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ABSTRACT 

A new approach to the dynamic scene analysis is presented 
which departs from previous work by emphasizing a qualitative 
strategy of reasoning and modeling. Instead of refining a single 
quantitative description of the observed environment over time, 
multiple qualitative interpretations are maintained simultaneous- 
ly. This offers superior robustness and flexibility over traditional 
numerical techniques which are often ill-conditioned and noise- 
sensitive. The main tasks of our approach are (a) to detect and to 
classify the motion of individual objects in the scene, (b )  to 
estimate the robot's egomotion, and (c) to derive the 3-D struc- 
ture of the stationary environment. These three tasks strongly 
depend on each other. First, the direction of heading (i.e. trans- 
lation) and rotation of the robot are estimated with respect to 
stationary locations in the scene. The focus of expansion (FOE) 
is not determined as particular image location, but as a region of 
possible FOE-locations called the Fuzzy FOE. From this infor- 
mation, a rule-based system constructs and maintains a 
Qualitative Scene Model. Results of this approach from real and 
synthetic imagery are presented. 

1. Introduction 

Visual information plays a key role in mobile robot opera- 
tion. Even with the use of sophisticated inertial navigation 
systems, the accumulation of position errors requires periodic 
corrections. Operation in unknown environments or mission 
tasks involving search, rescue or manipulation critically depend 
upon visual feedback. Motion understanding becomes vital as 
soon as moving objects are encountered in some form, e.g. 
while following a convoy, approaching other vehicles or to 
detect moving threats. In the given case of a moving camera, 
image motion can also supply important information about the 
spatial layout of the environment and the actual movements of 
the ALV. 

Previous work in motion understanding has mainly con- 
centrated on numerical approaches for the reconstruction of 3-D 
motion and scene structure from 2-D image sequences (see 
Nagel [7] for a comprehensive review). While a completely sta- 
tionary environment is frequently assumed for the visual estima- 
tion of camera motion, the possible presence of moving objects 
in the field of view must be accounted for in the given scenario. 
Le., the observed scene cannot be treated as a single rigid 
object. Similarly, due to the vehicle's egomotion, the stationary 
objects in the scene are not necessarily mapped onto static image 
locations. 

In the classic approach, structure and motion of a rigid 
object are computed simultaneously from successive perspective 
views by solving a system of linear or nonlinear equations 
[4,11]. This technique is known to be noise sensitive even when 

more than two frames are used [3]. Non-rigid motion or the 
presence of several moving objects in the field of view would be 
indicated by a large residual error for the solution to the system 
of equations. However, in some cases of non-rigid motion an 
acceptable numerical solution may exist that corresponds to a 
rigid interpretation. In such a case, the movements of individual 
entities in the field of view would not be detectable by the classic 
numerical scheme. Adiv [l] generalized this approach to handle 
multiple moving objects by using a complex two-stage grouping 
process to segment the optical flow field. 

While it has been a common view to consider scene 
structure as a by-producr of rigid motion computation we argue 
that deriving and modeling the 3-D scene structure is a necessary 
prerequisite for motion understanding. The approach that we 
propose is novel in two important aspects. First, the scene's 3-D 
structure serves as a link between motion analysis and other 
processes that deal with spatial perception, such as shape-from- 
occlusion, stereo, spatial reasoning, etc. A 3-D interpretation of 
a moving scene can only be correct if it is acceptable by all the 
processes involvedSecondly, numerical techniques have been 
complemented by a qualitative strategy of reasoning and 
modeling. The use of qualitative techniques in Computer Vision 
has received growing interest recently (e.g.[ 10,121). Basically, 
instead of having a system of equations approach a single rigid 
(but possibly incorrect) numerical solution, we maintain multiple 
qualitative interpretations of the scene. All the existing inter- 
pretations are kept consistent with the observations made i n  the 
past. The main advantage of this approach is that a new inter- 
pretation can be supplied immediately when the currently 
favored interpretation tums out to be false. 

These interpretations are built in three separate steps (see 
Fig.1). First, significant features (points, boundaries, corners, 
etc.) are extracted from the image and the 2-D displacement 
vectors are computed for this set of features. In the second step, 
the vehicle's direction of translation, i.e. the focus of expansion 
(FOE), and the amount of rotation in space are determined. Most 
of the necessary quantitative computations are performed in this 
2-D step which is described in Section 2. The third step (2-D 
Change Analysis) constmcts the internal 3-D Qualitative Scene 
Model, outlined in Section 3. Experiments with our approach on 
real images taken from the Autonomous Land Vehicle (ALV) are 
discussed in Section 4. 

2. Fuzzy FOE 

When a camera performs pure translation along a straight 
line in space, the images of all stationary features seem to 
diverge from one particular location which is commonly called 
the "focus of expansion" (FOE). In reality, however, the vehicle 
not only translates but also rotates more or less about its three 
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"radial-mapping (I,I*)." Secondly, for given pan and tilt angles 
cp and 0, I* can be obtained regardless of the 3-D scene structure 
by applying the inverse mappings r,-l and r0-l (which always 
exist) to the observed image 1': 

I* = re-1 rq-l 1'. 

Once suitable mappings r0-l rV-l have been found, the 
FOE can be located for the pair of images I and I*. However, it 
is not trivial to determine how close a given displacement field is 
to a radial mapping without knowing the location of the FOE. In 
most of the proposed schemes for testing this property the dis- 
placement vectors are extended as straight lines to somehow 
measure the spread of their intersections [5 ,8] .  Unfortunately, 
the resulting error functions are noise-sensitive and not well 
behaved for varying values of cp and 0, i.e., they require ex- 
pensive global search. 

However, for a given FOE-location, the optimal rotations 
angles can be found analytically by minimizing second order 
functions [2] and the deviation of the "derotated" displacement 
field from the ideal radial pattem is easily measured. The result- 
ing error function is usually smooth and monotonic within a 
large area around the actual FOE, i.e., even from a poor initial 
guess the global optimum can be found by local search methods. 
This technique is fairly robust in the presence of noise and under 
small camera translation. However, the 2-D error function 
flattens out in those cases and the location of minimum error 
may be considerably off the actual FOE. The local shape of the 
error function is therefore an important indicator for the accuracy 
of the result. 

This raises the question whether it is necessary to locate 
the  FOE as one particular point in the image. After all, even 
humans seem to have difficulties in estimating the direction of 
heading under similar conditions [9]. As we demonstrate in the 
following section many conclusions about the 3-D properties of 
the scene can be drawn even if only the approximate location of 
the FOE is known. The following algorithm searches for a 
connected region of possible FOE-locations which we call the 
Fuzzy FOE. The final size of this region depends upon the local 
shape of the 2-D error function. A large Fuzzy FOE reflects a 
flat error function, i.e., little accuracy in the location of the FOE, 
whereas a small region indicates a distinct local optimum. 

I Derotation I 
A 

I 
Feature Extraction 

& Tracking 

2-D Image Data E 
Figure 1. Main steps of the approach. First, discrete features are 
extracted and tracked between successive images. The resulting field of 
2-D displacement vectors serves to compute the FOE and the amount of 
camera rotation. The 3-D scene model is constructed in a hypothesize- 
and-test circle. 

major axes. The movement M of a land vehicle can be suffi- 
ciently approximated by a translation T followed by rotations 
about the horizontal axis Re (pan) and the vertical axis R, (tilt). 
A 3-D point X = (x,y,z) in the camera-centered co-ordinate 
frame is transferred by the camera movement M to a new loca- 
tion X '=( x ', y ',z') 

M: X -+ X ' = R , R e T  (X). 

If the observed scene is completely stationary, the effects 
upon the image caused by the camera movement M can be 
described by a 2-D transformation d (for displacement), which 
takes the original image I to the following image 1'. The 3-D 
rotations R, and Re and translation T have their equivalents in d 
as the separate 2-D transformations rV, re, and t : 

d: I + I' = rV re t (I). 

Since pure camera rotations do not create new views of the 
environment, the corresponding 2-D transformations r, and re 
are effectively mappings of the image onto itself. Conversely, 
the image effects t of pure camera translation depend upon each 
3-D point's actual location in space. At this point we introduce a 
(hypothetical) intermediate image I*, which is the result of a 
pure camera translation T: 

t: 1-3 I* 

Notice that the image I* is never really observed, except in 
the special case of pure camera translation. However, I* has two 
important properties: First, all displacement vectors between 
corresponding points in I and I* seem to diverge from a par- 
ticular image location (xf,yf) (the FOE), unless the camera does 
not translate at all. We call this property of the displacement field 

Fuzzy-FOE (I,I*): 
( I )  Guess initial FOE (x0,yo) (e.g. the FOE obtained from the 

previous frame pair) and compute the corresponding 
optimal rotations cp0,00 and the deviation from a radial 
flow field (error) eo. 

(2) From (x0,yo) start a local search for an FOE-location 
(xc,yc) that results in a minimum error ec. 

(3) Create the set FUZZY-FOE=[ (xc,yc,cpc,0c,ec) ) 

(4) Grow the set FUZZY-FOE by including adjacent FOE- 
locations until either (a) a certain error ratio haX/ec within 
the FOE-region is reached or (b )  the region exceeds a 
predefined size (to stop when the error function is flat). 

After computing the Fuzzy FOE and the angles of hori- 
zontal and vertical rotation, a good estimate for the motion 
parameters of the vehicle is available. Notice that this is possible 
without knowing the 3-D structure of the observed scene. To 
measure the camera motion with respect to the stationary world, 
however, none of the displacement vectors used for this 

737 



lmaqe Plane 

c,u. ,o . . . . . . . . . . . . . . .  
O . , n c ^ ,  . . . . . . . . . . . . . . .  
o l o c o o . . . . .  . . . .  g n O O  

,000 0 n . . . . . . . .  ~ . , 
C O O  0 0  0 .  . . . . . . .  " 0 0  
V U 0 9 0 0 . .  . . . . . .  > . . . . .  

. 

Figure 2. Fuzzy FOE for a simulated displacement field for a vehicle 
translating and rotating to the right by 2". The small square in the ccnter 
is the location of the actual FOE. The error values for surrounding (i.e., 
hypothesized) FOE locations are shown with circles of proportional 
size. Notice the elongated shape of the FOE region which is due to the 
pmicular distribution of displacemcnt vectors (typical for road scenes). 

computation may belong to another moving object. This infor- 
mation is supplied by the intemal scene model (as described in 
the following), which, among other things, tells us what 
features are currently believed to be stationary. Fig. 2 shows the 
results of applying this algorithm to a simulated sparse 
displacement field. The shape of the error function around the 
actual FOE is plotted with circles of size proportional to the 
error. The blank area in the center of Fig.2 marks the resulting 
Fuzzy FOE. 

3 .  Qualitative Scene Model 

The choice of a suitable scheme for the internal represen- 
tation of the scene is of great importance. The Qiuzlitative Scene 
Model (QSM) is a 3-D camera-centered interpretation of the 
scene, which is built incrementally from visual information 
gathered over time. The nature of this model, however, is a 
qualitative rather than a precise geometric description of the 
scene. The basic building blocks of the QSM are entities, which 
are the 3-D counterparts of the 2-D features observed in the 
image. For example, the point feature A located in the image at 
x,y at time t ( Point-Feature A t x y ) has its 3-D counterpart in 
the model as ( Point-Entity A ). 

Since the model is camera-centered the image locations and 
2-D movements of features are implicitly part (i.e., known facts) 
of the model. Additional entries are the properties of entities 
(e.g., "stationary" or "mobile") and relationships between enti- 
ties (e.g. "closer"), which are not given facts but the outcome of 
some interpretation step (i.e., hypotheses). This is expressed i n  
the model as either 

( Stationary entity ) or ( Mobile entity ) 

It is one of the key features of the QSM that it generally 
contains not only one interpretation of the scene but a (possibly 
empty) set of interpretations which are all pursued simultane- 
ously. At any point in time, a hypothesis is said to be "feasible" 

if i t  exists in the QSM and is not in  conflict with some observa- 
tion made since it was established. 

Interpretations are structured as an inheritance network of 
partial hypotheses. Individual scene interpretations are treated as 
"closed worlds", i.e., a new conclusion only holds within an 
interpretation where all the required premises are true. Inter- 
pretations are also checked for intemal consistency, e.g., entities 
cannot be both stationary and mobile within the same inter- 
pretation. The QSM is maintained through a generate-and-test 
process as the core of a rule-based blackboard system. The two 
major groups of rules are: Generation Rules and Verification 
Rules. 

Generation Rules examine the (derotated) image sequence 
for significant changes and modify each interpretation in the 
QSM if applicable. Some of these observations have uncondi- 
tional effects upon the model. E.g., if an image feature is found 
to be moving towards the Fuzzy FOE (instead of diverging away 
from it), then it belongs to a moving entity in 3-D space. The 
actual rule contains only one premise and asserts (MOBILE ?x) 
as a globally known fact (i.e., one that is true in every inter- 
pretation): 

(defrule DEFINITE-MOTION 
(MOVING-TOWARDS-FOE ?X ?t) 

(at ROOT (assert(MOB1LE ?x)))). 

< observation at time t > 

< a global fact > 

The directive "at ROOT" in the above rule places the new fact at 
the root of the interpretation graph, i.e., it is inherited by all 
existing interpretations. 

Other observations depend upon the facts that are currently 
true in a "world" and therefore may have only local conse- 
quences inside particular interpretations. For example, if two 
image features A and B lie on opposite sides of the Fuzzy FOE 
and they are getting closer to each other, then they must be in 
relative motion in 3-D space. If an interpretation exists that con- 
siders at least one of the two entities (x,y) stationary, then the 
other entity cannot be stationary (i.e., it must be mobile). The 
following rule "fires within" each interpretation that considers 
the first entity (x) stationary: 

(defrule RELATIVE-MOTION 
(OPPOSITE-FOE ?x ?y ?t) 
(CONVERGING ?x ?y ?t) 
(STATIONARY ?x 

(assert (MOBILE ?y))). 

=> 

< observation 1 > 
c observation 2 > 

< true inside an interpretation > 

< new fact local to this interpretation > 
=> 

While some image observations allow direct conclusions 
about motion in the scene, other observations hold cues about 
the stationary 3-D structure. If the exact location of the FOE is 
known then the depth of each stationary point (i.e., its 3-D 
distance from the camera) is proportional to the rate of diver- 
gence (from the FOE) of its image [8]. Applied to the Fuzzy 
FOE, where a set of potential FOE locations is given, the 
distance Z(A) of a stationary point A is determined as an interval 
instead of one single number: 

Z""(A) 5 Z(A) I ZmaX(A). 

Therefore, a point A is closer in 3-D than another point B,  if the 
corresponding ranges of depth do not overlap, i.e., 

ZmaX(A) < Zmin(B) + ( CLOSER A B ). 
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Since this conclusion only holds if both features are actually 
stationary, the following rule fires only within a suitable inter- 
pretation (if it exists): 

(defrule CLOSER-FROM-DIVERGENCE 
(STATIONARY ?x) 
(STATIONARY ?y) 
(< (Zmax ?x) (Zmin ?y)) 

< interpretation where both x 
and y are stationary > 

< no overlap in  range > 
=> 

(assert(CL0SER ?x ?y))). 

To compare the ranges of 3-D points, another criterion can 
be used which does not measure the individual rate of diver- 
gence. Instead, the change of distances between certain pairs of 
features is observed. If two stationary points lie on the same side 
of the FOE and the distance between them is becoming smaller, 
then the inner feature (i.e., the one which is nearer to the FOE) 
is closer in 3-D space. This is a valuable test for features that are 
relatively close to each other. It can be employed even if the 
image is not (or incorrectly) derotated and the location of the 
FOE is either only known very roughly or is completely outside 
the field of view (i.e., for a side-looking camera): 

(defrule CLOSER-FROM-CHANGING-DISPARITY 
(STATIONARY ?x) 
(STATIONARY ?y) 
(SAME-SIDE-OF-FOE ?X ?y) 
(CONVERGING ?x ?y) 
(INSIDE ?x ?y) 

(CLOSER ?x ?y). 

< interpretation where both x 
and y are stationary > 

< e.g. righl of the FOE > 
< disparity is decreasing > 

< x is nearer to the FOE than y > 
=> 

While the purpose of the generation rules is to establish 
new hypotheses and conclusions the purpose of verification 
rules is to review interpretations after they have been created 
and, if possible, prove that they are false. When a hypothesis is 
found to be inconsistent with some new observation it is usually 
removed from the QSM. Any interpretation that is based on that 
hypothesis is removed simultaneously. Since we are always 
trying to come up with a single (and hopefully correct) scene 
interpretation this mechanism is important for pruning the search 
tree. 

Verification rules are typically based on image obser- 
vations that, used as generators, would produce a large number 
of unnecessary conclusions. For example, the general layout of 
the scene seen from the top of a land vehicle suggests the rule of 
thumb that things which are lower in the image are generally 
closer to the camera. Although this rule is not strong enough to 
draw direct conclusions, it may be used to verify existing 
hypotheses: 

(defrule LOWER-IS-CLOSER-HEURISTIC 
(CLOSER ?x ?y) 
(BELOW-THE-HORIZON ?x ?t) 
(BELOW-THE-HORIZON ?y ?t) 
(BELOW ?y ?x ?t) 

(assert (CONFLICT LOWEWCLOSER ?x ?y))). 

< existing hypothesis > 
< rule does not apply to 

things in the air etc. > 
c actually x should be below y > 

=> 

< mark this interpretation as conflicting> 

Whenever an existing hypothesis (CLOSER ?x ?y) violates 
the above rule of thumb, this rule fires and marks the inter- 

pretation as conflicting. How the conflict is eventually resolved 
depends upon the global state of the QSM. E.g., simply remov- 
ing the afflicted interpretation would create an empty model if 
this interpretation presently is the only one. This task is handled 
by a set of dedicated confZicf resolution rules (see [2]). 

The kind of rules described up to this point are mainly 
based upon the geometry of the imaging process, i.e., perspec- 
tive projection. Other important visual clues are available from 
occlusion analysis, perceptual grouping, and semantic inter- 
pretation. Occlusion becomes an interesting phenomenon when 
features of higher dimensionality than points are employed, such 
as lines and regions. Similarities in form and motion found by 
perceptual grouping allow us to assemble simple features into 
more complex aggregates. Finally, as an outcome of the recog- 
nition process, semantic information may help to disambiguate 
the scene interpretation. If an object has been recognized as a 
building, for example, it makes every interpretation obsolete that 
considers this object mobile. 

In summary, the construction of the QSM and the search 
for the most plausible scene interpretation are guided by the 
following meta rules: 

Always tend towards the "most stationary" (i.e. most conser- 
vative) solution. By default all new entities (entering the field 
of view) are considered stationary. 
Assume that an interpretation is feasible unless it can be 
proved to be false ( the principle of "lack of conflict"). 
If a new conclusion causes a conflict in one but not in another 
current interpretation then remove the conflicting inter- 
pretation. 
If a new conclusion cannot be accommodated by any current 
interpretation then create a new, feasible interpretation and 
remove the conflicting ones. 

4. Experimental Results 

In the following, the operation of the QSM and the sur- 
rounding rule base is demonstrated for two instances of an 
image sequence taken from the moving ALV. Point features 
were tracked by hand between successive frames on the binary 
edge images (Fig.3a) to simulate the conditions of automatic 
feature tracking (e.g., see [6] ) .  The scene contains a number of 
stationary points and one moving point (24) which belongs to 
another vehicle that is moving away from the camera. Figure 3.b 
shows the original displacement vectors (solid lines) between 
frames 182 and 183, the Fuzzy FOE (shaded area), and the 
"derotated" displacement vectors (dotted lines). The rotation 
scale indicates a horizontal rotation angle of almost 10 to the left 
between the two frames. Vertical rotation is insignificant. 

Figures 4a and 4b visualize two separate, feasible scene 
interpretations for the situation in frame 183. Entities which are 
considered stationary are marked with circles or plain labels. 
Arcs from a small circle (or plain label) to a larger circle indicate 
that a CLOSER-relationship has been established between the 
two entities (the entity with the larger circle is closer to the 
camera in 3-D). Mobile entities are marked with squares, or with 
arrows if the direction of their current movement has been 
identified. 

The existence of two interpretations is due to the move- 
ment of the approaching car (point 24). This movement was 
detected as 2-D motion "across the FOE" (see rule 
RELATIVEMOTION in Section 3) between point 24 on one 
side of the FOE and points 8,11, 19, 20, 22, 23 on the opposite 
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FRAME 183 

FRAME 183 

ADVANCED 1.8 m 

Figure 3. Top: Edge image from ALV sequence with point features 
marked. Bottom: Original displacement vectors (solid lines), Fuzzy FOE 
(shaded area), and derotated displacement vectors (dotted lines). The 
rotation scale indicates about 1" of horizontal vehicle rotation to the 
left. 

side. Since there was no other indication for the movement of 
point 24, two interpretations were created. 

Interpretation 1 (Fig.4a) considers all entities stationary, 
except point 24 which is moving upwards (in the 3-D co- 
ordinate frame). Since point 24 is located below the horizon, the 
system could now hypothesize that 24 is also receding in space. 
This is (as we know) the correct solution. However, interpreta- 
tion 2 (Fig.4b) is also feasible, taking 24 as stationary and 
points 8 , l  l,.. .23 as moving downwards. Notice that CLOSER- 

FRAME 183: Interpretation 1 

21 

- 
FRAME 183: Interpretation 2 

1 

Figure 4. Two separate scene interpretations for frame 183. Top:  
Interpretation 1 considers all entities stationary except point 24 (the 
moving car) which moves upwards. This movement was detected by 
relative motion "across the FOE." Bottom: Consequently, Interpretation 
2 sees points 8.11, ... 23 moving downwards. 

relationships are only formed between stationary entities. 

Interpretation 2 does not "survive" the verification after the 
following frame. If entities 8,11,. . .23 were really moving 
downwards, then they should not exhibit any divergence away 
from the FOE. In this case at least one of those points undergoes 
significant divergence which is sufficient to prove interpretation 
2 false. Consequently, for frame 184 only one interpretation 
remains in the QSM (Fig.5). 
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FRAME 184. Interpretation 1 

Figure 5. After frame 184 only a single interpretation "survives" with 
point 24 moving upwards (i.e. receding from the camera). Interpretation 
2 (for frame 183) was eliminated because some of the points 8.11, ... 23 
showed inconsistent divergence away from the FOE. Points 4 and 16 
have meanwhile left the field of view. 

5. Conclusion 

In this paper we presented the conceptual outline of a new 
approach to scene understanding for mobile robots in dynamic 
environments. The challenge of understanding such image 
sequences is that stationary objects do not appear as stationary in 
the image and mobile objects do not necessarily appear to be in 
motion. 

The approach taken here departs from related work by 
following a strategy of qualitative rather than quantitative rea- 
soning and modeling. All the numerical efforts are packed into 
the computation of the focus of expansion (FOE), which is is 
accomplished entirely in 2-D. To cope with the problems of 
noise and errors in the displacement field we determine a region 
of possible FOE-locations instead of a single FOE. Termed the 
Fuzzy FOE, it is probably one of the most robust techniques 
available today. It is shown that, even without knowing the 
exact location of the FOE, many powerful conclusions about 
motion and 3-D scene structure are possible. 

An internal 3-D representation, termed the Qualitative 
Scene Model, is constructed and maintained in a generate-and- 
test cycle over extended image sequences. To overcome the 
ambiguities inherent to dynamic scene analysis, multiple inter- 
pretations of the scene are pursued simultaneously. This model 
serves as a central pool of accumulated knowledge about the 
observed scene and allows the merging of various independent 
categories of visual clues. 

Due to limited space, only one example could be given in 
this paper to show just the most basic operation of our approach 
on a real image sequence. The results of processing an extended 
image sequence and additional details can be found in 121. There 
we also demonstrate that some apparently simple situations 
require relatively complex paths of reasoning, especialy in the 
context of indirect motion detection. Of course, a critical (and 

still unsolved) point is the problem of computing reliable 
displacement vectors or optical flow fields. Especially point 
features appear to be highly unreliable in noisy images while 
they deliver only sparse displacement fields. To exploit the full 
potential of our approach we are trying to employ more complex 
2-D features, such as line segments and regions, for motion 
understanding. 
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