
LANDMARK RECOGNITION FOR AUTONOMOUS MOBILE ROBOTS* 

Hatem Nasr and Bir Bhanu 

Honeywell Systems and Research Center 
3660 Technology Drive 

Minneapolis, Minnesota 55418 

A new approach for landmark recognition based on the perception, 
reasoning, action, and expectation (PREACTE) paradigm is presented for 
the navigation of autonomous mobile robots. PREACTE uses expectations 
to predict the appearance and disappearance of objects, thereby reducing 
computational complexity and locational uncertainty. It uses an innovative 
concept called dynamic model matching (DMM), which is based on the 
automatic generation of landmark description at different ranges and aspect 
angles and uses explicit knowledge about maps and landmarks. Map 
information is used to generate an expected site model (ESM) for search 
delimitation, given the location and velocity of the mobile robot. The 
landmark recognition vision system generates 2-D and 3-D scene models 
from the observed scene. The ESM hypotheses are verified by matching 
them to the image model. Experimental results that verify the performance 
of the PREACTE and DMM algorithms for real imagery are also presented. 

1. Introduction 

To accomplish missions such as surveillance and search and rescue, a 
mobile robot has to travel long distances. This results in a significant 
amount of positional error in the land navigation system. Landmark 
recognition is used to update the land navigation system by recognizing the 
observed objects in the scene and associating them with specific landmarks 
on a geographic map, thus enabling the robot to remain on course. 
Landmarks of interest include mostly man-made objects, such as telephone 
poles, storage tanks, buildings, houses, gates, etc. 

Unlike previous related work, the paradigm of an intelligent agent (like an 
autonomous mobile robot) that we use here is based on a perception, 
reasoning, action, and expectation (PREACTE) cycle. We have developed 
an expectation-driven, knowledge-based landmark recognition system, 
called PREACTE, that uses a priori, map. and perceptual knowledge; 
spatiat reasoning and knowledge aggregation; and novel dynamic model- 
matching (DMM) methods. In contrast to the work of Davis,l explicit 
knowledge about the map and landmarks is assumed to be given. This 
knowledge is used to generate an expected site model (ESM), given the 
robot's location and velocity. 3-D models of landmarks at a particular map 
site are stored in heterogeneous representations. Using these 3-D models, 
the vision system generates many 2-D scene models as a function of 
estimated range and azimuth angle. The ESM hypotheses are dynamically 
verified by matching them to the abstracted image models. This matching 
is accomplished by using grouping of segments (lines and regions) and 
spatial reasoning. Positive as well as negative evidences are used to verify 
the existence of each landmark in the scene. The system also provides 
feedback control to the low-level processes to permit parameter adaptation 
of the feature detection algorithms to changing illumination and 
environmental conditions. 

PREACTE emphasizes model-based vision, which has been a popular 
paradigm in computer vision because it reduces computational complexity 
and requires no learning. Binford has summarized model-based vision 
work2 and described several systems, including the work of Brooks on 
ACRONYM? Hanson and Riseman's work on VISIONS$ and Nagao and 
Matsuyama's work on the analysis of complex aerial photographs.5 
McKeown et al. have used map- and domain-specific knowledge in SPAM 
rule-based systems for the inteqretation of airport scenes in aerial images.6 

*This research was supported by DARPA under Contract No. DACA76- 
86-C-0017. 

Hwang has also used domain knowledge to guide interpretation of 
suburban house scenes in aerial imagery.7 He has used a test-hypothesize- 
act sequence to generate many hypotheses, which are then integrated into a 
consistent interpretation. Bhanu has used several modeling and relaxation 
matching techniques for the recognition of 2-D and 3-D nonoccluded and 
occluded 

In the DMM concept mentioned above, object/landmark descriptions are 
generated dynamically based on different ranges and view angles. These 
descriptions are a collection of spatial, feature, geometric, and semantic 
models. From a given (or approximated) range and view angle, and using a 
priori map information, 3-D landmark models, and the camera model, 
PREACTE generates predictions about the individual landmark location in 
the 2 -0  image. The parameters of all models are a function of range and 
view angle. As the robot approaches the expected landmark, the image 
content changes, which in turn requires updating the search and match 
strategies. Landmark recognition in this framewok is divided into three 
stages: detection, recognition, and verification. At far ranges, "detection" of 
distinguishing landmark features is possible, whereas at close ranges, 
recognition and verification are more feasible, since more derails of objects 
are observable. 

In the following sections we present details of the PREACTE and DMM 
concepts and results on real images taken by an autonomous mobile robot. 

2. - 
The task of visual landmark recognition in the autonomous mobile robot 
scenario can be categorized as uninformed or informed. In the uninformed 
case, given a map representation, the vision system attempts to attach 
specific landmark labels to image objects of an arbitrary observed scene 
and infers the location of the vehicle on the map (world). In this case, 
spatial or topological information about the observed objects is typically 
used to infer their identity and the location of the robot on the map as a 
result. In the informed case, while the task is the same as before, there is a 
priori knowledge (with a certain level of certainty) of the past location of 
the robot on the map and its velocity. It is the informed case that is of 
interest in this paper. 

Figure 1 illustrates the overall approach to PREACTE's landmark 
recognition task It is a topdown, expectation-driven approach, whereby 
an ESM on the map is generated based on extensive domain-dependent 
knowledge of the current (or projected) location of the robot on the map 
and its velocity. The ESM contains models of the expected map site and its 
landmarks. These models provide the hypotheses to be verified by a 
sequence of images acquired at a predicted time f given the velocity of the 
robot and the distance between the current site and the predicted one. 
Figure 2 illusaates this concept. As shown, map site models introduce 
spatial constraints on the locations and distributions of landmarks, usicg a 
"road" model as a reference. Spatial constraints greatly reduce the search 
space while attempting to fmd a correspondence between the image regions 
and a model. This mapping is usually many-mne in complex outdoor 
scenes because of imperfect segmentation. 

The ESM is dynamic in the sense that the expectations and descriptions of 
different landmarks are based on different ranges and view angles. 
Multiple and hybrid landmark models are used to generate landmark 
descriptions as the robot approaches a landmark, leading to multiple 
modellimage matching steps. This is what is referred to as dynamic model 
matching @MM). The landmark descriptions are based on spatial, feature, 
geometric, and semantic models. There are two types of expectations: 
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range &pendent and range independent. Rangedependent expectations are 
landmark features such as size, length, width, volume, etc. Range- 
independent ones include color, perimeter s q d  over area, length over 
width, shape, etc. 

Different landmarks require different strategies and plans for detection and 
recognition at different ranges. For example, a yellow gate has a distinctive 
color feature that can be used to cue the landmark recognition p r o c e s s  and 
reduce the search space. A telephone pole, on the other hand, requires the 
emphasis of the length/width feature. 

.......... ........._.. ____.  

______. .____________________I  

1 

I 

I .  I U  

-1 i, I 

0 I U G E l  

TIME - ,+AT-% -. ; 
W E  - Ut ., 
VELOUW - V l  

TIYE - T 
STE * %I1 
YELOUTI  . VI  

Figure 2. A graphic illustration of PREACTE's landmark recognition 
and mapflandmark representation 

In PREACTE, given an image, landmark recognition basically consists of 
the following steps: 

1. 

2. 

3. 

4. 

5.  

6. 

7. 

8. 

9. 

Generate 2-D descriptions from 3-D models for each landmark 
expected in the image 

Find the focus of attention areas @MAS) in the 2-D image for 
each expected landmark 

Generate the recognition plan to search for each landmark, which 
includes what features will be used for each landmark in a given 
map site 

Generate the ESM at that range and aspect angle 

Search for regions in the FOAA of the segmented image that best 
match the features in the model 

Search for lines in the FOAA in the line image that best match the 
lines generated from the 3-D geometric model (this step is 
prformed at close ranges where details can be observed) 

Match expected landmark features with region attributes, and 
compute evidences for all landmarks 

Correct the approximated range by using the size differences of 
the suspected landmark in the current and previous frames 

Compute the uncertainty about the map site location 

In the segmented image, features such as size, texture, color, etc. of each 
region provide independent evidence for the existence of an expected 
landmark. Evidence accrual is accomplished by an extension of a 
heuristic Bayesian formula,l3-14 which will be discussed in section 4. The 
heuristic formula is used to compute the certainty about a map site location 
based on the certainty of the previous site and the evidence of the existence 
of each landmark at the current site. 

2.1. m d m a r k  Know 1- 

Extensive map knowledge and landmark models are fundamental to the 
recognition task. Our map representation relies heavily on declarative and 
explicit knowledge instead of procedural methods on relational databases6 
The map is represented as a quadtree, which in turn is represented in a 
hierarchical relational network. All map primitives are represented in a 
schematic structure. The map dimensions are characterized by their 
cartographic coordinates. This schematic representation provides an 
object-oriented computational environment that supports the inheritance of 
properties by different map primitives and allows modular and flexible 
means for searching the map knowledge base. The map sites between 
which the vehicle traverses have been surveyed and characterized by site 
numbers. A large database of information is available about these sites. 
This includes approximate latitude, longitude, elevation, distance between 
sites, terrain descriptions, landmark labels contained in a site, etc. Such site 
information is represented in a SITE schema, with corresponding slots. 
Slots names include HASLANDMARKS. NEXT-SITE, LOCATION, etc. 

Each map site that contains landmarks of interest has an explicitly stored 
spatial model, which describes in 3-D the location of the landmarks relative 
to the road and to each other. By using a detailed camera model, range, and 
azimuth angle, we can generate 2-D views of the landmarks. 

Given a priori knowledge of the robot's current location on the map space 
and its velocity, it is possible to W c t  the upcoming site that will be 
traversed through the explicit representation of map knowledge. The ESM 
contains information about the predicted (x.y) location of a given landmark 
and its associated FOAA, which is an expanded area around the predicted 
location of the object. 

2.2. Imaee Modeling 

Following image segmentation, a number of image features are extracted 
for each region, such as color, length, size, perimeter, texture, minimum 
bounding rectangle (MBR), etc., as well as some derived features, such as 
elongation, linearity, compactness, etc. All image information is stored in a 
blackboard. Symbolic feature extraction is performed on some of the 
region-based features. So, instead of having area = 1500 pixels and 
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intensity = 52, we could have area = large and intensity = low. The 
symbolic characterization of the features using "relative" image 
information provides a better abstraction of the image and a framework for 
knowledge-based reasoning. On one hand, this has the advantage of 
making the feature space smaller and therefore easier to manipulate. On 
the other hand, it makes the feature space insensitive to feature variations in 
the image; this is why numeric features are also preserved. 

Each set of regip features is represented in a schematic structure instead of 
a feature vector. This schematic representation of regions does not have 
any conceptual justifications; however, it provides a compatible data 
structure with the landmark models in the knowledge base. Most of the 
region features have representative attributes in the landmark models. This 
allows symbolic pattern matching to be performed easily. Beyond that, it 
makes the reasoning process more traceable. 

A critical region in the image is the road region, which is used as a 
reference in the image model. In most cases, the road is easily segmented 
ouf assuming it is a "stnctured" road that provides good contrast (i.e., an 
asphalt or concrete road, not a dirt road). The road is represented in the 
model by its vertices and the approximate straight lines of its left and right 
borders. 

2.3. Q&&M&hg 

Landmark expectations are based on stored map information, object 
models, and the camera model. Each landmark has a hybrid model that 
includes spatial, feature, geometric, and semantic information. Figure 3 
illustrates this hybrid model representation for a yellow gate; this model 
also includes: 

. Maplocation 

- Locationin3-D 

Expected (x,y) location in the image 
Location with respect to the road (i.e., left or right) and 
approximate distance 

Figure 3. Hybrid model of the yellow gate landmark 

The feature-based model includes information about local features, such as 
color, texture, intensity, size, length, width, shape, elongation, perimeter 
squared over area, linearity, etc. The values of most of the range- 
dependent features, such as the size, length, width, etc., are obtained from 
the generated geometric model at that given range and azimuth angle. 
Range-independent feature values are obtained from visual observations 
and training data. The geometric model is landmark dependent, and its 
parameters are range dependent. ,Different parts of the yellow gate are 
represented in a semantic network. The geometry of the gate parts in the 
image is the result of the 3-D projecuon on a 2-D plane using a camera 
model, given a certain range and azimuth. 

3. 

Each landmark has a number of dynamic models, as shown in Figure 1 
The predicted landmark appearance is a function of the estimated range and 
view angle to the object The range and view angle are initially estimated 
from prior locations of the robot, map information. and velocity; they can 
be corrected based on recognition results. The landmark recognition task is 
performed dynamically at a sampled clock rate. Different geometric 
models are used for different landmarks; for example, telephone poles car 

be best represented as generalized cylinders, whereby buildings are bener 
represented as wire frames. The different representations require the 
extraction of different image features. 

There are three basic steps to the landmark recognition process after 
generating the prediction of the next expected site and its associated 
landmarks. These are 1) landmark detection, 2) landmark recognition, and 
3) map site verification and landmark position update on the map. At each 
stage, different sets of features are used. 

Detection is a focus-of-attention stage; it occurs at ranges, say, greater than 
45m. Very few details of landmarks (such as s t ~ ~ ~ t l l r e )  can be observed, 
only dominant characteristics can be observed, such as color, size, 
elongation, straight lines, etc. From the map knowledge base, spatial 
information can be extracted, such as position of the landmarks with 
respect to the road (left or right) and position (in a 2-D image) with respect 
to each other (above, below, or between). So, using Spatial knowledge 
abstracted in terms of spatial models and some dominant feature models, 
landmarks can be detected. but not recognized with a relatively high degree 
of confidence. However, this varies from one landmark to anotheq because 
some landmarks are larger than others, it may be possible to recognize 
them at such distances. 

The second step, landmark recognition. occurs at closer ranges, say. 20 to 
45m. At these ranges, most objects show more details and structure. 
Segmentation is more reliable, which makes it possible to e x m t  lines and 
vertices. This in turn makes it possible to use detailed geometric models 
based on representations, such as generalized cylinders, wire frames, and 
winged edges, depending on the landmarks. Nevertheless, feature- and 
spatial-based information is still used prior to matching the geometric 
model to image content, because it greatly reduces the search space. We 
should note here that the feat- and spatial models used in the first step are 
updated, because obviously the landmarks are perceived differently in the 
2-D image at short ranges. 

The third step is a verifi-n stage that occurs at very close ranges. At 
this stage, PREACTE confirms or denies the existence of the landmarks 
and the map site location to the robot Since subparts can be identified at 
close ranges for some landmarks, semantic models can be used to produce 
a higher degree of confidence in the recognition process. Some landmarks 
may partly disappear from the field of view (FOV) at this range. This 
information about the potential disappearance of objects from the FOV is 
obtained from the 3-D model of the landmark, the camera model, and the 
w e .  

Recognition plans are explicitly stated in the landmark model for different 
ranges, as shown below: 

(defvar yellow-gate 
(make-instance 'object 

:name 'yellow-gate 
:parts (list y-g-west-wing y-g-east-wing) 
:geo-loCation '(392967.4 1050687.7) 
:plan 

:detection '(color) 
:recognition 
:veaification 

'((40 15 detection) (15 8 recognition) (8 0 

'(color length width area p2_0ver_area shape) 
'(color length width area p2_0ver_area shape 

4. N 

Given a set of regions (R) in the image that satisfies the spatial constraints 
of the FOAA imposed by landmark li in the ESM (there is usually more 
than one corresponding region), we compute the evidence E(li) using the 
FIND_EVIDENCE algorithm that each r, in (R) yields. Ihe rj that results 
in E(li) (provided it is a positive evidence) is considered the best- 
match candidate for li. Then the individual set of evidences E(+) is 
amga ted .  and the certainty level about the current map site location is 
computed. 

The FIND-EVIDENCE algorithm considers that each landmark li in the 
ESM has a set of amibutes (Ail. ..., A&. .... A h ) ,  each with a likelihood 
LH&. Each region r, in (R) has a set of features ( fj 1, ..., fjk, ..., fj,) . Note 
that A& and fjk correspond to the same feature (in the model and the 

verification)) 

lines) 1) 
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image), such as color, size, texture, etc. Given these features, we compute 
the evidence that li is present in the image by using a heuristic Bayesian 
formula, given by: 

By making the independence assumption among features, the above 
equation can be rewritten as: 

Fq)*P(f,,/lJ' ...* P(f&)* ...* F y f A )  

P(fJ,)*,.,*P(f&)*..,*P(fj") Pq/fJ1. ..., fi. ..., fh) = 

where n is the number of features and P(li) is the initial probability of a 
landmark being found at a given site. P(li) is initially equal to 1 for all 
landmarks. For example, if texture can take either of the four values: 
coarse, smooth, regular, or irregular, then P (texture = smooth) = 1/4. 
Finally, 

(3) 

This is best explained through the following example. Assume two regions 
'1 and '2 in the image with different sizes (fjk), SIZE (rl) = SMALL and 
SIZE ( q )  = LARGE. Assume a model of landmark L, with the expected 
size (Ak) to be LARGE and with a likelihood (LHk) of 0.7. The SIZE 
feature can take any of the following ordered values: [SMALL, MEDIUM, 
LARGE]. If '2 is being matched to L, equation 3 yields 0.7 because fjk = 
Aik. On the other hand, if '1 is being matched to L, then equation 3 yields 
(1-0.7)/2. The denominator 2 is used because LARGE is two unit distances 
(denoted by d(f,k, Ak)) from SMALL. We rewrite equation 2 as: 

where I(fjk/li) is the term within the product sign. The vaiue of I(f,k/li) can 
be greater than 1 ,  because the heuristic nature of the formulation does not 
reflect a probabilistic set of conditional events, as formulated in Bayes 
theory. Moreover, P(l,/f,I, ..., fjk, ..., fjn) can result in a very large number 
or a very small positive number. By taking the logarithm of both sides of 
equation 4 we have: 

where Wj is a normalization factor between 0 and 1. 

Next we define the evidence terms E and e to be the logarithms of P and 
I*W, respectively, assuming P(li) is initially equal to 1 .  So, the evidence 
formula can be written as follows: 

The values of E($) fall between 0 and 1 .  If E(li) > 0.50, the evidence is 
"positive." On the other hand, if E(li) < 0.3, the evidence is interpreted as 
"negative" or "weak." Otherwise, E(li) is characterized as "neutral." 

4.1. Neeative Evidences 

An important feature incorporated into PREACTE is the use of positive as 
well as negative evidences to verify its expectations. There are many types 
of negative evidences that could be encountered during the hypothesis 
generation and verification process. One that is of particular interest to us 
is highly negative evidence (for example, < 0.3) about a "single" landmark 
in conjunction with very positive evidences about the other landmarks and 
a reasonable level of certainty about the previous site. This case may be 
caused by one or more of the following: 

Error in the dimension of the expectation zone 
Bad segmentation results 
Change in the expected view angle or range 

In such a case, PREACTE would enlarge the expectation zone by a fixed 
margin and find the evidences introduced by the new set of regions. If this 
fails to produce an admissible set of evidences, then the expectation zone of 
the image is resegmented using a new set of parameters that are strictly 
object dependent. 

4.2. Mau Location Uncertainty 

Even though landmark recognition is introduced to assist the autonomous 
robot's land navigation system, uncertainty is obviously attached to the 
results of the recognition system. We compute the uncertainty Us at each 
site location in the following manner: 

where Us is the uncertainty at site s, Us-l is the uncertainty at the previous 
site, L is the average acdumulated error or uncertainty per kilometer of the 
robot navigation system, a is the number of kilometers traveled between 
the previous and the current site, and E(li)s is the evidence accumulated 
about landmark li at site s. Us has a minimum value of zero, whim 
indicates the lowest uncertainty and is the value at the starting point. The 
upper limit of Us can be controlled by a threshold value and a 
normalization factor. 

5. aesrrlls 
We have implemented a prototype system in Common Lisp on the 
Symbolics 3670. The image processing software was implemented in C on 
the VAX 11/750. The Symbolics 3670 hosts all of the PREACTE 
software. 

PREACTE was tested on a number of images collected by the robot. The 
image data were collected at 30 frames/sec. In this test, the robot started at 
map site 105 and headed south at 10 km/hr (see Figure 4). The objective of 
the test was to predict and recognize landmarks that were close to the road 
over a sequence of frames. Figures 5 through 7 show landmark recognition 
of the yellow gate; parts of the gate were correctly identified at different 
ranges. 

In the future, we will extend this approach to the general situation in which 
the robot may be traveling through terrain and must determine precisely 
where it is on the map by using landmark recognition. 
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EX11 

Figure 5. Expected model of the yellow gate (left); segmented 
image (right); detection results at a 2(h range 
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Figure 6. Updated gate model at a closer range of 1% with 
further detection results 

Figure 7. Recognition results at a range of 8m 
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