircraft. 
The identified subparts are shown in Figure 9(c). The 
connectivity information of the parts is exploited to ob- 
tain more complete descriptions of the subparts, followed 
by the extraction of the shape skeleton. These results 

are shown in Figures 9(d)-(e). Note that no preezse 
model has been utilized in this recognition step. Next, an 
improved classification of the generic aircraft is sought 
based on the engine location (Figure 6). However, no 
elongated blob-like region (symbolic description of an en- 
gine) is detected that may indicate presence of engines. 
Therefore, the generic aircraft is identified as belonging 
to a small class (Figure 9(f)). 

The quantitative information associated with the three 
subclasses of the generic aircraft category is indicated in 
Table 1. Also available to the system are the location of 
the sensor, (527, 337, 560) m. in a reference world co- 
ordinate system, and the range-to-ground, 805 m, along 
the line of sight (LOS). The sensor- and model-based 
coordinate systems for computation of the approximate 
dimensions of the classified aircraft are shown in Fig- 
ure 5. The range of 2 (refer to Section 3.5) measured 
along the LOS is obtained as 798-801 m based on Table 1 
data and Figure 5. The four line segments, indicated as 
MoMl, MoM2, MOMS,  and MoM4 in Figure 5, of the 
small aircraft model which are to be used in computing 
R are further described in Table 2. The A matrix of Eq. 
(4) consisting of the coordinates of the model points M I ,  
M2,  M3, M4 relative to MO is 

a 0  
A =  bsin7 -bcosy d [ bs$y  - b z y  

0 

where 3.5 5 a 5 11 m, 5.0 5 b 5 11.8 m, 2.7 5 c 5 6 
m, 0 < d < 1.0 m and 93' 5 y 5 115'. To compute 
i, j, and k, the model line MoM4 is not used since it 
is collinear with MoM1. Thus, A is actually a 3 x 3 
matrix without the last row. The goodness of the com- 
puted rotation matrix is evaluated by obtaining the fol- 
lowing score: G = li . i - j . jl + /i . jl. The objective 
here is to identify the range of the 4-tuples Q, b, d ,  y for 
which G is the lowest. In this experiment, a value of 
d = 0.5 m is selected, which denotes the height of the 
wings above the U-Y plane (since this information is not 
usually available), and the space of a - b - 7 is searched. 
The most significant mode of G is observed around 0.6 
(an interval size of 0.1 is used to partition G E [0,1]). It 
is observed that at least one of Q, b, and y values corre- 
sponding to the interval of G around this mode agrees 
with the groundtruth, i.e., the dimensions of an F-18 air- 
craft. The ranges of Q, b, and y values for this interval 
are observed as 8-11 m, 6-6.5 m. and 95' - 115', respec- 
tively. Some of the triplets belonging to this interval 
are listed in Table 3. Triplets with lower G values that 
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Table 1: Approximate dimensions of the three subclasses 
of a generic aircraft. 

Tailspan 

Figure 7: An aerial view of an airfield: (a) Original image 
(4K x 4 K ) ,  (b) Preliminary regions of interest (ROIs, 
black regions) in (a), (c) A close-up of the preliminary 
ROIs of (b), (d) New ROIs found in (c). 

49'-92' 23'44' 23-?x 

are not associated with any significant mode are also in- 
cluded in Table 3 for comparison. The range values are 
more precise than the ones listed in Table 1 for the small 
aircraft class and should facilitate more focused search 
for the specific object models. 

5 CONCLUSIONS 

In this paper, we have presented an approach to 
generic recognition of objects using hierarchical, diffused 
CAD models with multiple representations. Our ap- 
proach has been based on identifying the hierarchical 
subparts of a generic object model in the input image 
and verifying their spatial ordering through an evidence- 
based reasoning process. The novel aspect of our work is 
the use of multiple representations for the CAD models 
of generic objects and the derivation of features and con- 
straints for recognition based on such representations. 
The generic object recognition strategy emphasized in 
this paper can serve as the initial step for any model- 
based object recognition technique. 
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Figure 8: Results of low-level processing of the bottom 
ROI in Figure 7(c): (a) Original ROI image (162 x 240). 
Extraction of thinned edges using different thresholds 
for edge magnitude: (b) t = 225, (c) t = 50. Results 
of feature extraction: (d) Detection of most salient edge 
contours, (e) Fitting straight lines to the contours of (d), 
(f) Segmented regions and extracted dominant axes for 
the largest foreground region. 

Segment 

i 
MO MI 
MO Mz 
MO M3 
MO M4 

Table 2: Line segments for computing approximate pose. 
The pixel values are obtained from Figure 9(e) and the 
model dimensions from Table 1. 

Offset relative to MO 
in pixels in pixels in meters 

Model dimension 

ro - r1 CO - ct 

0 -130 3.5-11.0 
50 8 5 .O- 1 1.8 
-57 33 5.0- 1 1.8 
0 45 2.7-6.0 

Figure 9: Results of qualitative object recognition: (a) 
Six convex groups of lines identified in Figure 8(e), (b) 
Trapezoid-like shapes identified using these groups, (c) 
Structural parts found during generic object recognition, 
(d) Refined structural parts that are also labeled, (e) 
Finding the skeleton of the shape, (f) Class recognition. 

Table 3: Approximate dimensions of the recognized sub- 
class (small) of a generic aircraft corresponding to a set 
of best (lowest) G scores. The highlighted entry is the 
closest to the groundtruth, i.e., an F-18. 

9.5 0.53 

8.5 115 0.59 

10.5 115 0.59 
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