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Abstract 
This paper presents an algorithm for camera-based navigation 

of a conventionally steered vehicle. The destination bearing, ob- 
tained by actively panning the camera to fixate on the destination, 
is the primary measurement. A steering sequence designed to di- 
rect a moving vehicle towards a visible destination is generated 
using an extension of predictive control techniques. A variable 
sampling interval, based on distance traveled instead of elapsed 
time, provides robustness to destination range errors. Additional 
robustness is achieved by incorporating non-linearities into the 
steering algorithm, ensuring that the moving vehicle originating 
from an awkward position and heading will not diverge from the 
destination. A two-stage extended Kalman filter, which uses the 
destination bearing angle and known vehicle motion, provides es- 
timates of range. A criterion for shifting the attention of the 
camera between intermediate destinations is presentrd. Simula- 
tion results demonstrate the effectiveness of the proposed steering 
algorithm. 

1. Introduction 
Local navigation of a conventionally steered vehiclc consists of 

generating a sequence of steering commands to direct a moving 
vehicle to a goal destination. An important aspect of local navi- 
gation is the use of sensory information to continually update the 
ego-state of the vehicle with respcxt to the environment and the 
destination. In this paper, it is assumed that the primary sen- 
sor is a camera mounted on a pan-tilt platform; auxiliary sensors 
include encoders measuring the pan and steering angles, and an 
odometer measuring distance traveled. It is further assumed that 
a sequence of goal destinations, similar to the "posturt;s" in [6], is 
generated by an external global planner. 

An image sequence produced by a moving camera provides an 
enormous amount of data. As a result, the image processing will 
liiely be the most computational intensive stage in an autonomaus 
vehicle. Active vision can reduce the complexity of vision-l~a3ed 
tasks, such as navigation, by exploiting the fact that the amount of 
contextually relevant information enmded in the image sequeiice 
is significantly less than the data presented. Active vision con- 
trols sensor parameters, such as the pan-tilt of a caniera, to se- 
1 tively extract task-related information from the environment. P he most impressive implementation of this context-sensitive pro- 
cessing in the autonomous navigation field is Dickmanns' roitd- 
following work [3]. 

This paper investigates the problem of generating a sequenct: of 
steering commands that will maneuver the vehicle to, or around, 
a "marker" visible in a camera image. A marker is a distinctive 
environmental feature: natural or man-made. It cm be a des- 
tination landmark, a beacon denoting a hazard, or a detectable 
obstacle. By fixating the camera on a marker, the camera pan 
angle provides an estimate of the bearing of the inarker relative 
to the vehicle position and heading. Using bearing measurements 
and known vehicle motion, it is possi1)le to generate sttmring com- 
mands that will direct the vehicle towards a marker of intertst. 

This formulation produces two significant benefits: (a) the image 
processing is reduced because only a small fraction of the image 
is considered; (b) by specifying the destination marker instcad 
of a complete path, the task of local navigation is reduced to a 
guidance problem. The image processing/pan control required to 
fixate the camera gaze onto a marker is not covered in this paper. 
The guidance of the vehicle using the resulting bearing measure 
ment is discussed. 

The outline of this paper is as follows. Section 2 discusses 
the maneuvering of a conventionally steered vehicle. Section 3 
describes the basic steering algorithm which is an interesting van- 
ation of state space predictive control. Section 4 presents novel 
nonlinear modifications to the basic algorithm to ensure robust- 
ness to range errors and awkward initial conditions. Section 5 
describes a Kalman filter for sequentially estimatiiig range and 
bearing to each marker from noisy bearing measurements. A novel 
criteria for switching attention between multiple markers is pre- 
sented. Sections 6 and 7 contain simulation results and concluding 
remarks, respectively. 

2. Maneuvering a Vehicle 
The maneuvering of a vehicle from its current location to a 

specified destination is performed by generaling a sequence of 
steering and propulsion commands. In this paper, it is assumed 
that the vehicle is a three-wheel electric cart which is steered by 
adjusting the angle of the front wheel. Modifications to the basic 
cart include the addition of a DC steering motor. 

A maneuver can be described as a coordinated sequence of 
heading changes. A heading change, viewed as a function of time, 
is dependent on both the steering angle and the speed of the vehi- 
cle. Under certain conditions-if the vehicle guide point is prop- 
erly selected [7] and the effects of vehicleground inteiactions are 
negligible (speed is small) [8]-the heading change is separable 
with respect to the steering angle and vehicle speed. In such a 
case, maneuvers can be specified as functions of distance traveled, 
reducing the maneuvering problem to generating a sequence of 
steering angles that satisfies a set of initial and final conditions 
including position, and heading, subject to limits on the steenng 
angle and the steering angle rate. 

The steering sequence can be described in terms of path curva- 
ture instead of steering angle. The heading of the vehicle is given 
by 

d h ( L )  = dl + d h ,  (1) 

where tq is the future path curvature after the vehicle has traveled 
a distance 1, q$, is the current heading vehicle, and d,,!~) is the 
future heading. The Cartesian coordinates of the vehicle ar a 
function of distance traveled are given by 

where (20, a) is the current posit,ion of the vehicle and (a,, zl I is 
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3. State Space Prediction 
Predictive control techniques can be used to produce useful 

steering sequences. The objective of a predictive controller is to 
“drive” the error state variables close to zero at a future instant 
subject to limits on the control variable. For the case of a conven- 
tionally steered vehicle, the future instant and the control variable 
correspond to the path length index 1 and the path curvature IE ,  

respectively. 
Prediction is limited by “horizons” which are measured in 

terms of distance or number of “steps”, where a step is a distaiice 
interval Al. Predictive control is characterized by two horizons: 
an “output horizon” and a ”control horizon” [2]. The output 
horizon, which we will refer to as the “marker horizon”, is the 
number of steps (or path distance) to an active marker. The con- 
trol horizon is the number of steps (or path distance) allocated to 
the controller to minimize the error stat.e variables. Beyond the 
control horizon, the control signal (path curvature) is set to zero. 

The error state variables associated with a marker change as 
the vehicle moves. The linearized state transition is given by 

ai+, = Adi + b ~ i ,  (5) 

where ei+l,m = eo,, - (di+l - do),  

Figure 1: Viewer-centered reference frame. ( I O ,  20)  = (0, 0), and 
d h  = 0. 

the future position. The coordinate system used in this paper is 
shown in figure 1. It is a viewer-centered reference fiame where 
the current position is the origin and the z-axis is parallel to the 
current heading ( ( z o , ~ )  = (O,O), #h = 0). The nonlinearity in- 
troduced by the sine/cosine makes the conversion of position con- 
straints associated with markers into constraints OIL the steering 
commands difficult. 

In many implementations, the planned path is specified as a 
continuous function of zl and q. The motivation for such a spec- 
ification is that obstacles and destinations are often described in 
terms of Cartesian coordinates obtained from a map (such as in 
[4]). However, effort is often required to ensure that the planned 
path is feasible for a conventionally steered vehicle; that is, the 
chosen path should be continuous with respect to position and 
heading, and have limited curvature. Such paths can be fornied 
using high-order splines [7] or a sequence of smooth elementary 
curves [6] .  An alternative approach is to specify the planned path 
in terms of a sequence of curvatures [5]. The difficulty associated 
with this approach is that any linearized conversion of marker con- 
straints into curvature and path length will only be approxirnirte. 
This is not serious when the position of a marker is measured rel- 
ative to the vehicle using sensors. Sensor uncertainty makes my 
position constraint approximate regardless of the path represen- 
tation. 

There are advantages to specifying the path in terms of cur- 
vature and path length: it is easy to produce a feasible path for a 
conventionally steered vehicle; and the path curvature and length 
can be measured from the steering angle and wheel rotation, re- 
spectively. In many cases, the environmental constraints on the 
vehicle motion are sparse, occurring at specific points rather than 
continuously along the path. Thus, it is only necessary to con- 
strain the vehicle’s position and heading at these “markers.” Be- 
tween markers, the limits on steering angle and steering rate are 
the important constraints; violation of steering constraints are 
made explicit in the curvature-path length representai ion. 

Constraints associated with markers are represented using state 
variables. The state variables include the lateral error and the 
heading error of the vehicle relative to each marker m: 

where Bo,, is the error state vector of the vehicle at its current 
position and heading relative to marker m; db,, is the bemng 
angle of marker m relative to the current vehicle heading h ,  r, 
is the range to marker m, and S h , ,  is the desired heading at 
marker m. The predicted error state vector for the vehicle at a 
future path position 1 is denoted by el,,. 

The future position and orientation of the vehicle relat.ive to 
some specified reference, usually its current posiliori and hcading, 
are denoted by 

A = [ :  A ; ] , b = [ -  2 (AI)]=, 

and A1 is the path distance betwecn f,+1 and 1, .  Equation ( 5 )  is a 
valid approximation when the heading error, &,m - (h,, is small. 

Consider the case of one active marker (m)  where the conlrol 
and marker horizons are equal to NAI. The cost function to be 
minimized by the control sequence of length N is given by 

J = i?;3mWeT,e~,, + iiTWUU, (7) 

where ii = [q . . . I E N ] ~ ;  We,, and W,, are weighting matrices 
penalizing state errors and the control, respectively; and 

N-1 

e ~ , ,  = eo,, - A’b IEN-, .  ( 8 )  
%=O 

The control sequence minimizing (7) is given by 

U = [C*W,,~C + ~ u ] - ~ ~ ~ ~ c , n z e O , m ,  (9) 

where C = [AN-’b . . . Ab b]. 
Equation (9) provides the curvature for each step in the control 

horizon. In most cases, the steering sequence is recomputed after 
each step, therefore only the first curvature, 61, is required. The 
repeated calculation of nl as the vehicle moves will be referred to 
as the “sensory feedback” mode; the execution of the entire steer- 
ing sequence ii, without sensory updates, will be referred to as the 
“feedforward” mode. The drawback of (9) is that mdpoint am- 
straints on the curvature are not enforced. An extension enforcing 
endpoint constraints is discussed later in this section. 

The prediction can be generalized to include intermediate inark- 
ers on the path, and markers that are beyond the control horizon. 
For the case of an intermediate marker m with a horizon of n < N, 
the 2 by N matrix C, is 

C, = [A”-’b . . . Ab b 0 . .  .0]. (10) 

Since the curvature beyond the control horizon N is set to zro,  
C, for a marker m with a horizon of‘ n > N is given by 

where n = j + N .  For more than one active niarlw, the cost 
function becomes 



where n is the horizon of marker In. 
The control weighting matrix is written as 

W, and W A ~  penalize large path curvatures and laige changes 
in path curvature, respectively; X,(i) and AAK are the respective 
weights. To properly restrict changes in curvature, it is necessary 
to enforce endpoint constraints: that. is, the change in curvatlire 
from the current curvature, no, and the first entry in the control 
sequence, tcl, must be penalized. Similarly, the last entry in the 
control sequence, K N ,  should be small because it is at  the edge of 
the control horizon (beyond which all curvatures are zero). The 
control sequence that accounts for these endpoint curvature is 
given by 

and urej = [no 0 ... 0IT. Note that W,,f and uref can be 
adjusted to constrain any entry in U, not just the entries near the 
endpoints. 

The weighting matrix for the error state variables is given by 
we,, = diag{Ab,Xh}, where and are the weights for the 
lateral error and the heading error, respectively. The weights are 
generally fixed. However, when the control horizon is significantly 
shorter than the path length to the marker of interest, the heading 
error weight, Ah, is reduced. 

4. Robustness 

it can be seen that the substitution of (17) into (18) makes the 
product iiAl invariant to range errors. As a result, a range error 
alters ii by a scale factor; however, the sign of each element in ii is 
correct. If the algorithm is using sensory feedback (rtcalculating 
nl after each step) and the initial conditions are well-behaved, the 
vehicle will reach the marker m despite range errors. 

When the initial conditions are not well-behaved, the lineariza- 
tion used in (5) becomes an inadequate approximation. Problems 
occur because (a) the lateral error is not a sufficient position con- 
straint for all paths, (b) the control horizon does not reach the 
current marker, and (c) the influence of the heading error can be 
unbounded. 

The lateral error does not distinguish between a vehicle moving 
towards or away from the marker. As the absolute value of the 
bearing angle increases beyond $1 the lateral error will decrease, 
even though the vehicle is traveling away from the destination. 
The problem be remedied by adding a constraint that realigns 
the vehicle towards the destination when the bearing angle is large. 
One possible constraint is to set the steering angle to maximum 
(the vehicle's largest feasible path curvature) when l 4 h l  > 5. 

When the initial conditions are not well-behaved, the path 
traveled by the vehicle will contain large curves, making the path 
distance to the marker significantly longer than the control hori- 
zon N Al. In such cases, the control horizon that is too short 
for the algorithm to generate a feedforward sequence that can 
fulfill both the lateral error and heading error constraints simul- 
taneously. The heading error weight must be temporarily reduced 
to ensure that the lateral error constraint is properly enforced, 
thereby keeping the vehicle traveling towards the destination. 

Large heading errors cause linearized approximations 1.0 fail. 
The error state transition (5) assumes that the difference between 
the current heading and each predicted heading in the feedforward 
sequence is small enough that sin(A1 c ; n i )  ET A1 xi.;. At 
the step i where 1Al xi nil exceeds $, an unwanted sign reversal 
occurs. Beyond step E, the lateral error increases and the vehicle 
diverges from the destination. If the influence of the heading 
error is reduced, the vehicle will not steer as severely. Therefore, 
IA1Cin;l is reduced, and the sign reversal is eliminated, or at  
least delayed. As long as l db l  < $, reducing the influence of the 
heading error to zero will cause the vehicle to align itself towards 
the destination. A less severe approach is to define a dynamic 
heading error weight, such as 

This section discusses modifications necessary to ensure ro- 
bustness to range uncertainty and awkward initial coIiclitions. 
bustness to range uncertainty is obtained using a variable Sam- 

where h is a threshold between 4 and A. Equation (19) ensures 
that the influence of the heading is bouxlded. 

pling interval, AI, that is a fraction of the range to the current 
marker. Robustness to awkward initial conditions is obtained by 
incorporating nonlinearities into the steering algorithm and by 
bounding the influence of the heading error. Initial conditions 
with bearing angle or heading error whose absolute value is greater 
than 4 are considered "awkward," otherwise they are considered 
"well-behaved." 

When a camera is used as the primary sensor, t h e  Uncertainty 
in the estimated range can be large. The effects of rimge uncer- 
tainty on the steering sequence ii are reduced when the step size 
is a fraction of the estimated range: that is, 

5. Range and Bearing Estimation 
When measurements are made using a single camera, range 

information is not directly measured. Instead, il, must be edi- 
mated from changes in the bearing angle as the vehicle undergoes 
known motion. A common approach to estimating the position of 
a marker is to use a Kalman filter [l] with Cartesian state v.tri- 
ables. For bearing-only measurements, the Kalman eta te variables 
and error covariance become 

(20) 

and 
(21) 

where N is the order of the control horizon. Noting that 

. . . 1 ] UAl, 
rm sinq$,,m (A' - ;)A1 ... $AI 

(18) respectively, where E[ ] denotes expectation, p is 1 ht* inverse of 
range, and 

[ dh,m - dh ] = [ 1 
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(22) 

Note that Q-l is the angular error covariance. 
The Kalman filter consists of two sets of recursive equations: 

state transition equations predict changes in p and +b and the error 
covariance in response to control inputs n and AZ; and measure- 
ment equations integrate new bearing measurements, denoted by 
+b, into the state estimate. The state transition equation is given 
bY 

cos d b  d b  [ sinpdb ] i+lii = m G [ si:+b ] 

1 [ o  0 1 

(24) 
1 

where n is a normalization term ensuring that (cos +b)'+ (sin +b)2 

is unity at i + 111, and 

cos(n AZ) sin(n AZ) -AZcos(O.5 IC AI) 
G = - sin(n AI) cos(n AZ) AZsin(O.5 IC AZ) . (:?5) 

The subscript i + l/i indicates a prediction at path step i + 1 based 
on measurements obtained at and before step i. The prediction 
of the error covariance is given by 

QZlli = m-'RT(n AZ)Q;'R(n Al) + Ni, (26) 

where Ni is the process noise. If we consider only the ii~icertaiiity 
in p, the most significant noise source, then 

where q;' is the error covariance in p,  which is defined later. The 
measurement update equations for the covariance and the stiite 
variables are given by: 

Q. 1+1 - Q .  - ,+l/, . + h T h ( 6 4 p ,  (28) 

where 
ii = [sin(&) - COS(&)]; (29) 

where m2 is a normalization term and 

kg = QZlhT Sh(+b(i+l/i) - &)(6&,)-2. (31) 

The above filter has similarities to the modified gain extended 
Kalman filter described in [9]. Like other extended Kalman filters, 
the above filter is dependent on the initial estimate of p. To re- 
move this dependency, a second Kalman filter estimates p. Before 
integrating the current bearingAmeasurement, the change between 
the past estimate of +b(;) and +b is used to estimate p: 

j i  = (qp(i-1) + q+(i))-'(qp(i-l) P + q+(i) d )  (32) 

(33) 

(35) 

where nA1 is the process noise caused by uncertainty in the step 
size. The new estimate, j , ,  should be substituted into (24) for 
p;. Note that the step size for the Kalman filter does not have to 
be the same as the step size used in the calculating the steering 
sequence. 

A Kalman filter is required for each active markeI. However, 
only one Kalman filter will receive a bearing measuremelit at 
a given instant because the camera pan can only fixate on one 
marker. Thus, the attention of the camera must be switched from 
marker to marker to obtain a useful interpretation of the local 
environment. In this paper it is assumed that some higher-level 
agent has selected the order in which the markers will be visited. 
This ordering is the primary criteria for attention: $he current 
marker will receive the most attention. There are instants when 
additional viewing of the current marker provides only minimal 
additional information. For example, if the error covariance of the 
bearing angle, obtained from (34), is small, the integration of new 
bearing measurements have little effect. In such cases, it is useful 
to temporarily shift the camera gaze to the next marker. 

A criterion is needed to determine when attention can be 
switched from the current marker, and how far the vehicle tan 
travel before attention must be redirected to the currmt marker. 
The state transition equations, (24) and (26), can predict increases 
in the future error covariance if no new measurements are made. If 
a threshold error covyiance is selected, say equal to the measure 
ment uncertainty (ad)', the number of steps that can be traveled 
before reaching this threshold is a good criterion for judging the 
novelty of future data. If the number of steps is large, the com- 
puter can temporarily shift attention to the next marker. 

6. Implementation and Results 
This section presents three groups of simulations. The first 

group demonstrates two simple maneuvers with well-behaved ini- 
tial conditions for the cases of non-zero and zero heading error 
weights. The second group illustrates the robustness of the a l p  
rithm to range errors and to awkward initial conditions. The final 
group demonstrates the range estimation and attention switching. 

The parameters and key equations used in the implementa- 
tion are listed below. The basic steering algorithm is defined by 
(15). The control horizon is N = 10. The weights for the lat- 
eral error, heading error, curvature penalty, change in curvature 
penalty, and endpoint constraints are selected as A b  = 1, At, = 60, 
A, = 60, AA, = 6, and A,,f = 6, respectively. The dimensional 
units for each weight are as follows: A b  is (dist)-' where (dist I is 
an arbitrary distance measure; Ah is (radians)-2; A,, AA,, and ArEf 
are (dist/radians)'. The most important relationship between the 
weights is the ratio of Ah and Ab. The important nonlinear param- 
eters for the robust steering include the maximum steering angle 
and the dynamic heading error (see (19)). It is assumed that the 
maximum steering angle of the vehicle produces a curvature of 
0.1 radians/dist. The threshold heading angle, h. used by t,he 
dynamic heading weight is 4.. 

An important tool for evaluating the steering algorithm is the 
phase plane plot comprising bearing angle and heading error. The 
phase plane plot has interesting properties: it is independent of 
range; and it has a constant slope for a heading error weight of 
zero. The slope of the trajectory is 

6#b P _ -  6+ - 1 - - sin +b. 
K l  

From (17) and (18), it can be seen t,hat 

(37) 



which is not dependent on the range to the masker. When *,he 
weight on the heading error is set to zero, the slope of tlie 1,rajec- 
tory is constant: 

(39) 

For N = 10, the slope of the trajectory is 0.65. 

Well-behaved Initial Conditions: Figure 2 illustrates a “lane 
change:” a maneuver whose initial and final headings are equal. 
Since there is a heading constraint itt the marker, the heading error 
weight is non-zero ( A h  > 0). Figure 2 contains the lop view of 
the path traveled by the vehicle for specific initial conditions and 
the bearing angle-heading error phase plane plot for various wdl- 
behaved initial conditions. The path traveled is smooth containing 
one inflection point. All the phase plane trajectories have the same 
shape, approaching the origin (destination) along a line of slope 
0.65. The phase plane trajectories illustrate the value of using the 
sensory feedback mode. Despite the fact that the heading error 
is as large as 4. (making the linearization used in (5) invalid), 
the initial portion of the feedforward path is sufficiently accurate 
that recalculating I E ~  after each step allows the vehicle to reach 
the destination. 

Figure 3 shows a maneuver with similar initial conditions as 
the previous example when the heading error weight is set to zero. 
The path curvature is initially large and shrinks as the range to 
the destination decreases. All phase plane trajectorier, terminate 
at the line f$b = 0 and have a slope of 0.65 (as predicted by (39)). 
The phase plane illustrates that the vehicle can be realigned with 
the destination by reducing the heading error weight to zero, if 
I4bl  < 

Robustness: Robustness to range errors is illustrated in fig- 
ure 4, which contains three paths whose range estimates are half, 
equal, and double the actual range. In each case, the vehicle 
reaches the destination. However, the underestimated (overesti- 
mated) range causes the steering to be more lively (sluggish). 

The next example illustrates the robustness to awkward initial 
conditions provided by introducing non-linearities into the steer- 
ing algorithm. Figure 5 shows the path traveled by, and the phase 
plane of, a vehicle that has backtracked and returned to its original 
heading. The phase plane plot illustrates the effect of the steer- 
ing non-linearity. The steering non-linearity prevents the vehicle 
from diverging from the destination, keeping the bearing <angle 
near -I, causing the vehicle to “orbit” the destimtion. Once the 
heading error is sufficiently small, the basic steering algorithm di- 
rects the vehicle to the destination at  the desired heading. Figure 
5 also shows a maneuver, with the same destination position a,nd 
heading as before, using the dynamic heading error weight. The 
path traveled and the phase plane trajectory are much smoother. 

Estimation and Attention Switching: The following exam- 
ples demonstrate the range estimation to, and attention switching 
between, markers in the presence of measurement noise. Gaussian 
noise with a standard deviation of 1.1 degrees (0.02 radians) is 
added to the measured bearing angle. Figure 6 shows the range 
error (the difference between the estimated and actual range), 
along with the estimated standard deviation (derived from q;’ of 
(36)), for the maneuver shown in figure 2. At long ranges, during 
the initial part of the maneuver, the estimated range is sensitive to 
bearing angle uncertainty, as illustrated by the large error coviii- 
ance. As the vehicle approaches the marker, the error covariance 
and the range error decrease. 

Figure 7 shows the range error for a. maneuver passing two 

Figure 2: Well-behaved maneuver for non-zero heading error 
weight. (Left) Path traveled for initial conditions ( d b ,  4h,,,, - 4 h )  = 
( 4 , O )  and (z0,yo) = (200,200). (Right) Bearing angle-heading 
error phase plane plot for various well-behaved initial conditions. 
All phase plane trajectories terminate at the origin. 

I .  . . . . . I m 300 -1.5 0 1.5 
X Herdiag Error (radians) 

Figure 3: Well-behaved maneuver for zero heading error weight. 
(Left) Top view of path traveled for i d i d  conditions (&., 4h,ni - 
4 h )  = (2 ,O)  and (z0,yo) = (200,200). (Right) Phase plane plot 
for various well-behaved initial conditions. All phase plane tra- 
jectories terminate at the line & = 0 and have a slope of 0.65. 

U +-----A 0 1.5 
X Heading Error (radians) 

Figure 4: Well-behaved maneuver with scalar range errors. (Jxft) 
Paths traveled based on estimated ranges that are half (dashed), 
equal (solid), and double (dot-dash) the actual range. (Right) 
Phase plane plots. Note that the underestimated (ovemtimated) 
range causes the steering to be more Lively (sluggish). 



markers. The initial position of the vehicle is ( 2 0 ,  yo) = (200,200). 
The positions of marker 1 and marker 2 are (300,100) and (400, ZOO), 
respectively. The desired heading at each marker is equal to the 
initial vehicle heading. The maneuver to marker 1 is the same as 
figure 2; the maneuver from marker 1 to marker 2 has a similar, 
but reversed, shape. The attention of the camera is focused on 
marker 1 during the path intervals 1 = 0 to 56 and 1 = 98 to 118, 
and on marker 2 during the intervals 1 = 58 to 96 and 1 = 150 
to 300. The previewing of marker 2 during the interval l = 58 to 
96 is performed when the bearing angle to marker 1 is near zero 
(the range information provided by movement along a zero bear- 
ing angle is minimal, as can be seen by (33)). Previewing marker 
2 greatly reduces the error in later range estimates ( I  = 170 to 
300). The improvement is due to the fact that the measurements 
made during interval 1 = 58 to 96 view marker 2 from a much 
different direction than measurements made during the interval 
l = 150 to 300. Thus, the bearing angle error covariance matrix 
Q-’ is reduced, and the range accuracy is improved. 

7. Conclusion 
This paper has presented an algorithm for steering a moving 

vehicle to a visible marker. The algorithm, whose primary mea- 
surement is the marker bearing, is robust to range errors and to 
awkward initial conditions. The primary contributions of this pa- 
per are (a) the dynamic heading error weight and the steering 
nonlinearity used to ensure robustness to awkward initial con- 
ditions, and (b) the criteria for switching camera attention for 
multiple markers. 
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Figure 5: Maneuver with awkward initial conditions, l#Jbl > :, 
with fixed (solid) and dynamic (dashed) heading error weights. 
(Left) Top view of the path originating from (z0,yo) = (300,200). 
(Right) Phase plane plot. The phase plane trajectory for the 
fixed heading error weight, A,,, is not smooth due to the repeated 
application of the steering nonlinearity. 
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Figure 6: Range error (solid) and estimated standard deviation 
(dashed) for maneuver in figure 1 when the measured bearing 
angle is corrupted by noise 16#Jal = 1.1 degrees. 
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Figure 7: Range error (solid) and estimated standml deviation 
(dashed) for a two marker maneuver with attention switching. 
(Top) Marker 1. (Bottom) Marker 2. Marker 1 is passed at a 
distance l = 150, marker 2 is reached at 1 = 300. Attention is 
fixed on marker 1 during the intervals 1 = 0 to 56 and 1 = 98 to 
148, and on marker 2 during the intervals 1 = 58 to 96 imd 1 = 150 
to 300. 
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