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Abstract

In order to reduce false alarms and to improve the detection and recognition performance in cluttered
environments, it is important to develop not only the models for man-made targets but also the models of
natural backgrounds. In this paper, we present a learning based approach to construct and to maintain
a concise and accurate background model bank by learning from positive and negative ezamples. Features

used to characterize the natural backgrounds include joint space-frequency features based on the Gabor
transform, and localized statistics of geometric elements.

An open-structure representation is used to
manage the background modeling process so that it is easy to include new sensors, new features and other

contextual information. Initial results are presented using visible and infrared (IR) images.
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1 Introduction

Automatic Target Detection and Recognition (ATD/R) is a challenging application for the general techniques devel-
oped by image processing and image understanding communities. There are several reasons that contribute to this
challenge: (a) a target may appear in many different backgrounds and it tends to be mixed up with its surround-
ings, (b) signatures of a target strongly depends upon the background surrounding the target and environmental
conditions, and (c) signatures of a target are generally not repeatable. As a result, early stage target-signature-based
image segmentation is generally unreliable. Since the ATR process is a serial process. any target we fail to detect
during the detection stage will be lost forever. In the detection stage. we would like to single out every suspicious
target area, even at the cost that we may bring in some false target areas by doing so. Then it is the responsibility
of the following recognition stage to verify the identity of each real target and to filter out the false targets. An ideal

ATR system is the one that (1) does not miss any potential target area in the detection stage, and (2) does not verify
any non-target area in the recognition stage.

¥ To achieve the goal of high detection probability and simultaneous low false-alarm rate, we present a new strategy
;‘, called Background Model Aided Target Detection and Recognition (BMATDR) [10]. The main idea of BMATDR
1 is to use explicit background models, as well as target models, throughout the ATR, process (Figure 1). During
' the detection stage, any area (region-of-interest) that is selected by the target models or that is not selected by
the background models is labeled as a potential target area and is passed to two parallel recognition processes. In
the target recognition process, each candidate area is verified against target models and the verified identity along
with the corresponding confidence value Cyq is attached to the area. The background recognition process is the
same except that the models used are background models (the corresponding confidence value is noted as Chgq).
The results from the above recognition stage (areas with identity labels and confidence values) are passed to the
third stage for cross-validation, where we finally label areas that have consistent answers from the two recognition
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Figure 1: Background model-aided target detection and recognition system. To get the best dis-
criminating result, feature cell size is selected as the size of a potential target, which, in turn, is
determined using the range information given as a contextual parameter. The accompanied image

is constructed from the testing image by removing rows and columns, equal to one half the size of
the selected feature cell, from all the four sides.

processes and resolve any conflicts. Areas with a high Ci4; and a low Cigq are labeled as target areas while areas with
a low Cig; and a high Chgq are labeled as background areas. A low Cig with a low Chgq may indicate a non-target

object, while a high Cig and a high Ciga point out the cases that have to be resolved based on the characteristics
of the application.

In the following section, we discuss our approach based on supervised self-organizing maps to construct models for
natural backgrounds. In Section 3, we examine the feature groups that we have developed for characterizing natural

backgrounds. Experimental results are shown in Section 4. Section 5 concludes this paper with a summary of the
completed work and future research directions.

2 General Approach

In recent years, two distinct approaches have been developed by ATR researchers to characterize the natural back-
ground (or thermal clutters) in infrared images. In the first approach, heat transfer equations are used to model
the thermal behaviors of different materials. [4, 5, 14]. Although theoretical models have been enhanced with more
accurate mathematical description of the physics involved in the heat exchange process, they still have a long way to
go before these models can be effectively used in practical applications. The main reason is that there are too many
environmental factors that can affect the thermal behavior of the target and the background. Sherman et al. [7]
categorized 41 such variables into five classes — background parameters, target parameters, platform dynamics,
atmospherics and sensor parameters. The second approach focuses on the image features rather than the thermal-
physical meaning behind these images. Researchers following the second approach mainly address two different tasks:
(a) quantify the clutter in infrared images and use the clutter measure to understand how the clutter affects the
detection performance in a target detection system with man-in-the-loop [9, 13]. (b) build statistical models for
different natural backgrounds, and use these models in an ATR system [6]. Our BMATDR approach (Figure 1) was
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developed to accomplish the second task.

Since the new, improved sensors have increased the resolution of IR images. it is now possible to extract, from these
images, many useful image features that can be used to characterize the background. Two important goals of our
image feature-based background modeling approach presented in this paper are:

e to develop features that can effectively characterize a certain natural background against man-made target(s)
and other backgrounds. ‘

¢ to develop a suitable representation for the background model so that we can control the potential risk of memory
explosion while learning the background models from real images.

Since a natural background makes sense to human eyes only when a sufficient area of that background has been seen,
region-based features are more suitable for characterizing a natural background than global or pixel based features.

To facilitate the following discussion, we introduce two terms, feature cell and feature cell size, which will be
used throughout this paper to refer regions used in feature computation.

Definition: A Feature Cell is a rectangular region within the image from which an tmage feature is computed. The
Feature Cell Size is a measure of this rectangular region.

2.1 The Background Model Bank

Since natural backgrounds can occur in a wide variety, background characterization must rely on multiple features.
To efficiently use the available features, we need a proper representation to hold the information efficiently. One
approach to attack such a problem is to organize all the features into a high dimensional feature vector (i.e. long
feature vector) and classify a background based on the position of the corresponding feature vector in some high-
dimensional feature space [6]. The other approach is based on short feature vectors. The key idea behind this later
scheme is the need to understand the physical meaning of each feature and put each feature in a group of features
that have closely related physical meanings. In our work, we follow the second approach and restrict the size of each
group so that the size of any feature group is not more than three. If new feature metrics are found to be useful
for background modeling, we would construct a new feature group rather than increasing the size of an existing
group. We investigate the discriminating power of each feature group separately, and build a background model for
each such group. Thus, for a given background we will have a collection of simple (i.e. low-dimensional) models.
We refer to such a collection of models as a Background Model Bank (BMB). and each model in this bank as a
BMB member. Each BMB member characterizes a given background from a specific physical view point. Figure 2
shows how this BMB would work once it has been constructed. The validity scope of a BMB member is a lookup
table, indexed by conteztual parameters, which stores the performance of a BMB member under certain conditions.
Major contextual parameters include sensor types, range, depression angle. weather conditions, etc. A reinforcement
learning algorithm is now under development to facilitate the determination of validity scopes.

2.2 Representation of a BMB member using a self-organizing feature map

Although many papers in the literature have used known statistical distributions in their analysis of natural clutters
in IR images, there is no strong evidence that thermal natural clutters possess a certain statistical distribution [9].
Instead of artificially assigning a distribution model to background models. we construct our BMB from real images
through a supervised learning process. Since reliable statistical models can only be obtained through analysis of a
large population of samples, space and time complexities of algorithms become a major concern when selecting a
learning scheme. In our approach. each BMB member is represented by a self-organizing map (SOM). By controlling
the size of the SOM, we can easily control the space and time complexity of the learning process. Figure 3 shows
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Figure 2: Using the learned Background Model Bank (BMB) for target detection. The validity scope
of a BMB member is a lookup table, indexed by conteztual parameters, which stores the performance
of a BMB member under certain conditions. C;’s are confidences for background classification using

different feature groups. K;’s are weights of different feature groups under given environmental
conditions. They are learned by using reinforcement learning.

the training process for a BMB member. A supervised SOM algorithm has been developed to accomplish learning
for BMB members from training examples [11].

3 Feature Groups
3.1 Gabor transform-based features

Features in the frequency domain have been widely used for accomplishing tasks like texture segmentation [1]. A
special difficulty associated with ATR applications is that in most situations, a target of interest constitutes only a
small part of the sensed image. Therefore, if a feature is based on global transforms like the Fourier transform, it
is very likely that the existence of the target may not affect the spectrum to an extent that it is clearly discernible.
But if the spectrum can be localized to an area whose size is comparable to the size of a target, the spectrum would
have a recognizable variation (with respect to background) when the “attention window” is placed on top of the
target. One approach to achieve this localized spectra is by using the Gabor transform. Gabor transform can be
considered as a special case of short range Fourier transform. It is different from the Fourier transform in the sense
that it can decompose an input image into basis functions which are localized both in spatial and frequency domain.
This property is particularly desirable for ATR application. To compute the discrete Gabor transform of an image,
we implemented an algorithm which makes the otherwise complex computation more efficient [15].

The 2-D Gabor Elementary Functions (GEF) are defined as

h(r)h h(s)h
gmnrs(2,y) = gt — mM,y — nM) - exp [27\"1’{ (r}w(:c) + (sjw(y) }] , where h(t) =t — #, (1)
and M is the feature cell size which determines the spatial resolution of the transform. A larger M corresponds to a
coarser spatial resolution and finer frequency resolution, while a smaller M corresponds to a finer spatial resolution
and coarser frequency resolution. Function g(u,v) is the window function that localizes the GEF in spatial domain.

For a 2-D square image Im(z,y), 2 =0,1,---,KM —1,and y = 0,1,---, KM — 1, the 2-D discrete Gabor transform
can be expressed as
K-1K-1M-1M-1

Im(x’y) = Z Z Z Z amnrsgmnrs(xiy) (2)

m=0 n=0 r=0 s=0
where amnrs is the Gabor coefficient corresponding to GEF gmnrs(2,y). If gmnrs(2,y) is separable, which is the case
when we use 2-D Gaussian function as the window function, the Gabor decomposition can be written in matrix form
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Figure 3: Building up a member of the Background Model Bank. The initial uniformly distributed
self-organizing map (SOM) is trained first by using positive examples and Kohonen’s algorithm.
After a pre-selected number of iterations, a disorder index is computed. If the map has reached a
certain degree of ordering, the algorithm/data selection switch is turned to the near-miss injection
algorithm which uses negative examples to refine the trained SOM. To allow a BMB member to
memorize its valuable past knowledges while it gains new experiences, the size of the SOM needs to
be extensible. An incremental SOM algorithm allows us to achieve this.

as Im = GAGT, where Im is the KM x KM image matrix, and A is the KM x KM Gabor coefficient matrix.

Matrix G and its transpose can be pre-calculated based on the selected spatial resolution. To compute the transform.
we have

A=G'Im(GT)™! (3)
Each element of matrix A is complex and represented by its real part ar™?

r" and imaginary part a:7.*. Here m and
n are the two spatial indexes that locate the element in spatial domain, while r and s are the two frequency indexes

that locate the element in frequency domain. The amplitude of the transform is given by
mn 2 . 2 1/2 \
Am" = (@) + (ai)?) (4)

Three feature groups are constructed from the Gabor amplitude spectrum.

3.1.1 Group 1: Multi-level mean amplitudes of Gabor transform

The first group consists of three features — MAO, MA1 and MA2, which are the zero, first, and second level mean

amplitudes of a feature cell. To compute them. the discrete Gabor amplitudes are first sorted in a decreasing order.
If Am(7) denotes the sorted Gabor amplitudes of a M x M feature cell, i = 0,1,---, M2 — 1, then

M?-1 (M?-1)/2 (M?-1)/4

1 N 2 - .
— y _ y [ R — ]
MAO = Ve iE—O Am(1), MA1 = e §=0 Am(i),  MA2= e §=0 Am(7) (5)

3.1.2 Group 2: Moments of the Gabor amplitude spectrum

The second group consists of two features — the first order moments of the Gabor amplitude spectrum with respect
to wr and wy axis.

M-1M-1 M-1M-1
Mom, = Z Z Am(r,s)-r, Momy, = Z Z Am(r,s) - s (6) .
r=1 s=0 r=0 s=1
15



3.1.3 Self-similarity phenomenon in natural scenes

It has been recognized that images of natural scenes exhibit statistical self-similarity at different scales [8]. Such a
property of self-similarity, also called fractal phenomenon, has been used by computer vision researchers for under-
standing the images of natural scenes, e.g. image segmentation based on fractal features [12]. In addition to the
fractal dimension, which is the most popular fractal feature used in the literature, other statistical features can also
be used to describe the fractal phenomenon within images. Field [2, 3] has proposed a feature which relates the frac-
tal phenomenon occuring in an image with the amplitude spectrum of the image. Assume we have an image whose

energy density at spatial frequency k is g(k). Then the total energy at this frequency would be E(k) = (27k)g(k).
The energy within a frequency band between frequency k and nk is

. nk nk
ER* :/k E(k)dk:/k (2mk)g(k)dk (M)

Scaling the image by a factor of a will bring this amount of energy to a new frequency band which goes from frequency
ak to frequency ank. If the image exhibits fractal phenomenon. this scaling process should not affect the energy we
just computed. Since this is true for any a and k, the only possibility is

nk
ETF = /k (27k)g(k)dk = Constant (8)

which requires
g(k) o 1/k° (9)

Equation 9 shows that the energy spectrum falls off as 1/k?. Therefore, the amplitude spectrum will fall of as 1/k.
If we plot the logarithmic amplitude vs. logarithmic frequency, the plot will be a straight line with a slope of —1.
Field [3] showed that the mean slope, for 85 visible images of different natural scenes, was —1.1.

Since one of the major functions of our background model is to discriminate natural backgrounds from man-made
objects, this feature can be very useful if images of the man-made objects do not show this —1 slope. Again, since
targets may constitute only a small part of the image, we use Gabor transform, rather than Fourier transform (as
Field did in [2]), as the basis for computing this feature. To compute the slope feature, we first need to compute
the average Gabor amplitude at each frequency over all the available orientations. Since the amplitude spectrum
obtained from Equation 2 is a square matrix, interpolation is needed to find out the correct amplitudes along all
the orientations except orientation 0° and 90°. To make the computation easier, we consider only 8 orientations at
each frequency, namely 0°,45°,90°,135°,180°,225°,270°, and 315°. Let Amy denote the average Gabor amplitude
at spatial frequency fi (k=1,2,---, M — 1), a least-square method is used to fit a straight line to the data pairs of

(log Amg, log fx). The slope of the fitted line and the maximum error of this linearization are computed as features
according to

Group 3:
M-1 M-1 M-1 -
SLP = Zk:l fk MkT] A;nk (AI 1)}” kl=1 ;kamk (10)
(Zk:? fk) — (M =1)37 fi¥©
- - M-1 _
ERR = {%_al)lc (SLPfi + B — Amy) — rlgl_lrll (SLPfx + B — Amk)} cos (arctan (SLP)) (11)
where

1 M-1 _ M-1
B:M_l<kz=:1Amk—SLPkZ=1fk> (12)

Another feature that we have found useful in distinguishing different natural backgrounds in visible images is the
difference between the two cross-section curves of the Gabor amplitude spectrum along orientation 0° and 90°.
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3.2 Group 4: Local statistics of geometric elements

The number of edges in a neighborhood has been used as a feature for texture classification in visible images. Since
many natural backgrounds show a certain degree of texture, similar features that measure the local statistics of
geometric elements can be used for natural background characterization. In FLIR images, a target normally appears
as one or several blobs close to each other. but, due to the varying contrast. the target-background border is not always
distinct. So, in addition to measuring the local number of edges. we use the number of blobs and the average size of
blobs in a feature cell as features. To find out the blobs in a selected feature cell, we run a blob-coloring algorithm
over the image with different thresholds. After each blob-coloring, statistics of the size, shape, and population of the
blobs in a feature cell are computed as features. We have found in our experiments that the change of these local
statistics with respect to different thresholding values reveals some characteristics of natural backgrounds. In this
paper, we are focusing on the number of the blobs vs. the gray value threshold. When we plot these two variables on
a semi-logarithmic plot, it can be seen that the lines corresponding to the target regions exhibit smaller slope than
the lines corresponding to the background regions (Figure 7). We can compute the slope of these lines as a feature
using

Yone kSN log (Nus (k) — NN klog (N (k)
(T k) -V, e

where N is the highest threshold used, and Ny;(k) denotes the number of blobs in a feature cell when we use
threshold k.

Seip =

(13)

Algorithm Adaptive-Region-Growing(/m, Th)
Im : input image.
Th : region growing threshold.
begin
. for (each pixel in Im, from left to right, top to bottom) do

Let p. = gray value of the current pixel C.

Let p, = gray value of the upper pixel U.

Let p; = gray value of the left pixel L.

if (abs(p. — pu) < Th && abs(p. — p;) > Th) then
Include C into the blob that contains U.
Update the average gray value, By, of the blob.
Update the gray value of each pixel in the blob to Byq;.

else if (abs(p. — p1) < Th && abs(p. — py) > Th) then
Include C into the blob that contains L.
Update the average gray value, By, of the blob.
Update the gray value of each pixel in the blob to Byq;.

else if (abs(p. — pi1) > Th && abs(p. — p,) > Th) then
Create a new blob.
Include C into this blob.
Byai = pe.

else if (abs(p. — p) < Th && abs(p. — p,) < Th) then
if (abs(pc — pu) < abs(p. — pi)) then

Include C into the blob that contains U.
else
Include C into the blob that contains L.

end if
Update the average gray value, By,. of the blob.
Update the gray value of each pixel in the blob to Byq.
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if (abs(p, — p1) < Th) then
Merge the blob that contains L to the blob that contains U.
Update the gray value. By,, of the merged blob.
Update the gray value of each pixel in the merged blob to Byq.

end if

endif
end for
end Algorithm

4 Experimental Results

In this section, we show experimental results of using Gabor transform-based features and local statistics of geometric
elements to characterize natural backgrounds. Samples of FLIR and low resolution visible images used in our
experiments are shown in Figure 4, where a man-made target is present on top of a natural terrain. All the images
are of size 200 x 200. To build up the background models, we manually “cut out” the pure background regions from
these training images and use them as positive training examples. Figure 7, 5, and 6 show the values of different
feature groups computed from the sample images using a 50 x 50 feature cell size.

All the features show a certain degree of discriminating power between man-made targets and natural backgrounds.
However, we have found that the separation of these two classes (background and man-made target) becomes less than
100% when examples exhibiting different contextual parameters are used. This degradation in the discriminating
power calls for the cooperation of multiple feature groups and a measure to resolve the feature overlapping problem
in each feature group. Our work is continuing to complete the system as shown in Figure 1 and 2. At this time

we have completed the feature extraction and the building up of BMB members via supervised SOM learning in
Figure 2.

5 Conclusions

In this paper, we presented an approach that uses self-organizing maps to construct statistical models of natural
backgrounds using visible and infrared images. By alternately using positive examples and near-misses in the training
phase, the SOM can learn the distribution of feature vectors and refine its boundaries to deal with the feature

(b)

Figure 4: Sample images used in our experiments, (a),(b): FLIR images, (c): low-resolution visible
image.
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overlapping problem. How beneficial the background models can be to ATD/R process depends on two factors, (1)
the effectiveness of the selected features. and (2) better understanding of each feature’s validity scope with respect to
contextual parameters. Future work will concentrate on: (1) testing our approach on a large database of infrared and
visible images, (2) identifying the most important contextual parameters for each feature group using reinforcement
learning methods, and (3) extending our approach to other sensors including synthetic aperture radar.
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