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Abstract

In this paper we present a set of algorithms used to automatically detect, segment and claasify tactlical
targets in FLIR (Forward Looking InfraRed) images, These algorithms are implemented in an Intelligent
Automatic Target Cueing (IATC) aystem. Target loczlization and segmentation 1is carried out using an
intelligent preprocessing step followed by relaxation or a modified double gate filter followed by difference
operators., The techniques make use of range, intensity and edge density Iinformation. A set of robust
featurea of the segmented targets 1s computed, These featurea are normalized and decorrelated. Feature
selection is done using the Bhattacharrya measure, Classification techniques include a set of linear,
quadratic classifiers, olustering algorithms, and an efficlent K-nearest neighbor algorithm. Facflities exist
to use structursl information, to use feedback to obtain more refined boundaries of the targets and to adapt
the cuer to the required mission. The IATC incorporating the above algorithms runs in an automatic mode. The
results are shown on a FLIR data base conalsting of 480, 512x512, 8 bit air-to-ground images,

I. Intreduction

Automatic target recognition is orucial to the suocess of the deployment of future autonomous vehicles,
With the availability of VLSI and VHSIC technology, it is feasible to implement target recognition algorithms
in hardware and carry out target cueing in real time, In this paper we present a set of algorithms for the
purpose of automatic detection, segmentation, feature extraction and classification of tactical targets in
FLIR {Forward Looking InfraRed) images. These algorithms are implemented in an Intelligent Automatic Target
Cuer (IATC), Fig. 1 shows the block diagram of the JATC system, Target localization and segmentation is
carried out using two schemes., In the first a preprocessing step 1s carried out ‘which makes wuse of range,
intensity and edge denaity information, This atep reduces the image area which ia to be used to detect and
segment the targets aignificantly depending upon the details present in the image, Segmentation is ocarried
cut by uaing a relaxation technique, In the second scheme a modified double gate filter which makes use of
range and contrast information is used to localize the targets and segmentation is carried out by a
combination of Laplacian and gradient operators. A set of robust features of the ssgmented targets is
computed. These features are first normalized with respect to range (distance of the target from the center
of the field of view of the asensor), angular extent of the field~of-view and dynamic range and then
decorrelated. Feature selection is done using the Bhattacharrya measure., Classification techniques include a
sat of linear, quadratic classifiers, clustering algorithms, and an efficient K-nearest neighbor algorithm,
Structural information may be used in the decision making process of target classification, feedback between
the clasaifier and the detector to obtain more refined boundaries of the target and allow the cuer to be
adaptive to the required mission. The IATC incorporating the above algorithms runs in an automatio mode. The
results are shown on a FLIR data base. The data base consists of 480, 512x512, 8 bit air-tow-ground ipages.
For each of the images and targets present {n the image ground truth information is known, These 1mages
include a variety of targets at different ranges (300 meters to 10,000 meters), targets with very poor
contrast, targets with nonuniform intensity distribution, targets cccluding each other, targets hidden 1in
smoke and duat, targets in c¢lose proximity. ete, In this paper we ooncentrate on the detection and
clessification algorithms applied on a single frame basis, interframe analysis is discussed in [11.

“In section II we describe. t.ai*gat detection and aegnentﬁtion algorithms, Section III discusses feature
computation, feature selection, classification algorithma and use of structural 1nrormntion. Finally section
IV presents the reaults and general summary of the paper.

II. Target locallzation and segmentation

In the past several techniques such as spoke filter, superalice, contrast box, double window {ilter,
Fisher linear discriminant, spatial stochastic models, aimple operatora utilizing edge and texture features,
relaxation, mode seekers, pyramid approaches eto, have been used for target detection and segmentation
(2~12]. Burton and Benning [2], Schachter {31 and Hartley et al. [4] present evaluation of some of these
techniques, In thia section we present two new algorithms for the localization and segmentation of targets in
FLIR images. Unlike the previous work, we make use of range, vhenever it can be used to reduce the amount of
computation or adjust the parameters automatically.

(a) Algorithm (A}, Preprooesaing followed by a relaxation Leohnique
Preprocesping : The objective behind the preprocessing step is to flag thoss aress in the image where a
potential target ocould be present with & minimusm amount of computation performed at a pixel level. The
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assumptions made here are that the target objects to be detected in the image differ from the background 1n
gray level 50 edges are present at their boundary, and there are more edges present with a target than in
clutter since the target has typically more structure than natural clubtter. Preprocesaing makes use of
intensity, edge and range inforpation, Depending upon the angle of the fleld-of-view and the pange to the
center of the field-of-view, maximum and minimum expected alzes of the targets in pixels are roughly
estimated, The preprocessing step requires the following procedure.

1) Compute edges in the image using a Sobel edge operator. )

2} Threshold the edge magnitude image obtained in 1). In practice this threshold 1s automatically selected
as a function of range.

3) Prepare a binary pask of the thresholded image in 2).

4) Pass a square window over the mask obtained 1in 3). The size of this window is twice the maximum asize of
the estimated target at the given range {see Fig. 2). This window is scanned over the mask in steps of half
window aizes from left to right and top to bottom. If the number of edge points lying within the window at a
particular location 18 greater than a ocertain threshold then create a mask imsge. This threshold is
determined as a funation of the minimum size of the estimated target and ita boundary pointa. We compute the
centroid of the edge points within the window, and then flag the mask image by edding a constant (say 60) to
8ll the pixels within an area of the size of the window centered at the centroid of edge points.

) 5) Determine the new window center location and continue scanning the image.

Since we have taken the window size as twice the size of the target, there can be only four overlaps that a
target may have at the end of the scan in the mask image (Fig. 2). The values in the mask image will be O,
60, 120, 180 and 2H0 depending upon whether there have not been enough edge points or one, two, three and four
overlaps of the target in the window.

Using the mask image we can select the desired region from the original image which should be further
investigated for the possible targets. The higher the number of overlaps, the better the chances that a
target is present in'that region with fewer plxels to be subsequently processed during segmentation. However,
it 1s possible that in the higher overlapped regions, there may not be entire target detalls since there is an
intensity distribution across the target. In practice, we have found that one or two overlaps are sufficlent
to flag the potential targets guscesafully and they reduce the image area over which segmentation is to be
carried by over 85 to 903 depending upon the details present in the image. As an example Fig. 3 shows the
preprocessing atep. Fig. 3{a) is a S512x512 FLIR image. Fig. 3(b) shows the thresholded Sobel magnitude
image. Fig. 3(e} shows window overlaps and Fig., 3(d} shows the selected overlap superimposed on the original
image. This is the only area of the image which needs to be considered subsequently for possible location of
the target. Connected components are found in the mask image and then we use them to do the segmentation of
the original image. A two class gradient relaxation technique [13] is used for the segmentation of each
connected component, The technique provides the automatic selection of the threshold., The 3 requirad
parametérs in the segmentation process are set once for all the images in the data base. A brief description
of the technique is given below.

Sesmentation Malng 2 relaxation technique : Suppose we have a set of N pixels iz 1,2,...,N which fsll into
two classes ) and )y corresponding to the white ‘(gray velus = 255) and black (gray velue.-= 0). The
relaxation process is specified by choosing a model of interaction between pixels. We attach to every pixel 1
the set Vy of its B nearest neighbora. Assuming that objects of interest in the picture are continuous we
will make like reinforce like and define a compatibility funotion ¢ such that:
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In effect qy(Ax) 18 the mean reighborhood probability of the ith pixel for the class under consideration,
1.e., qi{N) s (1/8) I PJ(RR)- .
jev

Based upon the explioit use of consistency and ambigulity & %1obal oriterion is defined upon the set of
pixels, It is given by the inner product of probability veotor Py and conaistency vector ﬁi as,
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It ia maximized using the gradient projection approach, The maximization of th? obal criterion (3} mweans
that we are seeking a local maxipum olose to the initial labeling $1 (1  1,...,8) aubject to the
constraints that D, 's are probability vectors. It results in 8 reduced inconsistency and ambiguity.
Inconaistency 1s ﬁerinod as the error between i% and §;. Intuitively this means the discrepancy between what
every pixel "thinks? about its own labeling (b ) and wkat its neighbors "think® about it (%1 ). Ambiguity
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is measured by the quadratic entropy and resulta from the fact that initial labeling §;'°’is ambiguous (B (@)
are not wnit vectors), We are therefore trying to align the veotors 31 and 31 while turning them into unit
vectors, 1Indeed it oan be easily seen that each term By d 15 maximum for Py=d; (maximum consistency) and
P =q = unit vector (maximum unambiguity}. '

The maximization of (3) results in iterative equations given by,
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where, k=1,2 and and are constants less than unit In the o&Ygl implementation of the algorithm, we
1}

only need to evaluate (4) for ke! or 2 only since pi("+¥i(R1) + Py (Aj) s 1,
The initial aaaignhént of probabilities to every pixel is very important. It affects the convergence
rate and the results of relaxation scheme, The initiel asaignment of probabilitiss has been obtained by,

LA FAct'(lgﬁ'Tho.s : (8

where I(i) is the intensity at the ith pixel and G (=256) the number of possible gray levels (0£T{1}<G=1) and
T is the mean of the image. When I(£)<I, FACT has usually been taken vetween 0.7 and i. Of course, if the
fipst term of (8) happens to be greater than 0.5 or less than -0.5, then a probability of one or zero
respectively is assigned to that pixel.

This method provides the automatic selection of thresheld for the segmentation of imagea and the control
over the relaxation process by chooaing the q,, Ay and FACT parameters which can be tuned to obtain the
desired segmentation results, The magnitude of a's contfols the degree of smoothing at each iteration and
their ratio the bias towards s class. Changing the values of a) and a; not only allows one to oontrol where
one wants to converge but also how fast one converges. The magnitude of FACT controls the initial assignment
of probabilities,

Fig. 4 shows the segmentation results on the auperimpoﬁed image shown in Fig. 3(d). Using this technique
we were able to extract targets even when vontrast was very poor ( sbout 10%).

{b) Algorithm (B), Modified Double Gate Filter Followed by Difference Queprators

Modified double gate filter : This filter is designed for the moquisition of contrasting compact subsets of
pixels having the intuitive appearance of ‘'bloba', Fig. 5 4illustrates the geometry of the filter. An
axplanation of the basic filter properties is given in a one-dimenaional setting shown in Fig. 6. < Here, an
idealized square target profile is superimposed on a flat background, Let (al.pl),(az,pz),,.., eto, denote
average intensity values within the corresponding domaina. The differences (“1'91)'(a2'92)""' ete, are
evaluated and plotted as in Fig. 6(b). It can be seen from this plot that the target~to-background boundary
is revealed by the location of the maximum difference aj-py (4in this case, a,-p ). Flg. T illustrates the
same approach on an intensity distribution which, altﬁough atill idealired, exhibits lesa abrupt transitions
from object-to-background intensities. Agaln, as shown by Fig. T(b), the maximization of the differences
a;-p; occurs at the boundary between object and background intensities.

The key message conveyed by the one~dimensional formulations of the previcus parsgraph 1s that
telescoping expansion of perimeter-to-target differences should be expected to peak at the
target=to~background interface point, at least for distributions that ahow olose approximation to the
{deslized examples considered above, It is otwviocusly possible to readily deleat the generality of the deduced
statement with intensity distributions which radically depart from the aquare pulse or triangilar wavefornma
examined here. However, within the context of specifio practical FLIR imagery and target oonfigurations,

enough similarity to this model was observed to make the perceived principle a viable practical approach.

The two-dimensional extension of the one-dimensional considerations is illustrated bty Fig. 5. Here, a
square mask configuration 1is partitioned into eight sectors. Each sector, in turn, is partitioned into s
sequence of expanding trisngular domains with each triangle accompanied by & corresponding perimater bin, as
shown 4in Fig. 5(b). The salection of the geometric form of the aectcrs, their number and their aize can be



al,

parametrically optimirzed for the apecific problem under consideration. We have found that the eight
triangular seotors shown in Fig., § with a two~-pixel perimeter expansion strategy were adequate. Before the
application of the filter the image is minified by a factor of 1,2,4 or B8 depending upon the range,
Minification has two effects: first it reduces the amount of cowputation and second, it results fin a more
"blob-like"” definition of the target silhouette, The filter ias allowed to traverse the image on a pixel by
pixel basis. At each pixe] location each of the filter's eight sactors is telescoploally expanded from some
minimum size (say, 2x2 pixels) to some predetermined upper size, grossly estimatad to accommodate the maximum
expeoted target extent. In practice the alant range and the angle of field of view measures are used, For
each sector's telescoping run the maximum difference d; = max(ag-pg) J=1,..8 1is noted and when all eight
sactors have beaen considered, the filter responsae is sat at

F(i) ® min(dl.dZ. to168)

where 1 denotes the ith pixel at which the filter is currently centered, As the filter is acanned across the
image, a preselected number (say, 20) of top filter response locations are noted, At the end of the image
scan these locations are the ones considered oued by the filter as containing contrasting oompact' object
reglons meriting closer sorutiny by a preclassifier. It is worth noting that to avoid repeated high responses
from the same objeot a requirement 13 imposed diotating at least half & npaximum gate size aeparation from
previous top responses before adding it to the top response list, Also, the filter can be used for both hot
and oold contrast reglon extraction by monitoring the sign of the eight differences dy,

Sermentation ¢ The threshold used to segment the target is found by making use of the fact that the interface
points between background and object are locations of high second derivative values. A histogram is formed of
the positive Laplacian values, A second order derivative discrete operator is then applied to this histogram,
The -actual threshold is selected as the value above the histogram's peak value where the seocnd-order
derivative of the histogram has a waximum value. Since in this method a single threshold may not be the right
threshold if there ia a large intensity distribution across the target, before the preclassifier rejects an
object as clutter, we vary threshold about the threshold value as obtainaed above., Thia variation is based on
the faot that many edge or boundary points of the extracted object coincide with the thresholded Sobel., Thus
the feedback between the olassifier and segmentator helps to obtain more refined boundaries of the object,

Fig. 8 shows the target localization and segmentation results when we considered 10 top responses,
Fig. 9 shows the number of detected targets vs, number of top responses for 76 targets, Most of the targets
are found in the first § top responses, As an example &t reaponse 1, 28 targets, at response 2, 25 targets
and sc on. .

IIT. Features computation, selection and elassification

A few aimple features (such as area, parimeter, length and width ) of a target are computed as soon as it
is segmented, These features are passed to the preclassifier which checks if these values are within aome
conservative thrasholda. The preclassifier olassifiea the potential target elther as a clutter area or a
potential target. Once this test is passed, a set of 36 features of the target ia computed during training.
Features used are mainly shape, gray scale and moment features, Shape features also include four Fourier
features which are obtained using only 7 Fourier cocefficients {14} computed by using the Goertzel Algorithm
[(15]. The features are normalized so that they are invariant %o rotation, translation and soale. The
featurea oan also be normalized with respect to their own dynamic range and mean and variance,

Feature seleotion 4a done on the decorrelated features so that the selected feature set does not have
correlated features, The feature selection ia performed by a K-L Transformation (multi-dimensional axis
rotation), The total covariance is just an average of the individual class covariance matrices.

18] =\ L) ®5) [0,)
" where P(81),... P(5) are a priori olass probabilities for K classes and the covariance matrix for a‘class is

given by
- | (k) _ =(k -
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The expected'valua is approximated by the sample average. ym(k) is the mth aample'ror claas k. The diagonal
elements of the oovariance matrix are the feature veriances. The patrix which diagonalizes the covariance
matrix is computed as

L; o
AT [¢) A e A, vhere A -E 2'-1“]

‘A 18 diagonal having the eigenvalues of the covariance matrix as diagonal elements. The matrix A& which
accomplishes this diagonalization 18 the well known matrix of eigenvectors, A = (X):%3,44.,%y], where X is an
eligenvectop, i.e.,{¢]%y = A;X;, A new feature met {s computed by multiplying every vector in the original

space by A", 1.e., z, -ATym. The covariance matrix in the rotated space ia diagonal and it is given by

9)g = A" 161 A= A

The rotated apace of features ias forwvarded to the feature selection routine.

The criterion of optimality for the seleotion of a feature set is the probability of misclassification.
Several measures have been proposed, which upper bound the misclassification of the sample, In partiocular for
@ Bayes symmetric cost function oclassifier and Gaussian data, the error rate has been shown to be upper
bounded inversely as the Bhattacharrya measure [16). The computationally simpler form of ohne~atea-time (which



invelvea only scalar means and variances) is used for feature selection, It is given by,

6 2 2 ™\
B (5,5,) = £ Ln @ M,
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where n refers to the nth dimension of the feature space. U, Vg 61 6, , are the mean and variance of the
nth feature for the olasses S; and Sp. The equaticn implies that a large difference in mean socompanied by &

small varience is a dealrable quality in a feature for distinguishing between two olasses. If the varlances
are algnificantly different, the feature 1s atill conaidered of potential use in separating the classes.
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Feature selection is done by keeping only those features which are above the average ong-at-a-time
Bhattacharrya measure and the remainder are discarded. For example if there are 4 claases, then 6
combinations of 2 clarces are taken, The sum of the Bhattacharrya measure for a feature for these 6
combinations is computed. This is repeated for all the features. Now tha average of the Bhattacharrya
measure for all features is computed and only the features having & measure above the average are retained.
Using this procedure we found the number of selected features to be 11. Since we compute the K-L
tranaformation for decorrelating the features, we also made & comparison of the Bhattacharrya measure with the
decorrelated featurea seigenvalues. We found that Bhattacharrya measure works better thaen the feature

" elgenvalues in identifying the best fleatures, . )

An experiment to test the accuracy of fleature computation and its sensitivity to classiflication, with
respect to different segmentation results obtained when controlling the threshold in segmentation in the
Algorithm (B) outlined above, is also done on the selected features., The selected feantures are found to be
robust when the ochange in the gray level threshold was +5.

Mitchell and Lutton [9] make use of projection through the segmented object to derive olassification
features. Other studies such as [5,T] wuse moments and a K-nearest neighbor algorithm. In our study the
classification algorithms include linsar, quadratic training algorithms (Fisher discriminant, Ho~Kashyap
method and other disoriminant functions) and clustering techniques (K~meana, Mean-squared error and
hierarchical). The technique that givea the least classification error on the salected feature set 1is
selected, For the results reported here we have used E-means clustering technique for the training of the
samples, K-nearest technique is used for classification, It utilizes a tree based appreach and reduces the
number of distance calculations to determine the K nearest nelghbors of a test sample. The olassification
results for'the image of Fig. 3{a) are shown in Fig. 10. :

In order to evaluate the clustering of features we find the clusters in the training set. A clustering
fidelity criterion used is,
BoTrAs) ¢ T (5)
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sE and are between-cluater and within-cluster scatter matrices. 1y is the mean of the kth cluster, WM is
the number of elements in the Kth cluster, Xy 1s an element in the kth cluster, K iz the total number of
clusters and u, 1is the overall mean vector of the entire mixture. The behavior of B 1s shown in Fig. 11. It
passea through a maximum at the intrinsic number of olusters (L). When 8 is maxioum the ratio of
Tr(S,)/Tr(S,) is exactly 1. The maximum of § can be determined by incrementing the number of clusters until a
decrease ia detected. This allows us to evaluate the number of clusters inherent in the data. Departure of
the nuzmber of clusters so obtained from the known number of clusters tells us about the gquality of features.
To determine if clustering is really present and not an artifact of the data or clustering method, we used the
ariteria of ocompactness and isolation. If a cluster is formed early in the dendrogram corresponding to its
size and lasts a relatively long time, it is considered a valid cluater. Compactness is measured by the birth
size and isolation by the cluster's life time.

Performance of the classifier is measured by the *) eaving-one-out® method. We remove one sample from the
T total samples and use the remaining samples to derive a declsion rule and test it on isoleted sample.
Repeat the proocesa T times, 3Since we use K-nearest neighbor algorithm, we megsure performance by counting the
number of neighbors cut of K about the test sample that belong to the correct oclassification of that sample.
In this study K has been taken as 3.

When the range is amall (100-550 meters) there are two options for target classification., We can either
minify the image with reapect to scme standard range so that the inaide structure of the target is not visible:
in the image or we can make use of the structural information present in the image, A siomple example of
strugture utilization oould be the locoalization of the wheels antd turrets of the vehicles, Important
olassification parsmeters might be the size of the wheels and the relative position of the wheals, Circles
corresponding to the wheels could be found by using least aquares, RANSAC paradigm or Hough transform
techniques, Misaion oriented information and the resulting structural information can be used in the deciaion
making, Thus we have two sets of classification results, ome from a statistical classifier and the other from



a structural block. The final deoision can be made on a simple set of rules based on range and the confidence
of the classification decisions from these two sources, This is useful in missiles with fiber optics.

The training data consisted of 420 images and testing data of 60 images, The testing set was separate
from the training set. The classes in the training set were tank, truck, Jeep, APC and clutter. Since the
number of nontank target types was not enough to obtain statiatically meaningful results, we¢ oconsidered only
two olasses, the tank and the clutter class, Sewmantic informaticn was not used and only the targets with a
range greater than 550 meters were conaidered. Algorithm (B) was used for target detection and segmentation.
Range R and the minification factor used are given below,

R(meters) Minification R{meters

Hlnlflcntion
R <550 o mindfl ’
550 < <oin R cation 1340 <R <2700 2_
670 <R <1340 4 2100 <R 1

Probability of target detection (clessification) is defined as the ratio of total number of targetsa ocorrectly
detected (clussified) in the testing set dividsd by the total number of targets in the testing set. False
alarm per frame is defined as the total number of false alarms divided by the total number of images in the
teating set. These three parameters give the overall performance of the auto cuer. Probability of detection
was found to be 85%. If the centroid of the deteoted and segmented target lies within a 10x10 window of the
known target location, the target is said to have been detected. Detection fallures are asttributed to several
reasons: overlapping targets, targets which are partly hot and partly cold, targets obscured by dirt;, smoke
eto, The probability of oorrect classification was 80% on the detected targets, Thus the overall cuer
classification acouracy was 68%. False alarms were slightly more than 1 per frame, The reasons for this are
that the filter used provided a fixed number of responses (6) at every frame and the features were computed on
the minified image. False alarmes can be reduced using Algorithm (A), It is currently being tested. All the
algorithms are integrated into a software package and the algorithms run ia an automatic mode. CPU- time to
process each 512x512 image was 2 minutes on a VAX 11/780.
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Fig. 6. (a) Object versus background distribution

Fig. 7. (a) Object versus background distribution
(b) Contrast function (ai - pi)
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