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Abstract

Managing and manipulating uncertainty in spatial databases are important problems for various practical applications
of geographic information systems. Unlike the traditional fuzzy approaches in relational databases, in this paper a
probability-based method to model and index uncertain spatial data is proposed. In this scheme, each object is represented
by a probability density function (PDF) and a general measure is proposed for measuring similarity between the objects. To
index objects, an optimized Gaussian mixture hierarchy (OGMH) is designed to support both certain/uncertain data and
certain/uncertain queries. An uncertain R-tree is designed with two query filtering schemes, UR1 and UR2, for the special
case when the query is certain. By performing a comprehensive comparison among OGMH, UR1, UR2 and a standard
R-tree on US Census Bureau TIGER/Line®™ Southern California landmark point dataset, it is found that URI is the best
for certain queries. As an example of uncertain query support OGMH is applied to the Mojave Desert endangered species
protection real dataset. It is found that OGMH provides more selective, efficient and flexible search than the results
provided by the existing trial and error approach for endangered species habitat search. Details of the experiments are
given and discussed.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: Geographical information system; Spatial databases; Uncertainty; Probability density function; Indexing; Optimized Gaussian
mixture hierarchy; R-tree

1. Introduction Uncertainty in GIS can arise from several sources.

First, changes in the real world can cause informa-

Geographic information system (GIS) is a system of
computer software, hardware, data, and personnel
to help manipulate, analyze and present information
that is tied to a spatial location. A spatial database
management system is the system which organizes
spatial information in GIS (Rigaus et al., 2001).
In spatial databases, it is generally agreed that there
are several types of error (uncertainty) which
characterize the overall accuracy of final products.
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tion to become out of date, even if temporarily.
Second, much of the data is acquired using
automated image processing techniques applied to
satellite images. Features extracted by image proces-
sing techniques have significant amounts of uncer-
tainties. Unlike the traditional pattern recognition
applications, these uncertainties are spatially variant.
Simple relational database is no longer suitable
for representing these uncertainties (Subrahmanian
et al., 1997).

Not only can the data be certain or uncertain, the
query can also be certain or uncertain, so there are
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totally four combinations. In the following we give
an example to explain these four scenarios.

If a tourist comes to Los Angeles and he/she is
looking for thenl}earest fast food restaurant with the
aid of Google Local. Following are the explicit
four scenarios:

® certain query vs. certain data: The tourist knows
his/her exact location, and the locations of all the
fast food restaurants in the database are very
accurate and up to date;

® certain query vs. uncertain data: The tourist knows
his/her exact location, but the locations of the fast
food restaurants in the database are in low spatial
accuracy and some of them are no longer there;

® uncertain query vs. certain data: The tourist only
knows he/she is near a park, but is not sure about
the exact location; and the locations of all the fast
food restaurants in the database are very accurate
and up to date;

® uncertain query vs. uncertain data: The tourist
only knows that he/she is near a park, but is not
sure about the exact location; and the locations of
the fast food restaurants in the database are in
low spatial accuracy and some of them are no
longer there.

There is an increasing awareness and some
understanding of uncertainty sources in spatial data
in the GIS domain (Bhanu et al., 2004a, b; Foote and
Huebner, 1996; Hunter and Beard, 1992). Most of
the existing approaches for management of prob-
abilistic data are based on the relational model and
use fuzzy set theory (Schneider, 1999; Robinson,
2003). They are useful for representing uncertainty at
the symbolic level. However, in addition to the
symbolic uncertainty, sensor-processing tasks in-
volve uncertainties at both the numeric and the
existence levels. Supporting these types of uncer-
tainty in the current relational model using fuzzy
logic is fundamentally difficult. So we need to
construct a new database system framework that
can handle uncertainties arising in spatial databases.

In this paper, first we present a probabilistic
method to model the uncertain data, in which every
object in a spatial database is represented by a
probability density function (PDF). Second, we
introduce a general similarity measure between the
uncertain/certain data. Third, we design a new
indexing structure, called optimized Gaussian mixture
hierarchy (OGMH), based on the unsupervised
clustering of the feature vector means. We also

design a variant of R-tree with two query strategies:
URT1 and UR2 to support the uncertain data/certain
query scenario. Fourth, we apply our uncertainty
model and the similarity model to the real data and
compare OGMH, URI1, UR2 and standard R-tree
on query precision, CPU cost and I/O cost for
certain queries. This comparison shows that URT is
the best for certain queries, followed by OGMH. For
uncertain queries, UR1 and UR2 do not apply, while
OGMH is found to be effective in a real-world
application: Mojave Desert endangered species
protection. In this application, OGMH improves
the selectivity of endangered species habitat by 66%
compared to the commonly used intersection meth-
od, and it is more flexible in providing the suitability
of each location.

The rest of this paper is organized as follows.
Section 2 presents the technical details of uncertainty
modeling, similarity measure of the uncertain
objects, index and query strategies. Section 3
provides the experimental results for the index
comparison and the application on Mojave Desert
endangered species protection. Finally, Section 4
concludes the paper.

2. Technical approach
2.1. Uncertain spatial data representation

In conventional spatial databases, objects are
represented by fixed feature vectors in n dimensional
feature space. However, when the query and the data
are uncertain, a different representation is required.
Error (uncertainty) in spatial databases encompasses
both the imprecision of data and their inaccuracies.
Accuracy defines the degree to which information on
a map or in a digital database matches true or
accepted values and precision refers to the level of
measurement and exactness of description in a GIS
database (Foote and Huebner, 1996). Compared
with inaccuracy, imprecision in spatial location is
very small so that it is negligible (Brown and Ehrlich,
1992). Therefore, in this paper, we deal with the
errors from inaccuracy only. The inaccuracy could
be positional inaccuracy for vector data and attribute
inaccuracy for raster data. Usually it is described in
the data quality report as a range around the true
value (Brown and Ehrlich, 1992). In general multi-
dimensional databases, each object is represented as
a d-dimensional feature vector and the features are
fixed numbers. When the data are uncertain, we need
a different representation. In this paper, we use PDF
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to represent each uncertain object. So it is a
d-dimensional random variable, as given by

O AV ERTR (1)
where n=1,...,N, N is the number of objects.

In this paper, we assume we know PDFs of each
feature: f;,j: 1, ..., d. Getting the PDFs is called
uncertainty modeling, which is a part of our ongoing
work.

In our system, we can handle both certain and
uncertain data. So we do not give a specific name to
the uncertain data. Feature vector is the name for
both certain and uncertain data in this paper. The
terminology data entry is also used when taking a
database perspective.

2.2. Similarity measure

For fixed feature vectors, metrics like Euclidean
distance, Manhattan distance, etc., are used to
measure similarity. Since the uncertain objects are
random variables represented by PDFs, we define
the similarity as the probability that the two given
random variables are the same, as given below:

similarity (D, Q) = Pr(|D — Q| < 4). 2)

In this equation, D and Q are two objects. Usually
D stands for data in the database and Q represents
the query. 4 is a threshold describing the maximal
error the system can tolerate and still regards D as
“similar” to Q. D, Q and 4 are all vectors:D =

[Dl,...,Dd], Q = [Ql,...,Qd] and 4 = [Al,...,Ad].
Similarity is a number between 0 and 1. The more
similar D and Q are, the larger the similarity is.
Eq. (2) can be further expanded to

Pr(ID — Q|<4) = Pr[|D; — Q,|<4,,|D> — O]
Dy — Q4| <44].
3)

So the similarity is defined as the probability that
D is within the hyper-rectangle around Q, or vise
versa. The hyper-rectangle size is decided by 4.

As mentioned in the Introduction, both the data
and the query can be certain and uncertain, so we
define explicit similarity functions for them, as
shown in Fig. 1. In this figure, F stands for the
cumulative distribution function (CDF) and f for the
PDF. These equations are written for continuous
distributions. However, they can be modified to
support discrete distribution easily. The random
variables can either be independent or correlated,
Gaussian or non-Gaussian. In special cases when the
distributions are Gaussian, Puc in Fig. 1 can be
replaced by Mahalanobis distance and Puu can be
replaced by Bhattacharyya distance (Duda et al.,
2000).

<A25"'9

2.3. Uncertain spatial database system

The uncertainty handling spatial database system
is shown in Fig. 2. In this system, it is assumed that

Data Certain
Query

Uncertain

Certain | Physical meaning:
ID-Q|]<A?True/False

Gr——
D Q
Math Model:
P =Pcc(Q, D, A)
=|D-Q|<A?1:0

Physical meaning:
ID - Q| < A with probability P p
D

Math Model:

P = Puc(Q, D, A)
=Pr{ID- Q| <A}
=Fp(Q+4) ? Fp(Q - A)

Uncertain | Physical meaning:
ID -Q| < A with probability P

=Fo(D + A) - Fo(D - A)

P \Z 0 Q
Math Model: D Math Model:
P =Puc(Q, D, A) P = Puu(Q, D, A)
=Pr{|Q-D| <A} =[Pr{|Q-t}< A} - fp(t) dt

Physical meaning:
|D - Q| < A with probability P
D

=[[Fq(t +4) -Fqa(t-A)] - fp(t) dt

Fig. 1. Physical meaning and math model for four scenarios in our system (pictures are for 1D illustration).
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Fig. 2. System diagram for uncertainty handling spatial database.

the uncertainty is relatively small as compared to the
ground truth value. Therefore, the noisy objects
roughly keep the original distribution. Thus, we can
use the feature vector means f , n=1,...,N to
construct an index, and attach uncertain information
f' n=1,...,N to the corresponding data entry.
This provides us an index to supports uncertain
objects, as indicated by the dash-lined box in the
figure.

We propose three indexing structures. The first
one is called OGMH. It is based on the unsupervised
clustering and it is suitable for all the four scenarios
mentioned in Section 1. The other two are uncertain
R-trees with two different query strategies, UR1 and
UR2, which only support certain queries with
uncertain data.

There are several kinds of queries in spatial
databases. In this paper, we are only interested in
the K nearest neighbors (KNN) search (e.g., find the
nearest three hospitals from my house), because it is
the basis for most other comprehensive queries. The
KNN search is a “‘filter-and-refine” process. When a

query comes in, the nearest leaf nodes are found.
All the data entries (with uncertainty) belonging to
these nodes are collected as the candidate set. This
step is called the “‘filter” step. The number of nodes
is decided by a predefined parameter: minimum
candidate set size (MCS_size). It means that the
total data entry number of the returned leaf nodes
must not be less than the value specified by
MCS size. In the “refine” step, the similarity
between the query and each data entry in the
candidate set is calculated and the entities are sorted
according to this value. The K entries, corresponding
to the K largest similarities, are the search results.
The “refine” step is the same for all the proposed
index structures. The “‘filter” step differs for different
indices.

The detail of the index construction and the KNN
search are explained in Sections 2.3 and 2.4.

2.4. Indexing structure

2.4.1. Optimized Gaussian mixture hierarchy

The complete algorithm for OGMH construction
is shown in Algorithm 1. First, the feature vectors in
the dataset are classified into several subsets based
on their means using an unsupervised clustering
technique. These subsets give the initial leaves of the
tree. Each leaf has a set of feature vectors as its data
entries. Then these leaves are built into a binary tree
in a bottom-up manner. Each leaf node is repre-
sented by the parameters of the Gaussian compo-
nent. Each inner node is represented by the Gaussian
mixture parameters of all its leaf offspring. Fig. 3
shows the parameter assignment for a four-leaf
node tree.

Usually the clustering results are heavily unba-
lanced, which means some leaf node may have a
large number of data entries, e.g., 10 times more
than other leaf nodes. We define a parameter
unbalance degree (UB_degree) as the ratio between
the largest leaf size (number of data entries of
a leaf) and the smallest leaf size among all the leaves.
If the unbalance degree of the leaves is higher
than a threshold, for all the data entries from the
“large” leaf nodes, the OGMH algorithm is
recursively called to generate a subtree. Then this
leaf will be replaced by the subtree. This recursive
procedure ends until no leaf is divisible. The
clustering and tree construction are explained below
in detail.
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Fig. 3. Binary tree structure and parameter assignment.

Algorithm 1. Optimized Gaussian mixture hierarchy construction

Function: build_OGMH

Input: feature vectors with uncertainty: f', n=1,..., N

Output: an OGMH tree
Begin:

1. leaves = clustering (f", n = 1, ..., N) // cluster the dataset based on the feature vector means, each leaf

is a Guassian component

2. tree = tree_construction(leaves) // construct a binary tree from the leaves

(O8]

4. FOR each inner node of the tree DO

represent each leaf node using the Gaussian component from clustering

Assign Gaussian mixture parameters of its leaf offspring as its parameters

END FOR
5. FOR i = 1: leaf num DO
IF leaf(i) is divisible DO

subtree = build_OGMH(all data of leaf(i));

leaf(i).left_child = subtree.left_child;
leaf(i).right_child = subtree.right_child;
END IF
END FOR
End

2.4.1.1. Clustering. Given a set of feature vectors, in
the clustering step, we only consider their means. So
it becomes a common multi-dimensional indexing
problem. The means of the feature vectors in the
database follow some distribution. In probability
theory, any distribution can be approximated by a
weighted sum of several other distributions (Duda
et al., 2000), which is called finite-mixture model, as

shown in Eq. (4). In this equation, x = [x1, - - -, x4]"
represents one particular outcome of a d-dimen-
sional random variable X =[X,---,X4]". It is

said X follows a C-component mixture model, where
0; is the set of parameters for the ith mixture
component and o; is the component weight. Then all

o; must be positive and sum up to 1. In this paper, we
assume that all the components are Gaussian, so it is
called Gaussian mixture model (GMM), where 0,
includes the mean vector w; and the covariance
matrix X;.

C

PXI0) = > afi(X]8))

1

C
= Z OCl']\'](uiy Ei)a o> Oa

C
i=1-,Cand Y =1 (4
i=1
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Given a set of N independent samples of X:
X ={x,...x"M1  the log-likelihood correspond-
ing to a C-component mixture is

N
log Hp(x(") 10)

n=1
N

c
= ZlogZaip(x(”)lﬂi). (5
p

log p(X10) =

The goal is to find 0 which maximizes log p(X|0)
(maximum-likelihood) or log p(X0)+1log p(0) (max-
imum a posteriori).

Expectation-maximization (EM) algorithm is an
iterative algorithm to obtain the ML or MAP
estimates of the mixture parameters (Dempster
et al., 1977; McLachlan and Peel, 1997). The EM
algorithm is based on the interpretation of X as
incomplete data. The missing part is a set of N labels
Y =[yW",...,y™] associated with the N samples,
indicating which component produced each sample.

yo = [yg"{ Sy m _
0 (j #k) means that sample y" was produced by the
kth component. The complete log-likelihood is

ZZy log[aip (x™10;)].
n=1 i=
(6)

The EM algorithm produces a sequence of
estimates {é(t), t=0,1,2,...} by alternatingly apply-
ing the following two steps until some convergence
criterion is met:

(g)]. For example, y§ =1 and y;

log p(X, Y10) =

® FE-step: Compute the conditional expectation of
the complete log-likelihood, given X and the
current estimate 0(¢). The result is the so-called R-
function:
R(0,0(1) = Ellog p(X, Y0).X,0(1)]
= log p(X, Z|0). (N
In this equation, Z = E[Y|X,0(:)]. Explicitly,
they are given by

0 = g

X, e(z)} [ 0 = 1]x, e(z)}

_ ap(x o) o
z 5500 (x[60)

j=1

® M-step: Update the parameter estimates accord-
ing to Eq. (9) in the case of ML estimation or Eq.
(10) for the MAP criterion

0t + 1) = arg max R (e, é(z)) , )
0

0+ 1) = arg(r)nax{R(G, é(z)) + log p(e)}.
(10)

Figueriedo and Jain (2002) proposed a variant of
EM algorithm to automatically find the number of
clusters and to perform clustering. This algorithm
seamlessly integrates model selection (finding the
number of clusters) and model estimation (Gaussian
component parameter estimation) in the iteration. It
incorporates minimum description length (MDL)
criterion for model selection and total likelihood in
the L function £(0, X) (the cost function similar to
R function in Eq. (7)) and minimizes the L function
given below for the best estimation of the mixture

parameters.
C,.. N
£0,X) = 221 ( ) S log 5
io; >0
Co(T + 1
+%—10g[)(}(|ﬂ). (an

In the definition of L function in Eq. (11), T is the
number of parameters specifying each component, N
is the total number of samples, and C,. denotes the
number of non-zero-probability components. As
usual, —logp(X|0) is the code-length of the data.
The expected number of data points generated by the
ith component of the mixture is No; this can be seen
as an effective sample size from which 0, is estimated;
thus the “optimal” (in the MDL sense) code length
for each 0; is (7/2)log(Nw;). The o;'s are estimated
from all the N observations, giving rise to the
(Cz/2)log(N/12) term. This unsupervised learning
process is given as Algorithm 2.
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Algorithm 2. Unsupervised learning of finite mixture model algorithm

Input: Coin, Crnaxo € = 107>, initial parameters 6(0) = {61, e 0 max, 8, - .,&Cmax}

Output: Mixture model in (:)bm
Begin:
I <~ O, anhcmaxa Lmin(_ + o0.
6,-), fori=1, ..., Chaoandn=1, ..., N

ugn) <« p(x(”)
WHILE C,.> C,;, DO
repeat
t<—t+1
FOR i=1 to Cp. DO

Zgn) < &;ugn) (
J

. N ) T C max N o) T -
el (5) 1) (£ o (554

. R R . CmaxA -1
{01, ..., 0max} < {(xl,---s(xmax}( Z (xi)
IF 4;>0, THEN

A

0; < argmaxlog p(X, Z10).
0;

-1
Cinax )

A~ (n

&ju; ,forn=1, ... N
=1

ug.") <—p(x(”) é,), forn=1, ..., N

ELSE
Cn:(_cnz_l-
END IF
END FOR
6(l) <~ {éla° . '96CmaX’&la' . -a&Cmax}

C max

Z &,-ugn)
i=1

N . N
21000, X1=1 3 log(Y%) + Gelog X 4 =D zl log
n=

i:0;>0

until Z[0(7 + 1), X]— 2[0(), X]< Z[0(2), X],
IF Z[0(7), X]< %min THEN
Lroin < Z[0(1), X].
ébest <~ 6(t)
END IF
i «arg min; {o; >0}, & < 0, C,. < C,.—1.

END WHILE

End

the smaller component number at the end of each
iteration. The algorithm stops when the L function
value converges. We use this algorithm to get the

The iteration starts with a large component
number and dynamically anneals small component
and evaluates if the L function value decreases for



R. Liet al. | Computers & Geosciences 33 (2007) 4261 49

Gaussian components of the whole dataset. Thus,
the whole dataset is divided into several groups,
which form the tree leaves.

2.4.1.2. Tree construction. A binary tree is built
bottom-up from the leaves obtained in the clustering
step. To construct the level right above the leaves,
first, a partition of leaf nodes is found so that every
two nodes are merged into a new group. The
Bhattacharyya distance (BD) (Eq. (12)) within each
new group is computed. Second, all the Bhattachar-
yya distances for the new groups are summed up as a
partition criterion, which is called the total Bhatta-
charyya distance (TBD)

BD : Bhattacharyya_dist (A, B)

[ZA ; ZB] - (n,

1
=gl - ne)' —ng)

L It Ep/2
2 sqre [[ 241125l
where random variables 4 and B have Gaussian

distributions with means p,, pp and covariance
matrices: »_ 4, Y 5, respectively,

1 1 T -1 :|
PA)=——> ——(4 - A— ,
: <2n>d/2|zA|‘/2“‘°{ 2R 2, (4 -m)

(12)

P(B) *%(B*HB)TZ;(B*HB)}

1
=—————>¢€xp
n2| " {
The ““best” partition is the one that minimizes the

TBD. Fig. 4 is an example of the first agglomeration
for a four leaf-node tree construction. There are

Algorithm 3. Uncertain R-tree construction

three possible partitions for the four nodes: (1, 2|3,
4), (1, 3|12, 4) and (1, 4|2, 3), corresponding to three
total Bhattacharyya distances: TBD,;, TBD, and
TBD;. If TBD; is the minimum, partition 1 is
adopted. Then the next level will consist of two
nodes: (1, 2) and (3, 4). In some special cases, if the
component number (C in Eq. (4)) is odd or
some components are far away from the others,
the leftover component or the separated components
are called ““isolated” and they directly move to
the next level. This agglomeration process is
repeated level by level until all the nodes are merged
into one group, the root. In this way, a tree is
constructed.

2.4.2. Uncertain R-tree

In spatial databases, R-tree (Guttman, 1988) is the
most popular indexing structure, which is a depth-
balanced tree whose nodes are represented by
minimum bounding rectangles (MBR). Fig. 5 shows
an example of spatial database and Fig. 6 shows its
R-tree structure. Generally, each node corresponds
to a disk page. The arrow from each leaf (R8-R19) in
Fig. 6 points to several data entries, for example, 10,
decided by the capacity of the disk page. R-tree is
designed only for the fixed data. To handle
the uncertain information related to each object,
it has to be modified. We construct a standard
R-tree using all the feature vector means, and then
attach the uncertain information of each feature
vector to the corresponding data entry. It has the
same tree structure as standard R-tree, except the
arrows point to PDFs. The pseudo code is given in
Algorithm 3.

Function build_uncertain_R-tree

Input: uncertain feature vectors ", n=1,..., N
Output: Uncertain R-tree T
Begin:
l. Get mean f" and uncertainty information f' from each feature vector " n=1, ..., N

2. Build a classic R-tree Tbasedonf,n=1, ..., N

3. For each data entry e in 7T, e.uncertainty = '

End
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Four leaf nodes

-
Partition 1

TBD,= BD(1,2)+BD(3,4)

TBD,= BD(1,3)+BD(2,4)

Three possible < Partition 2
partitions
Partition 3
-

TBDg= BD(1,4)+BD(2,3)

Min(TBD;, TBD,, TBD3) = TBD1

— partition 1 is used for the level right above the leaves

TBD: Total Bhattacharyya distance
BD: Bhattacharyya distance

Fig. 4. Tree construction—agglomeration algorithm.

R1

- Leaf entry

R4

Index entry

L |

Spatial object
approximated
by bounding
box R8

R2

Fig. 5. Object in spatial database.

2.5. Query—""Filter and Refine” structure for KNN
search

There are three main types of spatial queries
(Ramakrishnan and Gehrke, 2000): nearest neighbor
queries, spatial range queries and spatial join queries
(Ni et al., 2003). In this work, we only deal with the
first type; we call it the KNN search. The examples

in Introduction section (four scenarios of query in
uncertain databases) are KNN searches, where K
is 1.

2.5.1. KNN search for OGMH
The KNN search algorithm for OGMH is given in
Algorithm 4.
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R2

R1
R3 |R4|R5 R6 | R7

Fig. 6. R-tree structure of Fig. 5.

Algorithm 4. KNN search for OGMH

R IEIRIL

51

Function KNN

Input: OGMH tree, query q
Parameter: MCS_size

Output:. K nearest neighbors to ¢

Begin:
1. Curr_node = OGMH.root.
2. WHILE curr_node is not a leaf node DO [FREEEEE filter step FHFAAHAAIE )

End

P_L = GM_probability (curr_node— left, g).
P_R = GM_probability (curr_node— right, g).
IFP L>P R
curr_node = curr_node — left.
ELSE
curr_node = curr_node — right.
END IF
IF curr_node.size < = MCS_size
Break
END
END WHILE

. WHILE curr_node.total offspring_size < MCS_size

curr_node = curr_node — parent
END WHILE
Gather al the offspring data entries of curr_node as the candidate set.

. FOR i = l:curr_node — size DO [FFEXEE refinement step FFFEFF/

P[i] = curr_node — fi(q).
END FOR
sort(P).

. return objects corresponding to the K largest elements in P.
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Function GV _probability(node, q)

Input: query q, a node in OGMH represented by its Gaussian mixture: |, oif {(x).
i

Output: the probability that q belongs to the node distribution

Begin:
1. p=0.
2. FOR I = 1: node —size DO

IF ¢ is within 30 of node —f;//: a vector consisting of standard deviations of the individual

features
p+ = (node—oa)*(node— fi(q)).

END IF
END FOR
3. return p.
End

When a query comes in, the tree is traversed until
a leaf is reached. Depending on the value of
MCS_size, other leaves (e.g., the sibling of this leaf)
may also be included for refinement. All the data
entries of these leaves consist of the candidate set.
Then the uncertain information of each data entry is
used to search for the KNN of the query.

Using mixture model to represent the inner nodes
of a tree is accurate, but the calculation of Gaussian
probability of the query using all the components is
not efficient because the higher the level of a node,
the more components it has so that calculating the
similarity is more time consuming. Therefore,
we calculate the similarity only when the query is
within +30 (6: a vector consisting of standard
deviations of the individual features) of a mixture
component. This is how the “optimized”” in OGMH
comes in.

2.5.2. KNN search for uncertain R-tree
To make the uncertain R-tree support KNN
searches, two filter strategies: UR1 and UR2 are
developed. The refinement step for them is the same.
1. URI: Nearest leaves are returned, even if they
do not belong to the same parents. The pseudocode
is shown in Algorithm 5.

Algorithm 5. Uncertain R-tree query filter strategy 1
(UR1)

Function URT1_filter

Input. Uncertain R-tree T, query q
Parameter: MCS_size

Output: candidate set which contains at leaset
MCS size data entries

Begin:
1. Get the nearest ¢ leaves in 7 using classic KNN R-
tree query.
2. candidate_set = ¢, candidate_set_size =0, i = 1.
3. WHILE candidate_set_size < MCS_size
candidate_set = candidate set U all data
entries of the ith nearest leaf.
candidate_set_size + = size of the ith
nearest leaf.
i=i+1.
END WHILE
End

The number of leaves is decided by MCS_size. All
the data entries of these leaf nodes are gathered
together as the candidate set. For the query marked
in Fig. 5, if 15 nearest neighbors are asked and each
leaf node has 10 data entries, the nearest leaves, R12
and R16, are found. So all the data entries of R12
and R16 (20 in total) are returned as the candidate
set, as shown in Fig. 7.

2. UR2: The nearest leaf is found, and then its
ancestors are backtracked until the condition that a
node with data entry offspring more than MCS_size
is met. The pseudocode is described in Algorithm 6.
All the data entries belonging to this node construct
the candidate set. For example, for the query marked
in Fig. 5, R16 is the nearest leaf. If 15 nearest
neighbors are asked, R16 is backtracked until R6 is
reached. So all the data entries of R6 offspring (R15
and R16) together give the candidate set, as shown in
Fig. 8.
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Fig. 7. Nearest neighbors of the query using URI.
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Fig. 8. Nearest neighbors of the query using UR2.

Algorithm 6. Uncertain R-tree query filter strategy 2

(UR2)

Function UR2 _filter

Input: Uncertain R-tree T, query q

Parameter: MCS _size

Output: candidate set which contains>= MCS_size

data entries
Begin:

1. Get the nearest leaf NL in the tree using classic R-

tree query.

2. curr_node = NL.
3. WHILE
curr_node.offspring_data_entry_num <MCS_size
curr_node = curr_node — parent.

END WHILE
4. Gather all the offspring data entries of curr_node
as the candidate set.

End
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The candidate set obtained by UR1 or UR2 is
refined to get the KNN to the query. OGMH has the
same filter strategy as UR2, which finds the data
entry offspring of the ancestor of the nearest leaf as
the candidate set. This does not guarantee the second
nearest leaf is in. UR1 returns the nearest leaves as
the candidate set, which will theoretically achieve
equal or higher query precision. So, only the
comparison between OGMH and UR2 is fair.
Section 3.1 provides the details of the comparison.

3. Experimental results

In the experiments, firstly, we do comprehensive
comparisons for OGMH, uncertain R-tree and
standard R-tree in Section 3.1. Then we present an
application of OGMH in Section 3.2.

3.1. Index comparison

3.1.1. Dataset and uncertainty assignment

We use the TIGER/Line™ Southern California
landmark point dataset' in the experiment, as shown
in Fig. 9. It contains 8703 2D coordinates (x-
longitude and y-latitude in degrees) and its data
accuracy (uncertainty) is +166.67 ft (0.0005°) (Brown
and Ehrlich, 1992). Uncertainty is added as a 2D
Gaussian noise to each point, as shown in Eq. (13).
Since measurements of longitude and latitude are
independent, the noise covariance matrix is diagonal,
however in general it does not have to be. Our system
can support any noise, independent or correlated

fnoisy = fmeasured + noise,
a2 0
noise~N | [0,0]", 0 2| (13)
Oy

In all the experiments, the test data are fixed (using
the original data) and the training data are noisy,

"The term TIGER™ comes from the acronym Topologically
Integrated Geographic Encoding and Referencing which is the
name for the system and digital database developed at the US
Census Bureau to support its mapping needs for the Decennial
Census and other Bureau programs. The TIGER/Line files are a
digital database of geographic features, such as roads, railroads,
rivers, lakes, legal boundaries, census statistical boundaries, etc.,
covering the entire US. The data base contains information about
these features such as their location in latitude and longitude, the
name, the type of feature, address ranges for most streets, the
geographic relationship to other features, and other related
information. They are the public products created from the
Census Bureau’s TIGER database (Tiger overview, 2004. http://
WWW.census.gov/geo/www/tiger/overview.html).

whereo ., o,for each point are randomly selected from
[0, 0.0005°T or [0, 0.005°] for different uncertainty
cases. 1-15 nearest neighbor(s) are returned as the
result to a query.

Standard R-tree is built by following Beckmann’s
R*-tree structure (Beckmann et al., 1990). Uncertain
R-tree is obtained from this structure.

All the programs are written in C+ + and
compiled by gcc 3.3.1. They run on a Sun Micro-
systems sun4u with 2048MB memory. The operating
system is Solaris 2.8.

3.1.2. Comparison

Table 1 shows the tree parameters of the OGMH
and the uncertain R-tree built from the dataset. The
OGMH has fewer nodes compared with the un-
certain R-tree.

The KNN search is made on OGMH, uncertain
R-tree (URI1 and UR2) and standard R-tree. The
experiments are performed for two different uncer-
tainties: 0.0005°, 0.005° and two values of MCS_size:
40, 60. To minimize the effect of random initializa-
tion effect of the unsupervised mixture model
learning algorithm (Figueriedo and Jain, 2002) in
OGMH, in our experiments, we run the clustering/
tree-building/query procedure 30 times and average
the precision, I/O cost and CPU cost of each run as
the overall performance.

1. Precision comparison: Precision is defined as the
ratio between the number of correct results
returned and the total number of results
returned. The comparison results are shown in
Figs. 10-13. From these four figures, we can
make the following observations:

(a) URI always gives the best performance,
followed by OGMH and UR2, which is
explained in Section 2.5: UR2 and OGMH
have the same filter strategy, but not as good
as URI.

(b) OGMH has higher precision than UR2,
especially when MCS size is large. So
GMM is more appropriate than MBRs in
object indexing.

(c) Standard R-tree gives the worst performance
precision and it is not acceptable, so in the
following comparisons, standard R-tree is
removed.

From Figs. 14 and 15 we can see that when
the uncertainty increases from 0.0005° to
0.005° (MCS _size = 60), the precision per-
formance of UR1 degrades much more than
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Fig. 9. Landmarks in Southern California, USA. Boundaries of various counties are labeled as: SL—San Louis, SB—Santa Barbara,
VE—Ventura, LA—Los Angeles, KE—Kern, SanB—San Bernardino, RI-—Riverside, IM—Imperial, SD—San Diego, OR—Orange.

Table 1 1
Tree parameters of OGMH, URI and UR2 on Southern CA
landmark point dataset 095
OGMH (average) Uncertain R-tree 097}
Tree node number 579 703 s 085}
T . S
ree height 17 4 g 08l
Q
“ o075}
1 LR A o s
0.95 AN ] orr
ool 0.65 |
06 L L
g 085 0 5 10 15
.§ 08l K
a 075t Fig. 11. Precision vs. No. of nearest neighbors K, ¢ = 0.0005°,
’ MCS size = 60.
0.7¢1
0.65
more levels than R-tree (17 vs. 4). The more 1/O
0.6 0 5 0 . cost of UR2 comes from the back tracking. From
K 1/O cost perspective, URI1 is the best; OGMH
and UR2 are comparable.
Flg 10 Precision vs. No. of nearest neighbors K, o =0.0005°, 3 CPU cost: It is the average tlme (ln Seconds) for
MES _size = 40. 1-NN query. Fig. 17 indicates that URI and
OGMH are comparable on time complexity and
that of OGMH (0-0.5% vs. 0-0.15%). So they are much more efficient than UR2, which is
OGMH is more stable than uncertain R-tree. also due to the back tracking.
2. I/0 cost: 1t is the average page access for 1-NN
query. As shown in Fig. 16, UR1 needs the least From the above three comparisons, we see that

1/O cost, which is approximately half of OGMH when the query is fixed, UR1 is the best on precision,
and UR2. OGMH needs more I/O because it has I/O cost and CPU cost. OGMH has almost the same
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Fig. 17. CPU cost comparison among all indices.
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I/O cost as UR2 but higher precision and less CPU
cost. Standard R-tree is not acceptable with respect
to precision performance. So OGMH is the second
choice.

A complete system should be able to handle both
fixed and uncertain queries. Thus, the choice of
index structure and query strategy depends on the
application. If no uncertain query is asked, UR1 is
the best choice; otherwise only OGMH is suitable.
The next section shows an application of OGMH
when the query is uncertain.

3.2. An application of OGMH

In this section, we apply our uncertainty model,
similarity measure and OGMH on the data from
Mojave Desert endangered species (desert tortoise)
protection program to show its effectiveness, effi-
ciency and flexibility compared with the existing
approach.

3.2.1. Mojave Desert species protection background

The Mojave Desert eco-region extends from east-
ern California to northwestern Arizona, southern
Nevada, and southwestern Utah. There are hun-
dreds of endangered species over there. Desert
tortoise (Gopherus agassizii) is one of them. It has
inhabited this region for over one million years, but
its population has reduced dramatically during the
last two decades due to both intrusion by people and
environment change (Humphrey, 1987). It was listed

as ‘“‘threatened” under the California Endangered
Species Act in 1989 and the federal Endangered
Species Act in 1990.

Scientists have been trying to protect desert
tortoises from their extinction. They are interested
in finding what factors impact desert tortoises and
where desert tortoises live so they can protect those
places. Mojave Desert ecosystem program (MDEP)
was the first to organize a detailed, environmentally
oriented, digital geographic database set over the
entire eco-region. They have made some progress on
the tortoise protection. Based on the information
about the tortoise habitats, MDEP biologists and
researchers use ArcInfo™ to overlay and intersect
the corresponding geo layers. The intersection results
are places where desert tortoise might live. After this
pre-processing, the area of interest reduces a lot. As
the next step, they go to these areas and see if the
tortoises are indeed there. If the tortoises are found,
then they try to protect them. This trial and error
mode is time consuming, expensive and they have to
try this over and over again if they are interested in
species other than tortoise.

Using our index system, we can find desert tortoise
more efficiently and more flexibly. Our approach is
described in Fig. 18. The idea is to partition the
whole Mojave Desert into grids, describe each cell
using a feature vector and index these feature
vectors. Then for a given interested species, describe
its habitat using a feature vector as the query and do
a KNN search. Here the feature vectors in the

] » Feature vector =

elevation
slope
water
landform
compaosition
DWMA
vegetation

Best K cells
for tortoises
habitats

+——

elevation
slope

KNN water
landform
composition
DWMA
vegetation

Information
about

Tortoise
habitat

Query

Fig. 18. Mojave Desert endangered species protection plan.
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database are fixed numbers attached with a con-
fidence and the query is uncertain: a PDF describing
the geo features suitable for tortoises. The data in
this database cannot be seen as real uncertain data
because detail information is not available to
construct a more sophisticated comprehensive mod-
el. But this application is an example of certain data
VS. uncertain query.

3.2.2. Dataset

Our database is set up for an area of 6379.56 km?
located at the center of Mojave Desert. It is cut into
70,884 cells. Each of them is 300 m x 300 m described
by a certain feature vector and a confidence. We
have selected seven geographic features based on the
information about tortoise habitats (Avery et al.,
1998; Boarmann and Bearman, 2002; Esque, 1993;
Jennings, 1993). Table 2 shows the features we use to
represent each cell. The first column is the feature

Table 2
Features used for Mojave Desert tortoise protection

Feature Value Normalized value
1 Elevation —86 to 300m —4.3 to 150
2 Slope 0-71.3° 0-142.6
3 Water 0,1,2,3,4,5 0,20,40,60,80,100
4 Landform 1,2, ..., 33 3,6, ..., 99
5 Composition 0,1 0, 100
6 DWMA® 0,1 0, 100
7 Vegetation 1,2, ..., 34 3,6, ..., 102

“DWMA: Desert Wildlife Management Area, which means the
area that MDEP has right to access, which belongs to the
National Park and Bureau of Land Management.

type. The second column is the value range of each
feature. All the feature values are normalized into
the range [0, 100], as shown in the third coluTrhIAm.
Fig. 19 shows all the seven features in ArcView

3.2.3. Uncertainty for both data and query

3.2.3.1. Uncertainty for data (fixed data with con-
fidence). Original geo features are given with
different resolutions. Some features are for every
30m x 30m cell and the others are for every
300m x 300m cell. So we use the 300m x 300 m
cells as our objects. This requires down sampling of
the high-resolution features. Fig. 20 shows how the
down sampling works. For a feature given in
30m x 30m cells, there are 100 such cells in a
300m x 300m cell. Then the feature value for this
large cell is the one which has the highest occurrence
among these 100 cells. Each feature of the cell is
decided in this manner. The confidence of the feature
vector is defined by the product of normalized
occurrence of each feature.

3.2.3.2. Uncertainty for query. In this work, the
query is a feature vector describing the habitat
suitable for desert tortoises. From Boarmann and
Bearman (2002), we summarize the PDF of each
feature value shown in Table 3, which defines its
probability to be a tortoise habitat. By defining these
PDFs, the query is uncertain.

3.2.4. Indexing structure

Table 4 shows the total number of nodes and total
number of levels of the OGMH for this dataset
before and after balancing, which can give us an
impression of the tree size.

(e) ()

Fig. 19. Seven geo layers of Majave Desert dataset.
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Fig. 20. Uncertainty assignment for each cell.

Table 3
PDFs for all the features
Feature PDF
1 Elevation 0.004785, —4.3<x<150,
St = 0.004785¢0004785x=150) " 150 < x<213.4
2 Slope 0.0176, 0<x<40,
T2 =19 0.0176-001760-40) 40 < <60
3 Water 08, x=0,
p3(x) =< 0.1, x=40,60,
0, otherwise
4 Landform 0.091, x=3,6,9, 12, 21, 30, 63, 66, 81, 87, 99,
Pyx) = 0, otherwise
5 Composition 0.2, x=0,
PSI=93 08 =100
6 DWMA" 0, x=0,
P =91 =100
7 Vegetation 0.1429, x =15, 18, 39, 66, 72, 84, 99,
px) = 0, otherwise

3.2.5. Results

After an OGMH is built, we make a query
for the tortoise habitat. The simple intersection
result based on the basic information on tortoise
habitat is shown by the purple area in Fig. 21.
The background is the slope, where light color

means higher slope and dark color indicates lower
slope.

When 4 =10, 10, 20, 1, 40, 40, 1], for the query in
Table 3, we have 8000 nearest neighbors. About
6601 of these neighbors have suitability greater
than zero and they are shown by the orange areas
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Table 4
OGMH parameter before and after balance

Before balancing After balancing

Tree node number 41 377
Tree height 8 19

Fig. 22. Query result with suitability >0.5 (orange) when 4 = [10,
10, 20, 1, 40, 40, 1].

in Fig. 22. All these areas are suitable for living
tortoises. As compared to Fig. 21, this query result
provides 67.72% improvement over the intersection
result shown in Fig. 21. This improvement actually
reduces the extent of areas to be examined without
missing out any potential tortoise habitat areas. The
suitability in Fig. 22 extends from 0.5 to 1. When

the user is interested in the areas with probability
greater than 0.5, all these areas meet the require-
ment. When the user asks for areas with suitability
greater than 0.75, only the red areas in Fig. 23 are
suitable.

When 4 changes, query results also change. When
A =110, 15, 20, 1, 40, 40, 1], where tolerance of slope
increase from 10 to 15, red areas in Fig. 24 have
suitability over 0.75. Compared with Fig. 22, we can
see more areas are suitable when 4 is higher.

From Fig. 22, we find tortoises do not like high
slope. This is consistent with the information about
tortoise habitats (see PDF of slope in Table 3), and
further, when lower A4 is set, the results are more
selective. This makes our query more flexible.

Fig. 23. Query result with suitability >0.75 (red) and <0.75
(orange) when 4 =[10, 10, 20, 1, 40, 40, 1].

Fig. 24. Query result with suitability >0.75 (red) when 4 = [10,
15, 20, 1, 40, 40, 1].
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4. Conclusions

Uncertainty is related to the data quality and
decision making. In this paper, we presented a way
to represent, index and query uncertain spatial data.
We represented uncertain objects with PDFs and
defined a similarity measure for these uncertain
objects. We constructed a new OGMH based on
GMM and uncertain R-tree with two filter strategies
URI1 and UR2. Then we applied the uncertainty
model, similarity measure and indexing structures on
US Census Bureau TIGER/Line® dataset. After a
comprehensive comparison on precision, I/O cost
and CPU cost, we found that URI1 is the best for
fixed queries and uncertain data. We also presented
an application of OGMH on Mojave Desert
endangered species protection database. Using our
method, we found the habitats for desert tortoises
and defined a confidence for each result. As
compared to the result from MEDP using conven-
tional techniques on desert tortoise, our method is
more selective, more efficient and more flexible. Our
method is not suitable only for the desert tortoise,
but can be applied for other species. This application
shows that OGMH is suitable for both certain/
uncertain queries and certain/uncertain data.

The uncertainty modeling and executing compre-
hensive queries are some of the key issues that we are
working on for handling uncertainty in GIS data-
base. By adding support for uncertainty in the
database management system this research will
substantially increase the power and flexibility of
GIS databases.
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