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ABSTRACT 
Land navigation requires a vehicle to steer clear of trees, 

rocks, and man-made obstacles in the vehicle's path while 
vehicles in flight, such as helicopters, must avoid antennas, 
towers, poles, fences, tree branches, and wires strung across 
the flight path. Automatic detection of these obstacles and 
the necessary guidance and control actions triggered by such 
detection would facilitate autonomous vehicle navigation. An 
approach employing a passive sensor for mobility and navi- 
gation is generally preferred in practical applications of these 
robotic vehicles. Motion analysis of imagery obtained during 
vehicle travel can be used to generate range measurements, 
but these techniques are not robust and reliable enough to 
handle arbitrary image motion caused by vehicle movement. 
However, many types of existing vehicles contain inertial 
navigation systems (INS) which can be utilized to improve 
interest point selection, matching of the interest points, and 
the subsequent motion detection, tracking, and obstacle detec- 
tion. We discuss an inertial sensor integrated optical flow 
technique for motion analysis to achieve increased 
effectiveness in obstacle detection during vehicle motion. 

1. INTRODUCTION 
A desired obstacle detection system for many practical 

applications should exhibit robustness and should not place 
unduly excessive size, power, or weight demands on the host 
vehicle. It should work in day/night/adverse weather condi- 
tions and should preferably be covert to minimize the threat 
to the vehicle and the pilot. The technique used for obstacle 
detection must also have graceful degradation, instead of total 
failure, under conditions of limited operability. In recent 
years, considerable effort has been put toward the detection 
of obstacles that present themselves primarily to ground vehi- 
cles. Using mainly active sensors, such as a laser scanner, 
obstacles (like fence posts, rocks, vegetation) are detected 
within the field of view of the vehicle's Other 
active sensors such as Millimeter Wave (MMW) can detect 
obstacles such as wires, but the constant and continuous 
image of these active sensors may betray vehicle covertness. 

Passive sensors, such as a TV camera, are also being 
used to detect obstacles for ground  vehicle^.'.^.^ However, 
state-of-the-art motion analysis techniques for obstacle detec- 
tion are not robust and reliable enough for many practical 
applications. Many of these techniques place unrealistic con- 
straints on the input data in order to make them work. The 
largest sources of error are sensor motion and 
incompletehmbiguous information in the sensed image data. 
Many types of land and air vehicles (e.g. helicopters and mil- 
itary ground vehicles) contain an Inertial Navigation System 
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(INS) whose output can be used for applications beyond the 
original intent of the system. Such vehicles can use the INS 
information to greatly simplify some of the functionalities 
normally provided by computer vision, such as obstacle 
detection, target motion detection, target tracking, stereo, etc. 
The INS used for the work reported here (a Honeywell 
HG1050) provides the vehicle's positional, velocity, and 
acceleration information, which enhances the quality of 
motion analysis techniques for obstacle detection. 

The objective of the work presented in this paper is to 
describe our maximally passive approach to obstacle detec- 
tion and to discuss the details of our inertial sensor integrated 
optical flow analysis technique. 

2. INERTIAL SENSOR INTEGRATED 
MOTION ANALYSIS 

The block diagram of the inertial sensor integrated 
motion analysis system is illustrated in Figure 1. The system 
uses inertial sensor integrated optical flow, scene analysis, 
and selective applications of active sensors to provide obsta- 
cle detection capability.' In this paper, we focus on the 
details of the inertial sensor integrated optical flow algorithm, 
which computes range to features within the sensor's field of 
view. For a pair of image frames, the major steps that are 
involved within the optical flow algorithm are given below: 
(1) Input frames, frame A and frame B, are read in along 

with their associated inertial data. 
(2) Interest points are extracted from each input frame. 
(3) Location of the focus of expansion (FOE) (in both 

frames) is computed. based on the velocity vector 
obtained from the INS. 

I I  IMI 

Figure I: Inertial sensor integrated optical flow and scene 
analysis provides robust image analysis useful for obstacle 
detection and avoidance, 



The FOE and the interest points in frame B are pro- 
jected onto an image plane that is parallel to the image 
plane that captured frame A (derofafion of frame B). 
Interest points in frame B are matched to those of frame 
A based upon four criteria. 
Range is computed to each interest point in frame B that 
has a match in frame A. 
A dense range map is created using context dependent 
scene analysis and interpolation between the computed 
range values. 
Before starting a detailed discussion of the major steps 

in the algorithm, let us first describe the coordinate-systems 
that are used. The digitized imagery contains pixels 
addressed by row and column with the origin of the 2-D 
coordinate system located in the upper left comer of the 
image. The horizontal axis, c, points to the right and the 
vertical axis, r, is in the downward direction. This image 
plane is perpendicular to the x axis of a 3-D coordinate sys- 
tem and is located at a distance of the focal length, F, from 
the origin where the z axis in the downward direction. 
Therefore, the pixels in the image plane can be described in 
the 2-D coordinate frame as (c, r) and in the 3-D coordinate 
frame by the vector (F, y, z). The geometry described above 
is graphically illustrated in Figure 2. 

As shown in Figure 3, the data input to the obstacle 
detection algorithm consists of a sequence of digitized video 
or FLIR frames that are accompanied by inertial data consist- 
ing of rotational and translational velocities. This infoma- 
tion, coupled with the temporal sampling interv between 
frames, is used to compute the distance vector, 2 between 
each pair of frames and the roll, pitch and yaw angles, 
($,8,w), of each frame. Both d and ($,8,w) are crucial to the 
success of the algorithm described in the following section. 

t 

Figure 2 :  The coordinate system geometry of the sensor's 
image plane is perpendicular to the x axis, located at the dis- 
tance of the focal length, F, from the origin. 0 F . m . N + T ]  interest Extraction Paints 01 
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Figure 3: Inertial sensor integrated optical flow technique, 

2.1 DISTINGUISHED FEATURES 
The features within the imagery (TV or FLIR) that are 

most prominent and distinguished, mark the world points to 
which range measurements will be made. These prominent 
world points, known as interest points, are easy to extract 
from the imagery and have the highest promise of repeated 
extraction throughout multiple frames. The interest points 
within the field-of-view of the monocular sensor are of fun- 
damental and critical importance to optical flow calculations. 
In the following subsections, the extraction and subsequent 
use of interest points is described in detail. 

2.1.1 Interest Point Selection - We compute a set of 
distinguishable points by passing an operator which is a com- 
bination of the Hessian and Laplacian operators6 over each 
frame of imagery. The operator, I ,  takes the form 

where g is the local gray level function and g ,  for example, 
is the local 2nd derivative in the x direction. 

Our implementation of the interest point operator ranks 
the detected interest points in the order of their computed 
interestingness, S. This interest point extraction routine takes 
as input a segmentation of the original image and retums n j ,  
0 5 j 5 N ,  interest points in each of the N segments. The 
value of n, for segment j is proportional to the segment size 
and segment features. More than nj interest points can exist 
per segment; only the points with the highest S values are 
reported. The result of returning only the best interest points 
(in terms of S) in each segment is that the processed scene is 
more uniformly covered with interest points. 

Unfortunately, not all regions within a scene can contain 
reliable interest points. Scene analysis techniques are used to 
ascertain the goodness of regions prior to interest point selec- 
tion.' Moreover, interest point selection is further improved 
by incorporation of Kalman filtering techniques, which use 
inertial sensor data to track and predict interesting point 
features.' 

2.1.2 Interest Point Derotation - To aid the process of 
interest point matching, we must make it seem as though 
image plane B is parallel to image plane A (see Figure 4). If 

Figure 4 :  An illustration of the sensor geometry that records 
two perspective views of scene at two positions separated 
by a distance IVICU = ldl (with no rotation of the sensor 
between positions). 
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this is done, the FOE and pairs of interest points in frames A 
and B that match, would ideally be colinear should the image 
planes be superimposed. To make the image planes parallel, 
derotation is performed for each vector, ( F y i , z i )  that 
corresponds to each interest point in frame B. The equation 
for the derotation transformation and projection (in homo- 
geneous coordinates) is 

1 

1 0  0 0  
0 cos@ -sin@ 0 
0 sin@ cos@ 0 
0 0  0 1  

Ro = 

where 

cos0 0 sin0 0 
0 1 0 0  

R e =  [ -sin0 0 cos0 0 
0 0 0 1  

A 

[cosy -sinw o 01 [ 1  0 0 0 1  
siny cosy 0 0 0 1 0 0  

1lF 0 0 0 

and where NED (north, east, down) is the coordinate frame 
in which inertial measurements are made. Use of the NED 
frame assumes that vehicle motion is “local” to a patch of 
Earth. 

The mamx P projects a world point onto an im e plane 
d is used to compute the FOE, FOE = P where 8= ?At. The matrix C&, converts points described in the 

NED coordinate frame into an equivalent description within a 
coordinate frame parallel to the A coordinate frame. Like- 
wise, the mamx converts the descriptions of points in 
the B coordinate frame into descriptions in a coordinate 
frame parallel to NED. 

2.13 Interest Point Matching - The matching of 
interest points is performed in two passes. The goal of the 
first pass is to identify and store the top three candidate 
matches for each interest point in frame B, (F ,JJB~,zB~). The 
second pass looks for multiple interest points being matched 
to a single point in frame A. Hence, the result of the second 
pass is a one-to-one match between the interest points in the 
two successive frames. For our application, a one-to-one 
match of interest points is necessary. We acknowledge that 
the projection onto the sensor’s image plane of an object in 
the world will grow in size as the sensor moves toward the 
object. This situation might imply that a one-to-one match 
does not make sense since what was one pixel in size in 
frame A might become two or more pixels in size in frame 
B. In this work, we assume that the growth of objects, in 
terms of pixel size, is negligible in the passive ranging for 
obstacle detection scenario. All objects are assumed to be at 
certain safe distances for vehicle maneuvering and one pixel 
(of interest point quality) in two frames is all that is required 
of an object’s surface for the range to be computed. 

Pass One: To determine the candidate matches to 
(F,YB~,ZB,) ,  each of the interest points in frame A is exam- 

ined with the successive use of four metrics. The first metric 
makes certain that candidate matches lie within a cone 
shaped region bisected by the line joining the FOE and the 
interest point in frame B. This metric limits candidate 
matches to lie within the cone with apex at the FOE, as 
shown in Figure 5(a). If an interest point in frame A, 
(F YA,..zA,), passes the first metric, then the second memc is 
applied to it. The second metric requires that the interesting- 
ness of candidate matches is close to the interestingness of 
the point that we are trying to match. 

The third metric restricts all candidate matches in frame 
A to lie closer to the FOE than the points in frame B (as 
physical laws would predict for stationary objects). This 
metric can compute the distances of the interest points from 
the FOE in two different ways: 
( 1 )  The direct euclidean distance, d l ,  between (FJA~,ZA, )  

(2) the distance d2 which is the projection of d l  onto the 
line joining (F j B j , z B j )  and the FOE. 

The distance measures are graphically illustrated in Figure 
5(b). Regardless of the way that the distance measure is 
computed, it can be used to identify the closest candidate 
matches to (F ,JJB,,z~~). 

The fourth metric constrains the distance between an 
interest point and its candidate matches. For an interest point 
in frame A, A j ,  to be a candidate match to point B j ,  it must 
lie within the shaded region of Figure 5(a). The depth of the 
region is determined by this fourth memc while the width of 
the region is fixed by an earlier metric. By limiting interest 
points, Ai, to lie in the shaded region, we have effectively 
restricted the computed range of resulting matches to lie 
between R,, and R , ~  World objects at ranges less than 
Rmi, should not occur due to autonomous or manual naviga- 
tion of the vehicle, thus avoiding potential collisions. Like- 
wise, objects at a range greater than R,, are not yet of con- 
cem to the vehicle. 

The result of the fist  pass of interest point matching is 
a list, for each (F,yBj ,zB.) ,  of three or fewer candidate 
matches that pass all me&s and have the smallest distance 
measures of all possible matches. 

and (F Yg, JB, 1, and 

Figure 5: Constraints used to aid the process of matching 
interest points between frames. (a) Since an interest point, 
the FOE, and a candidate match must be colinear after dero- 
tation, all candidate matches to a point in frame B must lie 
within a cone with apex at the FOE and the shaded section. 
(b) There are two ways to compute the distance between 
interest points, distance metric d or df. 
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Pass Two: The goal of the second pass of the matching 
process is to take the matches provided by the first pass and 
generate a one-to-one mapping between the interest points in 
frames A and B. Initially, it can be assumed that the best 
match to ( F , Y B ~ , Z ~ . )  will be the stored candidate match which 
has the smallest distance measure. Unfortunately, there may 
be multiple points, (F,yBj,zBj), which match to a single 
(F,yAi,zA,). Hence, the recorded list of best matches is 
searched for multiple occurrences of any of the interest points 
in frame A. If multiple interest points ;!n frame B have the 
same best match, then the point, B , which is at the 
minimum distance from the Ai in question, will retain this 
match and is removed from the matching process. The 
remaining Bi’s are retumed to the matching process for 
further investigation after having Ai removed from their lists 
of best matches. This process continues until all of the 
interest points in frame B either have a match, cr are deter- 
mined to be unmatchable by virtue of an empty candidate 
match list. Hence, the final result of the matching process is 
a one-to-one mapping between the interest points in frames A 
and B. 

2.2 RANGE CALCULATION AND INTERPOLATION 
Given the result of interest point matching, which is the 

optical flow, range can be computed to each match. Given 
these sparse range measurements, a range or obstacle map 
can be constructed. The obstacle map can take many 
f0rms,2*~ the simplest of which consists of a display of bear- 
ing versus range. 

Given pairs of interest point matches between two suc- 
cessive image frames and the translational velocity between 
frames, it becomes possible to compute the range to the 
object on which the interest points lie. One approach to 
range, R, computation is described by the equation 

where 
xi = the distance between the FOE and the center of 
t e image plane, 
x = the distance between the pixel in frame A and the 
center of the image plane, 
x ’  = the distance between the pixel in frame B and the 
center of the image plane, 
A2 = I?lAt cosaF = the distance traversed in one 
frame time, At,  as measured along the axis of the line 
of sight, 
aF the angle between the velocity vector and the line 
of sight, 
x ’ - x f  = the distance in the image plane between 
(F ,YB~,ZB,) and the FOE, and 

x ‘ - x  = the distance in the image plane between 
(F ,YB,.zB~) and (F , Y A , J A ~ ) .  

These variables are illustrated in Figure 6. Note that R is the 
distance to a world point relative to the lens center of frame 
A (similar equations would compute the distance from the 
lens center of frame B). The accuracy of the range measure- 
ments that result from either approach is very sensitive to the 
accuracy of the matching process as well as the accuracy of 
the inertial measurement unit (MU) data. 

The task of range interpolation is the last processing 
step required of the passive ranging system (this ignores any 

World Point as 
Viewed lrom Frame B 

/ / * 
Direclion 01 
Vehicle 

Figure 6: The geometry involved in the first approach to 
range calculation, which shows the imaged world point in 
motion rather than the sensor, thus simplifying the geometry. 

postprocessing of the range that may be required before it 
gets passed to the automatic vehicle control and display sys- 
tems). The purpose of this task is to create, by means of 
interpolation between the sparse range samples generated 
from the optical flow measurements, a dense range map 
representing the objects within the field of view. Essentially, 
this task is one of surface fitting to a sparse, nonunifom set 
of data points. To obtain an accurate surface fit that physi- 
cally corresponds to the scene within the field of view, it is 
necessary that the sparse set of range samples be as uni- 
formly spread throughout the field of view as possible. This 
is a fundamental reason for our segmentation driven interest 
point selection. 

The type of surface fitting is important because the 
resulting surface (i.e. the range map) must pass through each 
of the range samples. It would be especially dangerous if the 
surface passed under any range samples. There are many 
techniques of surface fitting available to our task. However, 
there is some concern as to the purpose of interpolation. 
Surely, interpolation will aid an opemtor/pilot in the interpre- 
tation of the results of optical flow measurements, but its use 
by automatic vehicle control is questionable. Also, a large 
number of interest points can be selected and matched, so 
there may not be any need for interpolation. These issues are 
being explored further. 

3. RESULTS 
Our inertial navigation sensor integrated optical flow 

algorithm has been used to generate range samples using both 
synthetic data and real data (imagery and INS information) 
obtained from a moving vehicle. In this section, we describe 
the conditions under which the data was createdhollected and 
provide images illustrating the results of the major steps in 
the optical flow algorithm. 

The synthetic interest points were generated from a file 
containing the 3-D coordinates of 15 world points. Table 1 
shows the 3-D locations of these world points. In the same 
coordinate system as the interest points are located, Table 2 
lists the location, roll, pitch, and yaw of the camera at the 
two instances of time at which frames A and B were 
acquired. The time between frame acquisition is 0.2 seconds. 
Figure 7(a) shows the locations (circles) of the projection of 
the world points onto the first location of the image plane 
where the field of view of the synthesized camera model is 
52.0’ x 48.75’ with a focal length of 9 mm. Figure 7:b) 
shows the locations (squares) of the projections of the world 
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points onto the second location of the image plane and shows 
the new locations (diamonds) of those projections after dero- 
tation. Figure 7(c) shows the results of the matching process 
in which circles are connected to their corresponding dia- 
mond with a straight line and the FOE is labeled and marked 
with an X. 

A pair of real images was selected to test the capabili- 
ties of the optical flow algorithm using real imagery. Table 3 
indicates the location, roll, pitch, and yaw of the camera 
associated with the pair of real image frames that were used. 
The field of view of the camera for the real images is 52.1’ x 
40.3’ and the focal length = 9 mm. The elapsed time 
between the two frames for this experiment was 0.2 seconds. 
Figure 8(a) shows the locations of the extracted interest 
points obtained from the first frame, drawn as circles. Simi- 
larly, Figure 8(b) indicates the location of extracted interest 
points (squares) and the corresponding derotated locations 
(diamonds). Since the vehicle undergoes very little rotation 
between frames, the derotated locations are nearly coincident 
with the original point locations. The results of the point 
matching process for the real imagery is shown in Figure 
W). 

4. CONCLUSIONS 
We have presented out initial work for INS integrated 

motion analysis. Future work will involve incorporating con- 
text dependent qualitative scene analysis, knowledge-based 
sensor management, and incorporation of Kalman filtering 
into our approach. Our ultimate goal is to develop the com- 
plete, fieldable system for obstacle detection during rotorcraft 
low altitude flight. We are also applying this technology for 
land vehicle applications to achieve robust obstacle detection, 
target motion detection, and target tracking. 
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Table 1: Locations of interest points. 

Table 2: Location, roll, pitch, and yaw of the camera for syn- 
thetic frames A and B. 

Table 3: Location, roll, pitch, and yaw of the camera for two 
frames of real imagery. 
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Figure 7: Optical flow results using synthetic data. (a) Loca- 
tions of interest points in the first image, indicated by circles. 
(b) Locations of interest points in the second image, shown 
using squares. Diamonds indicate the derotated interest point 
locations. (c) Matching process results in displacement vec- 
tors between circles and diamonds. The FOE is indicated by 
a cross. 

Figure 8: Optical flow results using real data. (a) Locations 
of interest points in the first image, indicated by circles. (b) 
Locations of interest points in the second image, shown using 
squares. Diamonds indicate the derotated interest point loca- 
tions. (c) Matching process results in displacement vectors 
between circles and diamonds. The FOE is indicated by a 
cross. 
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