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Abstract 

Recognition of aircraft in complex, perspective aerial im- 
agery has to be accomplished in presence of clutter, occlusion, 
shadow, and various forms of image degradation. This paper 
presents a system for aircraft recognition under real-world 
conditions that is based on the use of a hierarchical database 
of object models. The particular approach involves three key 
processes: (a) The qualitative object recognition process per- 
forms model-based symbolic feature extraction and generic 
object recognition; (b) The refocused matching and evalua- 
tion process refines the extracted features for more specific 
classification with input from (a); and (c) The primitive fea- 
ture estruction process regulates the extracted features based 
on their saliency and interacts with (a) and (b). Experimen- 
tal results showing the qualitative recognition of aircraft in 
perspective, aerial images are presented. 

1 INTRODUCTION 

Aircraft recognition is an important subproblem of 
photointerpretation (PI) which continues to be a major 
application domain of image understanding (IU) tech- 
niques for nearly two decades [2, 51. Very few of the 
proposed aircraft recognition systems have actually ad- 
dressed the concerns of real-world such as occlusion, 
shadow, cloud cover, haze, seasonal variations, clutter, 
and various other forms of image degradation. To il- 
lustrate the difficulty of the problem, we show typical 
aircraft images in Figure 1 where recognition has to be 
accomplished under low contrast and in presence of shad- 
ows. There exists no viable approach to date that can 
work satisfactorily on all these cases. 

In this paper, we describe an end-to-end IU system 
for aircraft recognition under development which has 
been demonstrated to be effective in presence of shad- 
ows, clutter, and low image contrast. Our system uses 
a hierarchical representation of aircraft models consist- 
ing of generic aircraft, aircraft classes (e.g., jumbo air- 
craft), specific aircraft (e.g., Boeing 747), and aspects 
of a specific aircraft. Such representation is in terms of 
qualitative-to-quantitative descriptions that vary from 
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advance concepts (e.g., aircraft wing) to primitive geo- 
metric entities (e.g., points, lines) and allow increasingly 
focused search of the precise models in the database. 
To account for image variabilities, our system exploits 
heterogeneous models such as those of camera/platform, 
sun, shadow to derive symbolic features in a robust man- 
ner. Finally, the system regulates the extracted primitive 
features based on their saliency, an ability that helps to 
distinguish relevant features from image clutter. 

Section 2 describes the background and motivation be- 
hind the work reported in this paper. Section 3 describes 
the novel features of our aircraft recognition system. Sec- 
tion 4 presents the details of an algorithm that integrates 
feature refinement and object classification. Section 5 
gives the details of implementation and the experimen- 
tal results for qualitative recognition of aircraft using 
real-world data. Section 6 presents concluding remarks. 

2 BACKGROUND 

The different approaches to aircraft recognition that 
have been proposed so far can be broadly classified into 
the following categories: (a)  moment invariants, which 
use moment invariant features of the aircraft silhouette 
and silhouette border, e.g., [4]; (b) syntactic/semantic 
grammar, which use linguistic pattern recognition tech- 
niques to analyze aircraft shapes represented by piece- 
wise linear border approximations, e.g., [9]; (c) Fourier 
descriptors, in which the shape of the aircraft’s closed 
contour is represented using a Fourier descriptor (FD), 
e.g., [IO]; and (d) model and knowledge-based, in which 
an aircraft is represented in a hierarchical part-subpart 
fashion and the recognition process assembles image fea- 
tures in a forward- or backward-chaining fashion using 
the system’s model and knowledge base, e.g., [3]. 

The “knowledge-free’’ techniques are inadequate for 
real scenes as they treat the object of interest in isola- 
tion from the rest of the image. Also, these approaches 
have very limited capability to handle clutter, shadow, 
occlusion, etc. Among the knowledge-based techniques, 
the ACRONYM system by Brooks [3] is closest to the 
system described in this paper. However. the primi- 
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Figure 1 : Representative aircraft recognition scenarios: 
(a) shadow and (b) shadow and low contrast. 

tive feature extraction process in ACRONYM is inde- 
pendent of the subsequent analysis. So errors in prepro- 
cessing of primitives persist throughout analysis. Also, 
ACRONYM does not possess any hypothesis verification 
step and the complexity of its constraint-based model- 
ing is limited. All of these factors limit its application to 
images that are relatively simple photometrically, e.g., 
free of shadows and clutter. 

Most model-based aircraft recognition approaches rely 
on some form of segmentation of the raw image prim- 
itives into meaningful groups. But good segmentation 
cannot be guaranteed for real-world, complex images. 
Instead, a more effective approach would be to decom- 
pose the overall recognition problem into one of succes- 
sive identification of a more specific instance of an al- 
ready recognized generic class. One of the key problems 
of poor recognition performance in real-world scenarios 
is the presence of shadows, as seen in Figure 1. How- 
ever, shadows can be helpful to identify image features 
that are caused by raised structures such as aircraft. Oc- 
clusion, which in aerial imagery is primarily due to self- 
occlusion or close parking of aircraft, is another issue 
that a robust aircraft recognition system needs to ad- 
dress. To handle image clutter, the feature selection pro- 
cess must be able to distinguish between image features 
that are caused by the aircraft structure and those that 
constitute the clutter. Detection of perceptually salient 
contours in aerial images, which could very well be air- 
craft contours, should considerably simplify the segmen- 
tation and recognition tasks. 

3 SYSTEM DESCRIPTION 

Figure 2: A schematic of the model-based aircraft recog- 
nition system. 
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Figure 3: A partial hierarchy of generic-to-specific air- 
craft. 

features is driven by their ability to discriminate among 
objects a t  the same level of the hierarchy. The selected 
features are ranked according to their relative impor- 
tance in recognizing that particular object. The top- 
level of the hierarchy contains the shape (qualitative) 
attributes of a generic aircraft in terms of its structural 
subparts. The progressingly deeper levels embody more 
specific knowledge that becomes completely quantitative 
at the terminal nodes, i.e., location of geometric models. 
A partial hierarchy illustrating this particular database 
structure is shown in Figure 3. Using this database, 
reasoning about objects and its classes can be cascaded 
without requiring the presence of the same features (for 
matching) at all levels. The matching process can also 
search a lower level for distinguishing features should a 
categorization be not possible a t  a particular level be- 
cause of the lack of suitable features. Thus, the flow 
of control during matching is bi-directional - between a 
generalized class and its more specialized subclasses. 

The flow of low-level features (primitives) that are used 
to derive the symbolic features of aircraft models is reg- 
ulated based on the saliency of these primitives. Percep 

The system for model-based aircraft recognition is tual saliency is an useful property which can distinguish 

Our approach utilizes local measures of saliency based 
on the strengths of detected edge pixels, and lengths and 
local curvatures of edge segments. Regulation may also 
be based on the “specialized” nature of the features as 
required by the refocused matching process. 

Symbolic features of particular aircraft models are de- 

schematically shown in Figure 2,  It has four key features an Object from its background clutter in rea1 [SI. 
whose descriptions are given below. 

The hiemrchzcal object model database is useful for 
generic-to-specific object recognition. There are two im- 
portant considerations in designing such a database: the 
choice of features to represent a particular object class 
and the matching process, In our system, the choice of 
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Figure 4: Simplified examples of advance concepts: (a) A 
generic aircraft, and the three aircraft classes (b) Large, 
(c) Medium (d) Small. 

rived by incorporating domain-specific knowledge into 
the geometrical and physical constraints of the mappings 
of the primitives. Domain knowledge is embedded in the 
production rules describing these symbolic features. The 
production rule definitions of a generic aircraft and its 
three subclasses are illustrated in Figure 4. To extract. 
these features, the recognition search process is initi- 
ated at the top level of the database hierarchy and is 
looped through the production rules of the node being 
visited in a goal-decomposition fashion until a a rule is 
encountered whose conditions require mapping of prim- 
itives. The eualuatron of the extracted features involves 
the verification of the global semantic shape components 
of the generic model. It. utilizes heterogeneous mod- 
els: edge/gray scale-based model of image segmentation, 
models of shadow casting process, and models of image 
acquisition. Also used are the dominant axes that char- 
acterize the shape of the generic aircraft class. During 
evaluation, feedback from the generic recognition mod- 
ule to the feature regulation module (see Figure 2) helps 
to acquire additional low-level features in the event of 
recognition failure or low recognition confidence. 

The refocused matching and eualuatron module is re- 
sponsible for further classification of an object whose 
category has been determined by the generic recognition 
process. The key difference between this step and mul- 
tiresolution approaches to recognition is that the former 
views the object model database at  increasing resolution 
instead of the image. Data reduction is achieved by de- 
riving symbolic features that are more "focused" or local- 
ized with respect to a particular level. Usually, the sym- 
bolic features of the identified generic model guide the 
search for image primitives required for deriving these 
focused symbolic features. In addition, the former type 
of symbolic features may be subjected to mensuration 
during refocused recognition. 

4 ALGORITHM 

The emphasis of this paper is on qualitative recogni- 
tion of aircraft using the system described in the previous 

Figure 5 :  A flow diagram of the qualttatrue aircraft recog- 
nition algorithm. 

section. Initially, a solid modeling system is used to build 
B-spline CAD models of aircraft with mvltzple represen- 
tations. In this work, we utilize two representations, 
polyhedral edge-based (approximations of B-spline CAD 
models) and straight homogeneous generalized cylinder 
(SHGC). Given an input 2D image and ancillary data 
about the imaging parameters and scene Conditions, the 
algorithm for qualitative recognition of aircraft consists 
of the steps illustrated in Figure 5 .  First, the regions of 
interest (ROIs) likely to contain aircraft are identified in 
the high resolution input image by performing an intel- 
ligent search [7]. Each ROI is then analyzed following 
the steps described below. 

4.1 Saliency-based Feature Regulation 

Edge pixels are detected in an input ROI by applying 
multiple thresholds. This is motivated by the fact that 
no single threshold is suitable for all the different im- 
ages that may be encountered in practice. Subsequently, 
these edge pixels are used to extract perceptually salient 
contours and other primitive features. 

Our approach to identifying perceptually salient con- 
tours is based on finding long, smooth edge segments 
that are made up of high-magnitude edge pixels. This 
may be formulated as a problem of finding an edge seg- 
ment of length N starting at a terminal pixel, corre- 
sponding to s = 0 (s being the segment parameter), and 
subject to the following optimization: 

CECF max [ k [ w ~ V ( s )  + w2X(s)]ds - w3L(dH/ds) 'ds]  , 

where 0 < w l ,  w2, w3 < 1. Here, C t  denotes the set of 
all contours, C ,  of length N beginning at s = 0.  The 
variable V(s) is the magnitude of an edge pixel along 
the contour and denotes the strength component of the 
criterion function; X(s) = 1, if V(s) is greater than a cho- 
sen threshold and X(s) = 0, otherwise, and it represents 
the length component; dH/ds denotes the local curvature 
at the selected pixel. where H ( s )  is the slope along the 
contour. and it is a measure of local roughness. To re- 
duce complexity. the above optimization model is decom- 
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posed into n sub-optimization steps, each of which finds 
an edge segment of length N ,  such that A; = Cy='=, N z .  
These sub-optimization steps differ on the threshold of 
edge magnitude (hence the use of n thresholds) which 
affects the X(s) term of (1). 

,4t the first sub-optimization step, edge segment- 
following is initiated at a terminal pixel (one which has a 
single neighboring edge pixel) in the corresponding edge 
image. To continue edge-following, a neighbor of the 
last selected edge segment pixel is chosen that maxi- 
mizes (1). To account for noise, our approach allows 
a gap length of up to two pixels in the edge segment. 
Once it is terminated within the current edge image, 
the process is continued (i.e., the next sub-optimization 
step) in the image obtained with the next lower thresh- 
old. The optimization process ends when the current 
edge image is the last of the edge-image set. Repetition 
of the optimization process for different starting pixels in 
the same initial edge image yields different contours hav- 
ing the same degree of saliency, while contours obtained 
with different initial edge images are said to have differ- 
ent saliency. The contours having the same saliency are 
handed over to the primitive feature extraction process 
simultaneously, starting with the top-level configuration, 
i.e., contours whose initial edge image is obtained with 
the highest threshold. 

4.2 Pr imi t ive  Feature and Dominant Axes 
Ex t rac t ion  

The extraction of primitive features from regu- 
lated edge contours utilizes edge-based representation of 
shapes. Since this representation is derived from polyg- 
onal approximations of B-spline CAD models, the prim- 
itive features comprise linear segments. In our system, 
we have implemented a line extraction algorithm similar 
to the one proposed by Lowe [6]. 

The dominant axes correspond to the longest axes of 
the SHGC representations of CAD models. The poten- 
tial dominant axes of the generic aircraft shape are ob- 
tained by connecting the extremities of a labeled region 
within a segmented image. The segmentation process is 
based on a joint relaxation of edge- and region-based ap- 
proaches maximizing edge and region-border coincidence 
[l]. To determine the extreme points, the smallest con- 
vex polygon surrounding the object region is found. It 
can be shown that the vertices of this polygon lie close to 
the local extrema of curvature points along the bound- 
ary of the labeled region. For multiple local extrema, 
nearby points are grouped into clusters and the cluster 
centers are chosen to represent the region extremities. 

4.3 Non-shadow Feature Ext rac t ion  

Assuming that any arbitrarily shaped shadow 
boundary can be locally represented by straight lines, 
our algorithm to detect, potential shadow lines is based 

on the test of bimodality of the local histogram. Initially, 
region segmentation [l] is carried out within a window 
on either side of an extracted line and the largest re- 
gion is retained. The most significant modes of the his- 
tograms of these two regions are then subjected to the 
bimodality test. If the separation between the modes is 
less than a threshold or the smaller of the two is greater 
than another threshold, the line is ignored. Otherwise. 
it is marked as a potential shadow line. 

In order to separate the shadow lines from the shadow- 
making ones, the algorithm first obtains convex groups 
of lines based on proximity and collinearity. Each line 
from a selected group is subjected to a convexity test by 
pairing it with another line from the same group. Lines 
failing the test are removed and put in a new group. 
After all the initial groups have been considered, this 
process creates the first set of convex groups and isolated 
lines removed during the convexity test. The second pass 
considers whether an isolated line can be put in a convex 
group based on proximity, collinearity, and convexity. 

For each marked shadow line in a convex group, a 
corresponding shadow-making line from another group 
is sought by searching in a direction towards (or away 
from) the projection of the illumination point, i.e., the 
sun. The latter is determined from the ancillary data 
about the camera-platform positionjorientation and the 
sun position together with the imaging parameters. The 
matching score of a pair of shadow-shadow rnaking lines 
is computed from the degree of overlap of the two lines 
in the predicted direction. All the candidate matches 
of a selected shadow line are arranged according to 
the matching scores and marked with the correspond- 
ing group identifier. This entire matching process is re- 
peated for all other shadow lines in that particular group. 
The most promising matching group is determined from 
the group identifiers of the candidate matches. Each line 
in the selected group is assigned a unique match from 
the candidate group based on the matching scores and 
enforcing similarity of spatial ordering of the selected 
lines and their matches. If most of the lines in the se- 
lected group have been assigned unique matches, then 
the group as a whole is marked as a shadow group and 
the matching group is marked as a shadow-making (i.e., 
non-shadow) group. 

4.4 Symbolic Feature Extraction 

The symbolic features of the generic aircraft class in- 
clude trapezoid-like shapes for wings, tails, and rudder, 
and wedge-like shape for the nose part. Convex groups 
of non-shadow lines are used to derive these symbolic 
features. To identify the trapezoid-like shapes, groups 
of three (partially closed contour) and four (fully closed 
contour) lines are considered. Pairwise intersections of 
lines are verified to occur near detected corners. Non- 
overlapping line pairs that are far apart are prevented to 

171 



Wlng- I 

Non-thadow lincs 
Trapezoid-like shapc 
Aligned with Axis-I 

w S y " c  with 

Parallel line gmup 
9 Aligned with Axis-2 

U 

Hypothesis: 
wmg-2 

Evidonwr: 
m Non-shrdow lines 
m Trapezoid-like shape 

Aligned with Axis- I 
I Coonstcd to Fusdage 
9 Symmetric with c Wing-1 Iboul Axir-2 

Figure 6: Interacting hypotheses for the key structural 
subparts of a generic aircraft. The evidences (positive) 
are listed in the order they are sought while verifying the 
corresponding hypotheses. 

have a high collinearity value by enforcing the condition 
that the average separation between the lines of a pair 
is proportional to the smaller line length. To overcome 
the problem due to oversegmentation, i.e., fragmenta- 
tion of long lines into smaller parts, candidate groups 
of lines are merged based on collinearity measures. If 
the total length of the lines in a group is smaller than a 
certain fraction, Tperi, of the perimeter of the trapezoid- 
like shape obtained by connecting these lines, then that 
group is discarded. 

It is important to note that a range of threshold val- 
ues is associated with each perceptual measure of paral- 
lelism, proximity, and collinearity. Initially, the thresh- 
old values - Tp,  T,, and TF, respectively - are set to the 
maxima of the corresponding ranges. However, these 
values can be relaxed during symbolic feature extraction 
based on the flow of evidence when multiple mutually 
supporting hypotheses interact (described next). 

4.5 Evidence-Based Reasoning 

Once the symbolic features have been derived, these 
need to be matched to the generic aircraft model through 
an evidence accumulation process which determines the 
number of positive evidences in support of a hypothesis. 
(In this paper, we do not consider negative evidences for 
a hypothesized object.) 

During the matching process, the supervisory control 
module (see Figure 5) checks each hypothesis to deter- 
mine its combined support based on the evidences as- 
sociated with it. The combined support may be low if 
the evidence body is incomplete. Some pieces of evi- 
dence, known as the cratical evidences, contribute higher 
support than others and must be present to accept a hy- 
pothesis. Examples of such evidences (see Figure 6) are 
trapezoid-like shape, alignment with a dominant axis, 
and interconnection with the fuselage for the generic 
aircraft-wing hypothesis. During run time, the super- 
visory controller determines which critical evidences are 
missing. Typically, this situation is caused by insuffi- 
cient data, either due to the screening of features at the 
regulator level or due to the constraints on the imag- 
ing process for that particular viewpoint. In the former 
situation, the controller interacts with the low-level fea- 

ture regulator so that less salient features may now be 
available along with the existing ones. Constraints due 
to the viewpoint warrants the access of the qualitative 
database by the supervisory controller to obtain further 
knowledge about the alternate evidences for this hypoth- 
esis. 

4.6 Refocused Matching  

Further refinement of the detected aircraft shape is 
required to improve upon the extracted symbolic infor- 
mation. This usually involves completing the generic air- 
craft description by accounting for the missing elements 
of the symbolic features. This is followed by obtaining 
a skeleton of the refined shape which is composed of the 
axes of symmetry of the structural subparts. The skele- 
ton can be directly used for mensuration purposes when 
performing quantitative matching. The final output are 
the identified symbolic parts of the generic aircraft. 

The labeled symbolic parts are next used to direct 
image-based search for more localized model features. 
Availability of these features a t  progressingly lower lev- 
els of the database hierarchy allows more precise classifi- 
cation of the recognized generic aircraft. The refocused 
matching process may utilize the symbolic/primitive fea- 
tures that have not been utilized in the generic aircraft 
recognition step or may request new or less-salient prim- 
itive features. Currently, our algorithm handles only 
qualitative model features. 

5 EXPERIMENTAL RESULTS 

The aircraft recognition system described in this pa- 
per is implemented in C on Sun Sparcstation. A UNIX 
shell-level program controls the entire system. Ancil- 
lary data about camera-platform position/orientation, 
weather condition (sunny/cloudy/hazy), sun angle, and 
camera parameters are provided in an external file. The 
hierarchical model database has three levels: generic, 
intermediate, specific. The intermediate level consists 
of three categories based on engine location - large 
(on-wing engine), medium (on-wing/on-fuselage engine), 
small (concealed engine). The experimental results of 
qualitative aircraft recognition are presented using aerial 
photographs of an air-base. The examples are ordered 
according to increasing level of recognition complexity. 

Example 1: An aerial image is shown in Figure 7(a). 
In this example, we present the results of analyzing the 
ROI of Figure 7(b). The top-level (most salient) config- 
uration of perceptually salient contours is shown in Fig- 
ure 7(c). The linear segments of this structure are dis- 
played in Figure 8(a). The R01 is segmented into three 
sets - shadow (Figure 8(b)), object, and background 
(Figure 8(c)) - using recursive application of the seg- 
mentation algorithm. The dominant axes of the largest 
object region are shown in Figure 8(d). The potential 
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shadow lines based on the bimodality test of neighbor- 
hood histograms are displayed in Figure 8(e). To identify 
the non-shadow lines, the illumination point projection 
is first determined using the ancillary data: the coordi- 
nates of the camera-platform position are (527,337,560) 
m and that of the point of the intersection of the line- 
of-sight (LOS) with the ground are (-500, -290, -560) 
m; the roll of the camera about the LOS is 20’. The 
sun position is noted to  be in front of the camera. The 
shadow lines that paired up with “non-shadow” lines are 
displayed in Figure 8(f). Next, convex groups of the non- 
shadow lines are used to extract trapezoid-like symbolic 
features of Figure 9(a). 

Figure 9(b) shows the results of initial recognition dur- 
ing which only one trapezoid-like feature is available to 
support a wing concept (for the right wing) due to its 
alignment with the wing axis (axis-1). Additional evi- 
dence for this hypothesized wing is obtained from a suc- 
cessful search for elongated blobs representing engine. 
Next, a search region for the second wing is set up along 
axis-1 on the other side (away from the hypothesized 
wing) of the fuselage axis (axis-2). A line pair is located 
within this region that aligns with axis-1 and for which 
the presence of engine can also be verified. Thus, the 
symbolic feature and the line pairs are retained as can- 
didates for the two wings as shown in Figure 9(b). 

The supervisory control now interacts with the feature 
regulator to identify candidate lines for the missing parts 
of the fuselage in the image region specified by the two 
hypothesized wings and the hypothesized fuselage sub- 
part. The “shadow” lines removed earlier are considered 
first, since these are perceptually more salient than any 
other “non-shadow” lines that may be obtained from the 
next set of less salient contours. Two such lines are found 
that made up for the missing bottom part of the fuse- 
lage. The final results are shown in Figure 9(c) when 
an aircraft is said to be have been detected. The sym- 
bolic parts are further refined as shown in Figure 9(d). 
Finally, the class of the generic aircraft is determined to 
be large based on engine locations as seen in Figure 9(e), 

Example 2: The second aerial image is shown in Fig- 
ure 10(a) of which Figure 10(b) constitutes an ROI. The 
segmentation result and the extracted dominant axes are 
shown in Figure lO(c). The illumination point projection 
is determined using the ancillary data: the coordinates 
of the camera-platform position are (-984, -115, 700) m,  
that of the point of the intersection of the LOS with the 
ground are (1150, 150, -700) m, and the roll of the cam- 
era about the LOS is -21’. The sun position is recorded 
as behind the camera. 

Figure l l ( a )  shows the top-level structure. The line- 
fits to this structure and the next incremental salient 
structure are displayed in Figure ll(b)-(c). Here, the 
salient structures constitute only 26% of the lines ob- 
tained from the edge image corresponding to the lowest 

edge threshold. This example illustrates the difficulty 
posed by shadows as nearly equal number of lines belong 
to the actual aircraft contour (38% of the salient struc- 
ture lines) and the shadows (35% of the salient structure 
lines). Convex groups are formed using the lines of Fig- 
ure l l (b) .  The potential shadow lines identified among 
the lines of Figure l l(b) are shown in Figure l l (d ) .  
To resolve the non-shadow lines, the rightmost of the 
two nearly parallel axes of Figure 1O(c) is determined to 
be due to shadow based on the illumination projection 
point location. The final shadow lines are displayed in 
Figure l l (e ) .  The groups of non-shadow lines are next 
used to obtain the trapezoid-like symbolic features of 
Figure 11 (f) . 

One of the symbolic features of Figure l l ( f )  that 
aligned with one of the dominant axes, axis-1, is hy- 
pothesized as the wing, wing-1 (say). This is shown in 
Figure 12(a). Further evidence of wing is obtained from 
a successful search for engine feature in the vicinity of 
wing-1. To obtain evidence of the other wing, wing-2 
(say), a search region is set up as shown in Figure 12(a) 
based on the image location of wing-1 and the condition 
of symmetry of the wings about the fuselage axis. How- 
ever, the non-shadow linea contained within this region 
fail to identify any symbolic feature that may support 
a wing hypothesis. Additional non-shadow lines derived 
from less salient contours of Figure 12(b) are combined 
with the existing non-shadow linea within the search re- 
gion (Figure 12(c)). The initial (maximum) values of the 
various perceptual constraints fail to produce any mean- 
ingful perceptual grouping as the lines are few in number 
and are separated apart. However, since the hypotheses 
of wing-1 and wing-2 are mutually reinforcing, the con- 
straints are relaxed in steps. Particularly, the lowering 
of the threshold of the proximity, Tpl of a line-pair in- 
tersection to a detected corner and Tperi (initial values 
of Tp = 30.0 and Tperi = 0.9 in steps of ATp = 7.0 and 
ATperi = 0.1) cause grouping of lines to occur. As a re- 
sult, a trapezoid-like symbolic feature emerges (the left 
wing tip) that drives the subsequent steps of recognition 
shown in Figures 12(d)-(e). The processes of shadow 
identification and symbolic feature extraction have re- 
duced the number of useful lines for aircraft recogni- 
tion to only 6% of the total number of lines that other- 
wise would have to be considered. Finally, the refocused 
matching process determines the class of this aircraft as 
large as indicated in Figure 12(f). 

6 CONCLUSIONS 

In this paper, we have described a system for recog- 
nition of aircraft in complex, perspective aerial imagery 
and presented an algorithm to recognize and classify air- 
craft using qualitative features. Our approach is moti- 
vated by the difficulties posed by real-world scenarios, 
such as occlusion, shadow, cloud cover, haze, seasonal 
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variations. clutter and various forms of image degrada- 
tion. The mazn contrzbutzons of this research are the 
extraction of perceptually salient primitive features and 
their use in a regulated fashion, use of heterogeneous geo- 
metric and physical models associated with image forma- 
tion for feature extraction and subsequent recognition, 
and integration of high-level recognition processes with 
low-level feature extraction ones. Real-world data, high- 
lighting the difficulties of aircraft recognition in practi- 
cal situations, is used to demonstrate the effectiveness 
of our proposed approach. Elsewhere, we have utilized 
the qualitative results to search for more specific aircraft 
models. Our system needs improvement in the integra- 
tion and the simultaneous hypothesis verification steps 
to be carried out to handle effectively the situations like 
the one illustrated in Figure l(b).  

References 
B. Bhanu and R. D. Holben. Model-based segmenta- 
tion of FLIR images. IEEE Trans. Aerospace Elec. Sys., 

J. F.  Bogdanowicz and A .  Newman. Overview of the 
SCORPIUS program. In Proc. DAKPA Image Under- 
standing Workshop, pages 298-308, Palo Alto, CA, May 
1989. 

R. A. Brooks. Symbolic reasoning among 3-dimensional 
models and 2-dimensional images. Artificial Intell., 

S. A. Dudani. I<. J. Breeding, and R. B. McGhee. Air- 
craft identification by moment invariants. IEEE Trans. 
on Computers. C-26( 1):39-46. 1977. 

J. Edwards, S. Gee, A .  Newman. R. Onishi. A. Parks, 
M. Sleeth, and F. Vilnrotter. RADIUS: Research and 
development for image understanding systems phase 1. 
In Proc. DA KPA Image Understanding Workshop. pages 
177-184, San Diego, CA, Jan. 1991. 

D. G. Lowe. Perceptual Organization and l t sua l  Recog- 
nition. Boston, MA: Kluwer, 1985. 

H. Nasr, B. Bhanu. and S. Lee. Refocused recognition 
of aerial photographs at multiple resolution. in Proc. 
SPIE, Orlando. FL, March 1989. 

A. Sha'ashua and S. Ullman. Structural saliency: The 
detection of globally salient structures using a locally 
connected network. In !'roc. IEEE Second Intl. Con!. 
Comp. Viszon, pages 311-337, Tarpon Springs, FL, Dec. 
1988. 

G. Y. Tang and T. S. Huang. Using the creation machine 
to  locate airplanes on aerial photos. Pattern Recognrtron, 

26(1):2-11. 1990. 

17:285-349, 1981. 

12~43 1-441, 1980, 

T. P. Wallace. 0. P. Mitchell. and I<. Fukunaga. Three- 
dimensional shape analvsis using local shape descrip- 
tors. IEEE Trans. Pat t .  An.al. and Mach. Intell.. PAMI- 
3:310-323. 1981. 

(b) ( c )  

Figure 7: Aerial view of an airfield: (a) Original image 
(4Kx411), (b) A ROI image (120x140) of the aircraft 
marked with a x in (a), (c) Most salient contour config- 
uration. 

Figure 8: Results of feature extraction: (a) Straight lines 
fitted to the most salient contours, (b)  Segmented re- 
gions where O=shadow and l=background, (c) Regions 
where O=object and l=background, (d) Dominant axes 
for the largest object region where axis-l=wing axis, 
axis-2=fuselage axis, (e) Potential shadow lines, (f) Re- 
solved shadow lines. O=black. l=white. 
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Figure 9: Results of qualitative object recognition: 
(a) Trapezoid-like shapes identified using non-shadow 
groups, (b) Symbolic features recognized with low confi- 
dence, (c) Improved recognition using regulated features, 
(d) Refined structural parts, (e) Class recognition. 

Figure 10: A second aerial image: (a) Original image 
(41i x 41<), (b) A R01 image (300 x 450) of the aircraft 
marked with a x in (a ) .  (c)  Extracted dominant axes. 

( e )  (f)  
Figure 11: Results of feature extraction: (a) Detection 
of most salient structure, (b) Straight lines fit to the 
structure of (a),  (c) Lines fit to the next incremental 
salient structure, (d) Potential shadow lines, (e) Re- 
solved shadow lines, (f) Trapezoid-like shapes identified 
using non-shadow groups. 

( e )  ( f )  

Figure 12: Results of qualitative object recognition: (a) 
A hypothesized wing and a search region for the second 
wing, (b) Current non-shadow lines together with those 
of Figure l l ( c ) ,  (c) Additional non-shadow lines within 
the search region of (a), (d) Recognition after verification 
of the second wing. (e) Refined structural parts, (f)  Class 
recognition. 
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