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Abstract: Machine perception plays an important role in any 
intelligent system, and in particular, guiding an autonomous mobile 
agent. Machine perception techniques have progressed significantly in 
recent years, however perception systems are still plagued by a lack of 
flexibility and an inadequacy in performance speed for use in real-time 
tasks. To overcome these problems, we have applied integrated 
karning lechniques to a perception system that is based on a selective 
sens ingpad ip .  The incorporation of multiple learning algorithms at 
different levels in our perception system provides a great deal of 
flexibility and robustness when performing different perceptual tasks. 
Making use of a selective sensing paradigm allows the system to 
eliminate a large amount of non-pertinent sensory data so that 
processing speed is greatly increased. We are implementing such a 
perception system to be used on an autonomous mobile agent. In this 
paper, we describe our methodology and give a preliminary example 
of learning within our perception system. 

1. Introduction 

Machine perception has been a fast growing research area 
throughout the past two decades. Much progress has been made in the 
low-level computer vision techniques, and these techniques have 
found their way into many different application areas. However, 
today’s machine perception solutions (i.e., algorithms) tend to be very 
specific and rigid for any one particular application, such as target 
recognition or navigation. Machine vision solutions are also very 
sensitive to perceptual conditions, system environments, and specific 
application requirements. In order for machine perception to be useful, 
it will need to learn and adapt to various environments, changing 
conditions, and different tasks. 

Another problem with today’s machine perception algorithms is 
that they are often unable to perform tasks in real-time due to the large 
amount of time needed to process sensory information. In particular, 
perception systems for mobile robots must interpret a deluge of 
environmental information acquired by their numerous sensors, and 
are forced to operate very slowly due to lack of sensory processing 
power. In order to speed up the perception processing, researchers 
often ‘tailor’ their systems so that sensing and sensory processing 
operate rapidly enough for their particular application. In so doing, 
they eliminate the flexibility in their system and are not able to use 
their system for other types of applications. 

In order to overcome these two problems of inflexibility and non- 
real-time performance, we have developed a sensing strategy that 
incorporates machine learning techniques for flexibility, and uses an 
intelligent selective sensing paradigm to increase operational speed. 
We are implementing this sensing strategy on a perception system to 
be used on an autonomous mobile agent (i.e., robot or vehicle). The 
goal of our autonomous mobile agent is to navigate successfully and 
interact within an unstructured and unknown environment. Using very 
little a priori knowledge, the agent must perceive the environment, 
perform scene understanding, move about while avoiding obstacles, 
and perform various tasks. 

The perception system of an autonomous mobile agent is an ideal 
target for machine learning. Different learning techniques can be 
applied to the various tasks and subtasks the mobile agent must 
perform in order to navigate and interact in its environment. 
Depending on the task or subtask, we use learning techniques such as 
Explanation-Based Learning (EBL), learning-by-example, learning- 
bydoing conceptual clustering, and genetic algorithm techniques. 

The selective sensing paradigm that we use is based on the fact 
that in general, only a small percentage of information in the sensory 
data flow provided by various sensors is relevant to a particular task. 
This is especially true in computer vision, where a substantial fraction 
of image data can be ignored. It is possible to apply parallel 
processing hardware in a brute force fashion, however, the 
unstructured application of parallel processing is not very efficient and 
often leads to a waste of processing resources. By intelligently 
applying processing resources to only the pertinent data in the 
environment, sensory processing speed can be greatly increased. 

We have developed our perception system to run on coarse parallel 

hardware. The sensing strategy that we use is similar to that of the 
human attention ability, where processing takes place only on the 
sensory information relevant to the task at hand. Indeed, if we attempt 
to perform detailed analysis and recognition algorithms on all of the 
sensory information, we would be quickly overwhelmed by the 
processing requirements, For this reason, a human places his attention 
only on what is pertinent in the environment. 

The system also makes use of active vision hardware. Instead of 
analyzing passively sampled images, there is much to be gained by 
engaging in some kind of activity whose purpose is to control the 
geometrical parameters of the sensory device. Active vision consists 
of behaviors such as adjusting the lens aperture for the proper level of 
illumination, adjusting the focal length of the lens in order to bring 
images into sharp focus, converging and diverging a pair of binocular 
cameras, and moving the camera(s) independently in order to get a 
better view of an object. Another active behavior that we exploit is 
camera gaze control. 

In this paper, we first provide a short background of other work in 
learning techniques applied to perception, and then briefly describe 
work in attentive sensing. We then describe the methodology of our 
perception system and the applied learning techniques. Finally we 
discuss in detail an example of the system’s operation including some 
preliminary results, followed by a conclusion. 

2. Background 

2.1. Learning in PerceDtion 

Machine Learning (ML) is perhaps the most important capability 
of an intelligent system by the virtue of which such a system can 
acquire new information, adapt to changes in the operating 
environment, and improve its own performance over time [7]. Prior 
work in applying machine learning technology to machine perception 
and specifically the computer vision field has been limited to the 
training of statistical pattern classifiers. More recent computer vision 
systems that incorporate some type of learning component are relying 
on the learning-from-examples paradigm to obtain computer models 
for the objects of interest. The ANALOGY program created by Evans 
[ 131 which examined simple line drawings to acquire analogies among 
different drawings was the first system to incorporate a learning 
capability into a computer vision framework. The system by Connell 
and Brady [lo] learns shape models from 2-D real images that can be 
used for recognizing subsequent instances of the learned concept. 
Perkins [22] utilizes machine learning to obtain models of object parts 
that may be used to inspect these parts at later instants. Segen [23] has 
used an automatic technique for learning descriptions from examples 
of real, complex, and nonrigid objects. Toriu et al [27] have used 
hierarchical clustering approach for automatic book discrimination. 
Kim et al[19] have used a multilevel classifier to recognize objects by 
viewing multiple instances of them without requiring explicit models 
or rules. 

It is a positive step in the direction of a machine vision system 
where the visual memory is acquired directly from the environment. 
Lehrer and Reynolds [20] present a method for initial hypothesis 
formation using an automatically generated low-level knowledge base 
obtained from a set of training instances. Hutber and Sims [15] 
present a similar theoretical method for automatically generating rules 
in the knowledge base from a set of sample data. Bhanu et a1 [6] 
describe a genetic algorithm-based adaptive image segmentation 
technique. A multi-strategy learning technique that incorporates 
explanation-based learning and structured conceptual clustering is 
used for automatic object model acquisition and refinement in an 
aircraft recognition scenario [2 11. 

There have been several applications of learning in the robot vision 
field. Shun-en and Calvert [25] use an approach to incrementally 
construct the 3-D models in an office or warehouse environment by 
matching planned multiple views. Tsai and Chen [29] apply machine 
learning to the task of adaptive navigation for automated vehicles 
using image analysis techniques. de Figueriredo and Wang [l 13 use 
an ‘evolving frame’ approach to learning with applications to adaptive 
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navigation. Grefenstette and Pettey [ 141 make use of genetic algorithm 
for navigating a simulated robot. Aloimonos and Shulman [2] present 
a theoretical treatment of a neural network approach which can learn 
all the parameters that are involved in the ‘shape from X’ class of 
problems. Whitehead et a1 [3 13 uses ‘markers’ to temporarily record 
partial computational results in order to reduce the representational 
burden in learning. An approach to a class of machine learning that 
involves autonomous concept formation, using feedback from trial- 
and-error learning, in the context of an autonomous robot at a process 
control panel is described by Spelt et a1 [26]. 

2.2. Attentive Sensing 

One of the most important characteristic of the active vision 
paradigm (introduced in [3]) is the ability for selective sensing or 
attention in space, resolution and time. Most past research involving 
this topic has been confined to the cognitive psychology and the 
neuroscience communities. Ullman’s work [30] and the introduction 
of the active vision paradigm [3] have prompted a surge in activities in 
the computer vision community. The research in selective sensing or 
attention has progressed along two directions - explicit sequencing 
and implicit sequencing of attention. Explicit sequencing deals with 
time-ordered perception of features for the purpose of recognition. 
Thus, such a mode of attention is goal-driven. The earliest work in 
explicit sequencing is that of Yarbus [32]. Implicit sequencing evolves 
through a process of data interpretation. Hence, this mode of attention 
is data-driven. Implicit sequencing has received more attention in 
computer vision community than its explicit counterpart which 
traditionally has been of interest to the cognitive psychology 
community. The initial work in implicit representation of sequences is 
due to Didday and Arbib [12]. Criteria were identified for the selection 
of a fixation point which were motivated by known characteristics of 
fixation in human vision as well as computational considerations in 
[l]. Shmuel and Werman 1241 have considered the related problem 
during surface map generation from multiple viewpoints; they use 
iterative Kalman-filtering techniques to predict a new camera pose for 
maximal reduction of uncertainty in depth information. Burt [9] has 
considered hierarchical approaches to the target selection process; 
pyramid-based implementation searches for information pertinent to a 
chosen task by processing images at multiple spatial resolutions. 
Barth [4] has developed an attentive sensing strategy for the inspection 
of integrated circuit wafers, using a multi-window vision architecture 
[ S ,  161. Some recent studies have considered higher-level criteria for 
fixation [8]. 

3. Methodology 

3.1. Svstem DescriDtion 

The overall methodology of our system is illustrated in figure 1. 
We see that it is composed of several components, namely, 
Supervisory Control, Selective Perception, Dynamic Reasoning, 
Multi-Layered Action, and System Dynamic Knowledge. In general, 
environmental information is gathered through sensors which provide 
data to the selective perception component. The selective perception 
component interacts with the dynamic reasoner, which also deals with 
the multi-layered action component. The multi-layered action 
component performs any actuation in the environment, including the 
control of the active vision parameters. 

In this paper we will only describe the issues associated with 
selective perception and its interaction with the dynamic reasoner. 
However, note that we have applied learning to all of the components 
in order to make the entire system flexible and robust. 

3.2. Selective Perception 

The selective perception component of our system is shown in 
figure 2. This component interacts primarily with the dynamic 
reasoner, both in control (indicated by dashed lines) and in 
information (indicated by solid lines). At the bottom of the figure, 
various sensors provide data along the sensory data flow path. 

In order to perform selective perception, we divide the sensing 
tasks into two processing stages. The first stage of processing, called 
the pre-uttenlive stage, consists of M parallel processing units which 
rapidly and automatically extract salient data in the sensory data flow 
across the entire sensory field. These pre-attentive processing units are 

Tasks 

Control 

Dynamic Multi-layered Selective 
Perception Reasoning Action 

System Dynamic Knowledge 

Fieure 1 : Overview of the functional components of the system. 

able to work rapidly since they are not concerned with the detailed 
quantitative measure of sensory data, but rather the qualitative 
question of whether there are items with unique features that deserve 
attention. They simply find items with salient features in the sensory 
data based on topdown and bottom-up focusing-of-attention methods 
and pass location information to the second stage of processing made 
up of N attentive processing units. Information gathered by the pre- 
attentive stage guides the processing of the attentive stage. The 
attentive processing units can then perform the detailed measurement 
or verification algorithms required by the task only on the pertinent 
sensory information. By conducting sensory processing in this 
manner, we are able to eliminate irrelevant sensory information and 
thus greatly speed up the sensory processing task. 

The selective sensing strategy proceeds as follows. The pre- 
attentive processes are assigned to different sensory modalities (such 
as brightness, color, texture, motion, range, temperature, etc.) to 
extract, in parallel, salient information about the environment from the 
sensory data flow. Each pre-attentive process determines a degree of 
saliency for objects deserving attention based on its features within the 
sensory modality. Then, they place a minimum of information about 
the salient objects on a data structure called a ‘saliency list’ common to 
both the pre-attentive processes and the dynamic reasoner. Detailed 
data is not exchanged here, but rather just location information about 
each salient object and its intrinsic degree of saliency. The dynamic 
reasoner then can prioritize the saliency list and assign ‘attentive’ 
processes to each salient object for measurement or verification 
required by the perception task. The attentive processes are carried out 
in parallel and provide necessary information for the higher level 
tasks. The dynamic reasoner can also configure the active vision 
parameters through the multi-layered action component of the system. 
For example, if an attentive process required a different field of view 
or greater resolution, the active vision mechanisms would be set to 
comply. 

The critical component of this selective sensing strategy is how 
salient items are selected in the pre-attentive stage. We can classify the 
determination of saliency in the sensing process into two general 

1) Goal-Driven Attention: Often a perception task is concerned 
with finding a particular object or set of objects in the environment 
with specific attributes. To detect these objects of interest, it is 
possible to set up pre-attentive sensory processes that specifically 
‘look’ for a set of features that are characteristic of the objects. For 
example, regions can be identified via low-level segmentation 
algorithms. In the interest of simplicity and speed, only simple 
attributes are used in these pre-attentive processes, such as brightness, 
color, or size. When the object or region of interest does appear, it 
attracts attention by triggering the process that was set up to detect its 
attributes. Triggering can be accomplished by exceeding a threshold 
when matching measured attributes with known attributes. This 
method of ‘target detection’ in the pre-attentive stage is not limited to 
vision and can be extended to any sensing modality. ‘Target 
recognition’ then takes place after the object has been foveated in the 
attentive stage, using a larger set of more complicated features. When 
performing target detection in the pre-attentive stage, a degree of 
saliency can be determined based on the closeness of match with the 
known attributes. This degree of saliency is passed along with 
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Figure 2: System selective perception component. 
location information of the salient region. The dynamic reasoner uses 
this information when dispatching attentive processes. This pre- 
attentive process is a goal-driven attentive process, since we have 
prior knowledge of the attributes of the objects of interest. Further 
details on focusing-of-attention based on target detection can be found 
elsewhere [4]. 

Examples of ‘target’ items of interest for a mobile agent might be 
landmarks for route navigation. These landmarks may be items such 
as comers of a hallway in order to initiate a turn, or man-made 
landmarks that can be used for accurate position and orientation 
determination. Other targets a mobile robot may be seeking could be 
items of trash for a cleaning robot, or human beings for a service 
robot. 

2) Data-Driven Attention: An object in the environment can also 
attract sensory attention if it ‘different’ from the other objects in the 
environment. How different an object is from the others is based on 
the object’s general properties or features: e.g., if one or more features 
are distinct from the features of other objects, the object attracts 
attention. An object with different features is deemed peculiar. Most 
work in the psychological study of human attention has taken place in 
this area. It has been determined that there are many simple object 
features as well as spatial and temporal properties that can attract 
human attention if different from the corresponding features of other 
objects [28]. As an example, a red flower in a field of green grass 
quickly attracts attention based on the quality feature of color. 

In this case, saliency is based only on the sensory data. No 
previous knowledge about the features or objects is required for an 
object to be salient, i.e., the saliency determination is data-driven. 
Data-driven saliency determination algorithms based on a concept of 
feature isolation have already been shown to be effective [4]. Data- 
driven saliency determination is useful when a task is to be carried out 
in an unknown domain, often the case for a mobile agent. For 
example, the detection of an object that has a motion field different 
from the surrounding environment should attract attention in order to 
identify the moving object. Further, obstacle detection and avoidance 
can be based on data-driven attention since obstacles unexpectedly 
appear along a previously smooth route. Lastly, landmarks can be 
autonomously detected during a training run of a mobile robot along a 
route using data-driven attention, and then subsequently detected later 
for route recognition when traversing the route again, using goal- 
driven attention [33]. 

Saliency location information flows up from the pre-attentive 
processes to the dynamic reasoner via a saliency list. The dynamic 
reasoner prioritizes this saliency list and then allocates and dispatches 
attentive processes to perform more detailed analysis of the sensory 
information. The results of the attentive processes are then passed up 
to the dynamic reasoner, forming the solutions to the perception tasks. 
In order to manage both the pre-attentive and attentive processes, there 
are control paths from the dynamic reasoner to the pre-attentive and 
attentive stages, indicated by dashed lines in figure 2. These control 
paths are an integral part of the learning processes described in the 
next section. 
3.3.  Learning in Selective Perception 

In order to make the perception process more flexible and robust, 
we employ learning at three different levels in our selective perception 
paradigm. 

1) Parameter LearninP: The algorithms that run in both the pre- 
attentive and attentive processes have input parameters that are crucial 
to their overall effectiveness. Depending on any particular situation, a 
certain set of algorithm parameters will yield satisfactory results. 

However, our perception system has been designed so that it can 
operate robustly in a number of different situations, with different 
environmental conditions, and with different required tasks. 
Therefore, the algorithm parameters will need to vary according to 
these outside influences. We accomplish these parameter alterations 
using parameter learning algorithms. 

Numerous parameter learning techniques exist, among them are 
gradient approaches, maximum likelihood estimation, clustering 
techniques, genetic algorithms, simulated annealing, rule-based 
systems, and surface response methodologies. We describe in detail a 
parameter learning technique based on clustering in the next section. 

The parameter learning for both pre-attentive and attentive 
algorithms takes place in the dynamic reasoner. The dynamic reasoner 
is constantly tuning each pre-attentive and attentive process by 
evaluating the results of each process, and applying the best parameter 
set to each one. The evaluations are based on confirmation of results 
produced by other pre-attentive and attentive processes. 

2) Utilitv Determination: Depending on the perceptual task at 
hand, the dynamic reasoner also determines a ‘utility’ for each pre- 
attentive and attentive process. Knowing the task, the dynamic 
reasoner loads appropriate routines as the pre-attentive and attentive 
processes. This is accomplished by learning through experience of 
which routines are more effective in certain situations. After the 
routines are loaded and are running, the effectiveness of each process 
is evaluated. The dynamic reasoner then assigns a weight to each 
process corresponding to the merit it has in helping to solve the 
perceptual task. In a sense, the dynamic reasoner ‘attenuates’ the 
saliency output of each pre-attentive routine through the dashed 
control lines seen in figure 2. Similarly, the dynamic reasoner 
provides a utility measure on the output of each attentive process. 

As an example, suppose a perception task gains little information 
from a specific sensory modality, the pre-attentive processes which 
extract information about that sensory modality have their saliency 
output attenuated so that critical attentive processing time is not 
wasted. Along the same lines, if a particular pre-attentive routine has a 
high false alarm rate when passing saliency information to the saliency 
list, the dynamic reasoner would ‘lea” that this pre-attentive routine 
was unreliable, and would therefore attenuate his saliency output. 
Thus in tum, it would be less likely that an attentive process would be 
assigned to evaluate the salient location hypothesized by the error- 
prone pre-attentive process. 

In utility determination, the dynamic reasoner would base its 
learning on evidence accumulation. This is done through Bayesian 
formulation, or if we use both negative and positive evidence, through 
Dempster-Schafer formulation. 

3) Coenitive Learning: At a higher level in our selective 
perception paradigm, we would need to accumulate knowledge that 
would provide the information required for our goal-driven focusing- 
of-attention used by some of the pre-attentive and attentive routines. 
Model information will need to be accumulated when determining 
landmarks for such things as route recognition. Numerous attentive 
processes would also make use of accumulated knowledge in order to 
perform recognition that was important to the perception tasks. 

In this paper, we will not elaborate on cognitive learning, since we 
are primarily interested in attention control in the selective perception 
component of our system. 

4. An Example: Parameter Learning for Obstacle Detection 

In the scenario of an autonomous mobile agent with on-board 
active vision systems navigating in an unconstrained environment, we 
consider the task of detecting moving obstacles. Two of several of the 
pre-attentive processes which are significant for this task are those 
which can detect motion and find regions that may correspond to the 
obstacles. Once these two pre-attentive processes have produced 
supporting evidence, the appropriate attentive processes may be 
invoked to positively identify the obstacles and estimate their rate of 
closure to the vehicle platform. 

Often a problem with both motion detection and region-finding 
algorithms is that their results are sensitive to varying environmental 
conditions, such as lighting. Therefore, we require that the algorithms 
adapt to the different conditions through a parameter learning 
technique based on clustering. 

4.1. Algorithm Description 

.4 simple motion detection algorithm that can run as one of the 



many pre-attentive processes works in the following way. It obtains 
differences in image intensities at the corresponding pixel locations in 
two consecutive frames Ik and Ik + 1 taken At time apart [17,18]. If the 
number of contiguous pixels where any change in intensity is 
observed is larger than some threshold zml then the corresponding 
pixels are marked in the difference image &: 

= 0, otherwise 
where U(.) is the unit step function. It is expected that the marked 

pixels form disjoint sets of connected regions in the difference image 
where each set of connected regions correspond to a object. The 
criterion that the motion algorithm uses to classify a set of connected 
regions to correspond to an object is that 

Nj 
I Ik(ri,Ci) - Ik+l(ri,Ci)l > w , 

i =  1 

where N, Is the total number of marked pixels in the j-th set of 
connected regons. 

4.2. Learning Process 

The three parameters of the motion detection algorithm - At, t m l ,  

- depend on image properties, particularly image contrast. Hence, 
these parameters need to adapt to the varying imaging conditions along 
the navigation route. The parameter adaptation constitutes the learning 
process. In our example, we apply a clustering technique for learning. 
We characterize the triplet (At, t m l ,  zm2) by the average image 
contrast. Thus, similar contrast values imply similar selection of 
triplets (after evaluating motion detection results) as belonging to an 
existing cluster, in which case the cluster center and variance are 
updated, or a new cluster is created with the current selection. 

Every time a new frame is acquired its average contrast is 
computed to determine the relevance of using the existing triplet. In an 
unconstrained environment, it is unlikely that the same triplet will 
continue to give a high-level of performance after several frames. 
When this happens a new parameter triplet needs to be generated. If 
the new contrast value falls within an existing cluster then the new 
parameter values are interpolated from the existing members of the 
cluster. When the contrast value is located outside, the parameter 
values are extrapolated from the nearest cluster. In either case, the 
results of motion detection are evaluated. If the results are acceptable 
(based on the criterion given in section 4.3) then the new triplet is 
passed on to the parameter learning process. The triplet is discarded if 
the results are unacceptable and new parameter values need to be 
regenerated. In our example, we put upper and lower bounds on the 
value of each parameter. The regeneration process begins with the 
discarded values and follows a divide-and-conquer approach. For 
each parameter, the mean between the lower bound and discarded 
value and that between the upper bound and discarded value are 
computed. Thus, there are 23 = 8 new triplets generated for each pass 
of the divide-and-conquer method. The motion detection result for 
each triplet is evaluated and the best is retained for subsequent passes 
of the divide-and-conquer mechanism. The process terminates when a 
pass fails to provide a triplet that enhances the results. 

4.3. Evaluation Criterion 

Evaluation of the motion detection results is important for new 
parameter generation and parameter learning. In our example, the 
evaluation is performed by verifying the support from the 
segmentation and other appropriate pre-attentive processes, e.g., edge 
detection, for the motion detection results. We note that because of 
frame differencing the pixels interior to the moving object boundary 
are less likely to be marked in the difference image than the boundary 
pixels. Thus, a good motion detection quality measure is the degree of 
overlap of the motion boundary, the segmented region boundary, and 
the detected edges: 

where n(Q) = number of elements in the set Q, E$ = set of detected 
edgels in frame i, Si I set of region border pixels in frame 1, Md = set 
of motion boundary pixels in the difference frame created from frames 
i and i+ 1 .  

4.4. Results 

In our implementation of the moving obstacle detection algorithm, 
the successive frames are acquired at a fixed time interval of At = 1 
second. The threshold parameters zml E [2, 81 and the parameter 
E [50, 1501. The acceptable level of quality measure is 0.6. 

At a certain instant during navigation, the successive frames of 
figure 3(a) and (b) are acquired. The images show an object (a mini- 
robot) in the lower right portion of the frames which is moving away 
from the mobile agent. The motion regions detected in the difference 
image after application of the thresholds zml and t , , ~  are shown in 
figure 3(c) with the thresholded difference superimposed on figure 
3(b). The average contrast of figure 3(b) is 3.41; the values of the 
thresholds that result in acceptable quality of motion detection at this 
level of image contrast are % I =  3 and td = 7 1. Several frames later, 
the ambient lighting condition changes abruptly. The two consecutive 
frames at this instant are shown in figures 4(a) and (b), with the 
average image contrast of figure 4(b) being 8.66. Because of the new 
imaging conditions, the thresholds 

The process of parameter learning begins by deriving a new set of 
values for zml and t d  from the past experience of the agent under 
similar imaging conditions. Figure 5 shows the frequency of 
occurrences of different contrast values in the past. The threshold 
parameters corresponding to the mean of the largest distribution are 
tml = 3 and zm2 = 73. These values are selected for processing the 
frame difference of the figures 4(a) and (b) since the distribution is the 
closest to the current value of the contrast. The result of applying these 
threshold values to the difference image is shown in figure 4(d). 
Clearly, the low threshold values give rise to spurious motion regions 
that do not coincide with region boundaries and edge pixels, thus 
reducing the overall quality measure below the acceptable level. The 
successive generations of new parameter values through the divide- 
and-conquer method and the corresponding evaluation results are 
listed in table 1 .  Note that only the best of the 22 = 4 combinations 
during each iteration is included in the table. 

In the third iteration, the values of zml= 6 and z d  = 130 produce 
motion detection results of acceptable quality. The difference image 
using these two threshold values is shown superimposed on the 
second frame of this sequence in figure 4(c). These parameter values 
are learned by the agent to update the distribution of figure 5. A 
comparison of figures 4(c) and (d) indicates the importance of 
adapting the threshold parameters in order to reduce the number of 
potential focus-of-attention for the attentive processes to identify the 
obstacle. 

5. Conclusions 

and t , ,~  need to be adjusted. 

We have applied learning techniques to a perception system of an 
autonomous mobile agent. The learning techniques provide greater 
flexibility and robustness to the entire system, allowing the 
autonomous mobile agent to operate in a wider range of environments 
while performing a larger number of tasks. Furthermore, in order to 
greatly speed up the perception processing, we have based our 
perception system on an intelligent selective sensing paradigm. 
Through a two stage mechanism consisting of pre-attentive and 
attentive processes, this selective sensing strategy eliminates the need 
to process massive amounts of unnecessary sensory data. Thus, 
perceptual processing is performed in near real-time. 

In the perception process, we have identified and applied learning 
at three different levels: 1) parameter learning, where the parameters 
that control the algorithms in the pre-attentive and attentive processes 
are dynamically modified as conditions change; 2) utility 
determination, where the dynamic reasoner determines a utility or 
‘usefulness’ for the algorithms running in the pre-attentive and 
attentive processes; and 3) cognitive learning, where knowledge is 
accumulated in order to perform goal-driven algorithms in the pre- 
attentive and attentive routines. 

We describe one example of parameter learning in our system, 
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Information Proc&ing, MyMinsky (ed.), Cambridge, Mass.: 
MIT Press. 1968. 
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Figure 5: Contrast distribution of frame sequence. 
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