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Abstract

Feature extraction is one of the key steps in object recognition. In this paper we propose a novel genetically inspired learning method
for facial expression recognition (FER). Unlike current research on facial expression recognition that generally selects visually meaning-
ful feature by hands, our learning method can discover the features automatically in a genetic programming-based approach that uses
Gabor wavelet representation for primitive features and linear/nonlinear operators to synthesize new features. These new features are
used to train a support vector machine classifier that is used for recognizing the facial expressions. The learned operator and classifier
are used on unseen testing images. To make use of random nature of a genetic program, we design a multi-agent scheme to boost the
performance. We compare the performance of our approach with several approaches in the literature and show that our approach can
perform the task of facial expression recognition effectively.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Automatic face expression recognition (FER) is desir-
able for a variety of applications such as human–computer
interaction, human behavior understanding, perceptual
user interface, and interactive computer games. In an auto-
matic FER system, face detection or localization in a clut-
tered scene is usually the first step. Next, relevant features
from the face must be extracted, and finally the expression
can be classified based on the extracted features (Daugman,
1997; Pantic and Rothkrantz, 2000).

As compared to face recognition, there is a relatively
small amount of research on facial expression recognition.
Previous work on automatic facial expression includes
studies using representations based on optical flow, princi-
pal components analysis and physically based models.
Viola uses Adaboost method to solve computer vision
problems such as image retrieval and face detection (Viola
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and Jones, 2001), which can select features in the learning
phase using a greedy strategy. AdaBoost method does
not perform well in the small sample case (Guo and Dyer,
2003), which is used in our experiments. Yacoob and Davis
(1994) use the inter-frame motion of edges extracted in the
area of the mouth, nose, eyes, and eyebrows. Bartlett et al.
(1996) use the combination of optical flow and principal
components obtained from image differences. Hoey and
Little (2000) approximate the flow of each frame with a
low dimensional vector based upon a set of orthogonal
Zernike polynomials and apply their method to the recog-
nition of facial expressions with hidden Markov models
(HMMs). Lyons et al. (1998, 1999), Zhang et al. (1998)
and Zhang (1999) use Gabor wavelet coefficients to code
face expressions. In their work, they first extract a set of
geometric facial points and then use multi-scale and
multi-orientation Gabor wavelets filters to extract the
Gabor wavelet coefficients at the chosen facial points. Sim-
ilarly, Wiskott et al. (1997) use a labeled graph, based on
the Gabor wavelet transform, to represent facial expression
images. They perform face recognition through elastic
graph matching.
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Facial feature extraction attempts to find the most
appropriate representation of face images for recognition
and it is the key step in facial expression recognition. The
extracted features capture the characteristics of face ex-
pressions and are fed to a classifier for recognition. The
recognition accuracy of an automatic facial expression rec-
ognition system is determined by the quality of the feature
set used. What are the good features? How can we synthe-
size effective features automatically based on the available
information? It is difficult to identify a set of features that
characterize a complex set of facial expressions. Typically,
many types of features are explored before a recognition
system can be built to perform the desired recognition task.
There are a lot of features available and these features
may be correlated, making the design and selection of
appropriate features a very time consuming and expensive
process.

For conventional methods, human experts design an
approach to detect potential features in images depending
on their knowledge and experience. This approach can
often be dissected into some primitive operations on the
original image or a set of related feature images obtained
from the original one. Human experts try only some lim-
ited number of conventional combinations and explore a
very small portion of the feature space since they are
biased with their knowledge and have limited computa-
tional capability. On the other hand, GP, however, may
try many unconventional ways of combining primitive
operations that may never be imagined by a human expert.
Although some of these unconventional combinations
could be difficult to be explained by human experts, in
some cases, it is these unconventional combinations that
yield exceptionally good recognition results. In addition,
the inherent parallelism of GP and the high speed of cur-
rent computers allow the portion of the search space
explored by GP to be much larger than that by human
experts, enhancing the probability of finding an effective
composite operator. The search performed by GP is not
a random search. It is guided by the fitness of composite
operators in the population. As the search proceeds, GP
gradually shifts the population to the portion of the feature
space containing good composite operators. Tan et al.
(2003) propose a learning algorithm for fingerprint classifi-
cation based on GP. Bhanu and Yu use GP for facial
expression recognition with a Bayesian classifier (Bhanu
et al., 2004). Unlike the conventional methods that select
visually meaningful features by hand (Lyons et al., 1998,
1999; Zhang et al., 1998; Zhang, 1999; Guo and Dyer,
2003), our approach can synthesize the features automati-
cally. For the features chosen by hand, the points which
are chosen are highly dependent on the person and the
database. Our proposed approach learns features without
resorting to a specific database. Therefore, our approach
could be considered as fully domain-independent. To the
best of our knowledge, unconventional features discovered
by the computer have never been used in facial expression
classification.
Section 2 presents the recognition system and explains
the technical details. Experiments and results are presented
in Section 3, where we compare our results with the other
published work. Finally, Section 4 provides the conclusions
of this paper.

2. Technical approach

Genetic programming (GP) is an evolutionary computa-
tional paradigm (Koza, 1994; Bhanu et al., 2005) that is an
extension of genetic algorithm and works with a popula-
tion of individuals. An individual in a population can be
any complicated data structure such as linked lists, trees,
graphs, etc. In this paper, individuals are composite opera-
tors represented by binary tree with primitive operators as
internal nodes and primitive features as leaf nodes. We
design different primitive operators, which form primitive
operators pool. During the training, GP chooses primitive
operators from the primitive operators pool and runs on
primitive features generated from the raw facial expression
images to generate composite operators, which generate the
elements of composite feature vectors by combining the
primitive operators. It is a way of combining primitive
features.

The advantage of using a tree structure is that it is pow-
erful enough in expressing the ways of combining primitive
features and unlike a graph, it has no loops and this guar-
antees that the execution of individuals represented by trees
will terminate and not be trapped in an infinite loop. Fea-
ture vectors are generated by the learned composite opera-
tors, which are used for facial expression recognition. The
search space is the set of all possible composite operators.
The primitive features can be simple features directly
extracted or complicated features designed by the human
experts based on the characteristics of objects to be recog-
nized in a particular kind of imagery (e.g., facial expression
images). The primitive features are Gabor filtered images in
this paper. With each individual evolved by a population of
GP, a composite operator is evolved. By applying compos-
ite operators to the primitive features filtered from images,
composite feature vectors are obtained. These composite
feature vectors are fed into a classifier for recognition.
Fig. 1 shows the block diagram in our approach. This sys-
tem has training and testing modules, which are shown in
Fig. 2. During the training step, extracted features (Gabor
filtered images) are fed into GP to evolve composite oper-
ators (binary trees), which generate composite vectors. And
then composite vectors are passed to train SVM classifier.
The primitive operators and primitive features are de-
coupled from the GP mechanism that generates composite
feature vectors, so they can be tailored to a particular
recognition task without affecting the other parts of the
system. Thus, the method and the recognition system are
flexible and can be applied to a variety of images.

During testing, the learned best composite operator is
applied directly to generate feature vectors. Since the
parameters of SVM classifier are determined by the feature
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vectors from the training, the classifier as well the compos-
ite operators are learned by using GP. Note that, in our
approach, we do not need to find any reference point on
the image.



Fig. 3. The filter set in the frequency domain indicates the half-peak
magnitude.
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2.1. Gabor filter bank

In our approach, the Gabor filtered images are used as
primitive features. The Gabor filters can be considered as
orientation and scale tunable edge and line detectors,
which have been shown to be optimal in the sense of min-
imizing the joint two-dimensional uncertainty in space and
frequency. The general form of a 2-D Gabor function is
given as

gðx; yÞ ¼ 1
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where (x,y) is the spatial centroid of the elliptical Gaussian
window.

From Eq. (1), we can get its Fourier transform G(u,v) as
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where W is the frequency of a sinusoidal plane wave along
the x-axis, and rx, ry are the space constants of the Gaus-
sian envelop along the x- and y-axes, respectively. u, v are
the frequency components in x- and y-direction, respec-
tively, ru = 1/2prx and rv = 1/2pry. Gabor function forms
a complete but nonorthogonal basis set. Expanding a
signal using this basis provides a localized frequency
description.

Gabor filter bank with multi-orientation can be
obtained by a rigid rotation of g(x,y) through the generat-
ing function:

gðx; yÞ ¼ a�mGðx0; y0Þ; a > 1 ð3Þ
where

x0 ¼ a�mðx cos hþ y sin hÞ and

y0 ¼ a�mð�x sin hþ y cos hÞ ð4Þ

and h = np/K, h is the rotation angle and K is the total
number of orientations.

Because the area of the energy distribution of the filters
varies with scale, the Gaussian envelope should vary with
the filter size. We design the Gabor filter bank based on
the filters used previously for texture segmentation and
image retrieval (Manjunath and Ma, 1996; Jain and
Farokhnia, 1991; Wu and Bhanu, 1997).

We designed the Gabor filter bank with the following
parameters:
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where W = amUl and m = 0,1,2, . . . ,S � 1. We define W

with the scale factor am to ensure the energy is independent
of m. Uh, Ul denote the lower and upper center frequencies
of interest, respectively. n = 0,1,2, . . . ,K � 1. m and n are
the indices of scale and orientation, respectively. K is the
number of orientations and S is the number of scales. In
order to eliminate sensitivity of the filter response to abso-
lute intensity values, the real components of the 2D Gabor
filters are biased by adding a constant to make them zero
mean. This can be easily done by making G(0, 0) = 0. The
design strategy is to ensure that the half-peak magnitude
support of the filter responses in the frequency spectrum
touch each other as shown in Fig. 3.

2.2. Design considerations

The set of terminals: The set of terminals used in this
paper are called primitive features which are generated
from the raw facial expression images filtered by Gabor
filter bank at four scales and six orientations. These 24
images are input to composite operators. For simplicity,
we resize the filtered image size 256 · 256 to 32 · 32. GP
determines which operators are applied on primitive fea-
tures and how to combine the primitive operators. Fig. 4
shows an example of primitive features obtained by Gabor
filter bank (four scales and six orientations).

The set of primitive operators: A primitive operator takes
one or two input images and performs a primitive opera-
tion on them and outputs a resultant image and/or feature
vectors. In our approach, we designed two kinds of primi-
tive operators: computational operators and feature gener-
ation operators. For computational operators, the output
is an image. For feature generation operators, however,
the resultant output includes an image and a real number
or vector. The real number or the vectors are the elements
of the feature vector, which is used for classification. Table
1 shows different primitive operators and explains the
meaning of each one (Tan et al., 2003; Bhanu et al., 2004).

The fitness value: During training, at every generation
for each composite operator run by GP, we compute the
feature vectors and input the feature vectors for all training
images to train SVM classifier. We use C-Support Vector
Classification (C-SVC) with RBF Kernel (Chang and
Lin, 2001). Given a set of training vectors xi 2 Rn,
i = 1, . . . , l, belonging to two classes and y 2 Rl. C-SVC
solves the following problem:



Fig. 4. An example of the primitive features (S means scale and O represents orientation), left image is the original facial expression image.
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where x, C and ni are weight vector, constant and nonneg-
ative bias variables, respectively. b is a scalar and /(xi)
transforms an unknown vector to the separating space
(xi! /(xi)).

This primal problem can be transformed to its dual
problem:

min
a
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where e is the vector of all ones, Q is an l · l positive semi-
definite matrix, Qij = yiyjK(xi,xj), and K(xi,xj) � /(xi)

T

/(xi) is the kernel. Here training vectors xi are mapped into
a higher (maybe infinite) dimensional space by the function
/. In this paper we use RBF kernel Kðxi; xjÞ ¼ e�ckxi�xjk2

.
The RBF kernel nonlinearly maps samples into a higher
dimensional space, so it can handle the case when the rela-
tion between class labels and attributes is nonlinear (Chang
and Lin, 2001). The decision function is

sign
Xl

i¼1

yiaiKðxi; xÞ þ b

 !

Given training samples, SVM can easily achieve high train-
ing accuracy (i.e., classifiers accurately predict training data
whose class labels are indeed known). Since we use the fit-
ness value to control the run of our GP, we do not want to
overfit the training data and to terminate GP before it
evolves a good composite operator. Cross-validation in
our approach is used. We divide the database randomly
into 10 roughly equal-sized parts, from which the data
for nine parts are used for learning the features and train-
ing the classifier and the last part is used for testing. In the
classification, the percentage of correct classification (PCC)
is used as the fitness value of the composite operator.

Fitness value ¼ nc

ns

� 100%

where nc is the number of correctly classified facial expres-
sion images by GP and ns is the size of training set.

Parameters and termination conditions: The parameters
to control the run of GP are important. In our approach,
we select the maximum size of composite operator 200,
population size 100, number of generation 50, crossover
rate 0.6, length of maximum feature vector 35, the fitness
threshold 0.98, and the mutation rate 0.05. GP stops when-
ever it finishes the pre-specified number of generations or
whenever the best composite operator in the population
has fitness value greater than the fitness threshold.

2.3. Multiple-agent approach

Multi-agent methodology can be used to boost the over-
all performance and compensate for the suboptimal char-
acter of representations elaborated by the evolutionary
process (Krawiec and Bhanu, 2005). The basic prerequisite
for the agents’ fusion is their diversification. In our
approach, agents correspond to classifiers; the diversifica-
tion is naturally provided by the random nature of the
genetic search. We run 10 genetic searches that start from
different initial populations. With the same parameters,
10 independent GP synthesis processes provide a statistical
significance to the results. Each run starts with the same
GP parameters, but with different, randomly created, initial
population of feature synthesis programs. In classification,
we use a voting strategy: each run is considered to be vot-
ing where votes can be cast for each of the testing images.
In the end we take the majority vote for a testing image.
Fig. 5 shows the architecture of the compound recognition
system.



Table 1
The primitive operators in our approach

Type No. Primitive operator Meaning

Computation
operators

1 ADD_OP A + B, A � B, A · B and A/B. If the pixel in B has value 0,
the corresponding pixel in A/B takes the maximum pixel value in A2 SUB_OP

3 MUL_OP
4 DIV_OP
5 MAX2_OP Max(A,B)
6 MIN2_OP Min(A,B)
7 ADD_CONST_ OP A + c

8 SUB_CONST_OP A � c

9 DIV_CONST_OP A/c
10 MUL_CONST_OP A · c

11 SQRT_OP signðAÞ �
ffiffiffiffiffiffi
jAj

p
12 LOG_OP signðAÞ � logðjAjÞ
13 MAX_OP Max(A), min(A), med(A), mean(A) and std(A), replace the pixel

value by the maximum, minimum, median, mean or standard
deviation in a 3 · 3 block

14 MIN_OP
15 MED_OP
16 MEAN_OP
17 STD_OP
18 BINARY_ZERO_OP Threshold/binarize A by zero or mean of A

19 BINARY_MEAN_OP
20 NEGATIVE_OP �A

21 LEFT_OP Left (A), right (A), up (A) and down (A). Move A to the left,
right, up or down by 1 pixel. The border is padded by zeros22 RIGHT_OP

23 UP_OP
24 DOWN_OP
25 HF_DERIVATIVE_OP HF (A) and VF (A). Sobel filters along horizontal and vertical directions
26 VF_DERIVATIVE_OP

Feature generation
operators

27 SPE_MAX_OP Max2(A),
28 SPE_MIN_OP Min2(A)
29 SPE_MEAN_OP Mean2(A)
30 SPE_ABS_MEAN_OP Mean2(jAj)
31 SPE_STD_OP Std2(A)
32 SPE_U3_OP l3(A) and l4(A). Skewness and kurtosis of the histogram of A

33 SPE_U4_OP
34 SPE_CENTER_MOMENT11_OP l11(A). First order central moments of A

35 SPE_MOMENT01_OP Fist order moments of A

36 SPE_MOMENT10_OP Second order moments of A

37 SPE_MOMENT11_OP Third order moments of A

38 SPE_ENTROPY_OP H(A). Entropy of A

39 SPE_MEAN_VECTOR_OP Mean_vector(A) and Std_vector(A). A vector contains the mean or
standard deviation value of each row/column of A40 SPE_STD_VECTOR_OP

Classification subsystem #2 Input
Image

Classification subsystem  #1 

Classification subsystem #10

VotingGP Classifier

Fig. 5. Architecture of the compound classification system.
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3. Experimental results

3.1. Database

The database we use for our experiments contains 213
images of 10 Japanese women (Lyons et al., 1998). Each
person has two to four images for each of the seven expres-
sions: neutral (30 images), happy (31 images), sad (31
images), surprise (30 images), anger (30 images), disgust
(29 images), and fear (32 images). The size of each image
is 256 · 256 pixels, which are downscaled to 32 · 32 for
computational efficiency reasons. We divide the database
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randomly into 10 roughly equal-sized parts, from which the
data for nine parts are used for learning the features and
training the classifier and the last part is used for testing
which includes 21 images. A few examples are shown in
Fig. 6. This database was also used in (Yacoob and Davis,
1994; Bartlett et al., 1996; Zhang, 1999; Guo and Dyer,
2003).

3.2. Results

Fig. 7 presents fitness charts of the best individuals from
10 runs. Each of these 10 evolved composite operators is
computed on the test data. In classification, we use the vot-
Fig. 6. A few exampl

Fig. 7. Fitness charts of the be
ing strategy as described previously: each run is considered
to be voting where votes are cast for all the testing images.
At the end we take a majority vote for the testing image. In
case that the two classes have identical votes, though it may
not be a good strategy, we simply select the one with the
largest index (we use indices from 0 to 6 as labels of the
seven classes). After the majority votes, we get the classifi-
cation rate at 80.95%, i.e., there are four failures in testing
among 21 testing images. Table 2 shows the confusion
matrix of the testing result. From the confusion matrix,
we can find the error for class 5, which is fear expression,
is the highest. For the database we use, Lyons et al.
(1998) generated it and considers fear expression to be a
e of the database.

st individuals with 10 runs.



Table 2
The confusion matrix for the testing

Input Classified as

Happy Sad Surprise Angry Disgust Fear Neutral

Happy 3 0 0 0 0 0 0
Sad 1 2 0 0 0 0 0
Surprise 0 0 3 0 0 0 0
Angry 0 0 0 2 1 0 0
Disgust 0 0 0 0 3 0 0
Fear 0 0 0 0 1 1 1

Neutral 0 0 0 0 0 0 3
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problematic expression for Japanese females because they
are not good at posing fear expression. Fig. 8 shows the
images of the four failures in testing. Ten best composite
operators are learned in 10 runs. Fig. 9 shows one of the
10 evolved composite operators in Lisp notation. After
computing the numbers of each computational primitive
operator and feature generation primitive operator among
the total numbers of two kinds of internal nodes (represent-
ing total computation primitive operators and total feature
generation primitive operators), we get the frequency of
Fig. 8. The four failure images in testing, from left to right: sad is classified as
classified as neutral.

((SPE_CENTER_MOMENT11_OP)( (MIN_OP)( (LEFT_OP)
F_DERIVATIVE_OP)( (SUB_OP)( (INPUT_OP)( (STDV_OP)(
(SPE_ABS_MEAN_OP)( (SUB_OP)( (VF_DERIVATIVE_OP)
P)( (MEAN_OP)( (SPE_MAX_OP)( (INPUT_OP: 20))))) ( (SPE
( (INPUT_OP: 22)( (INPUT_OP: 18))))))))) ( ( SPE_MEAN_OP
((MUL_OP)( (MIN_OP)( (ADD_OP)( (BINARY_MEAN_OP) (
((BINARY_MEAN_OP) ((MAX2_OP) ((SPE_MOMENT01_O
((SUB_CONST_OP) ((SPE_MAX_OP) ((INPUT_OP: 23))))))))
((HF_DERIVATIVE_OP) ((ADD_OP) ((UP_OP) ((SUB_OP) ((
((DIV_OP) ((INPUT_OP: 22)) ((INPUT_OP: 0))) ((LEFT_OP)(
((HF_DERIVATIVE_OP) ((SUB_CONST_OP) ((SPE_MAX_O
((SPE_MOMENT01_OP) ((ADD_CONST_OP) ((MIN2_OP) (
((LEFT_OP) ((ADD_CONST_OP) ((MIN2_OP) ((DIV_OP) ((IN
((INPUT_OP: 22))))))))) ((SUB_CONST_OP) ((SPE_MAX_OP
((SUB_CONST_OP) ((SPE_MOMENT01_OP) ((DOWN_OP) 
((SQRT_OP) ((SPE_STD_OP) ((INPUT_OP: 0))))))))))))))))))))
((SUB_OP) ((SPE_STD_OP) ((INPUT_OP: 23))) ((ADD_CONS
((LEFT_OP) ((MIN_OP) ((SUB_CONST_OP) ((SPE_MAX_OP
((SPE_MOMENT01_OP) ((LOG_OP) ((SPE_STD_OP) ((INP
((INPUT_OP: 23)))))))))) ((SQRT_OP) ((SPE_MIN_OP) ((SPE
((SPE_MAX_OP) ((INPUT_OP: 20))))))))))))))))))) ((INPUT_O
((SPE_STD_OP) ((SPE_MAX_OP) ((BINARY_MEAN_OP) ((
((INPUT_OP: 6)))) ((SUB_CONST_OP) ((SPE_MAX_OP) ((U
((SUB_CONST_OP) ((SPE_MOMENT01_OP) ((DOWN_OP) 
((SQRT_OP) ((SPE_STD_OP) ((DOWN_OP) ((INPUT_OP: 6))

Fig. 9. One of the learned composite operators, size is 151 (f
occurrence of computational primitive operators and fea-
ture generation primitive operators, which are shown in
Fig. 10(a) and (b). They show the total number of times
each primitive operator is used in the 10 runs. We run
our experiments on SunOS Ultra-60 workstation with
450 MHz CPU and 512 Megabytes memory. During train-
ing step, since we use GP and 10-fold cross-validation runs
on training set to train SVM classifier, the experiments run
slowly. Usually, it takes about 4 h to evolve one genera-
tion. However, once the training is finished, execution of
composite operators is simple and it runs fast. On the aver-
age run-time for one testing image is 5 s.

3.3. Comparison with other methods

Guo and Dyer (2003) manually marks 34 fiducial points
by hand and use various methods (see Table 2) on the same
database that we use. Thus, for each image, the extracted
feature vector is of dimension 612 (34 · 3 · 6), where they
select three scales and six orientations for Gabor filtering.
In our previous work (Bhanu et al., 2004), we use GP with
a Bayesian Classifier to perform the facial expression rec-
happy, angry is classified as disgust, fear is classified as disgust and fear is

( (MAX_OP)( (SPE_ABS_MEAN_OP)( (DOWN_OP)( (V
 (LOG_OP)( (MAX2_OP)( (SPE_STD_OP)( (MIN2_OP)(
( (MUL_CONST_OP)( (MIN_OP)( (MIN2_OP)( (MIN_O
_MIN_OP) ( (SPE_MOMENT10_OP) ( (SUB_OP)
) ( ( SPE_STD_OP)( (DIV_OP)( (MUL_CONST_OP)

(MIN_OP) ((SUB_CONST_OP) ((SPE_MAX_OP)
P) ((LOG_OP) ((SPE_STD_OP) ((INPUT_OP: 10) ))))
)) ((MUL_CONST_OP) ((DOWN_OP) ((RIGHT_OP)
INPUT_OP: 3)) ((ADD_CONST_OP) ((MIN2_OP)
(INPUT_OP: 22))))))) ((MEAN_OP)
P) ((BINARY_MEAN_OP) ((MAX2_OP)

(DIV_OP) ((INPUT_OP: 22) ((INPUT_OP: 0)))
PUT_OP: 22)) ((INPUT_OP: 0))) ((LEFT_OP)
) ((UP_OP) ((SQRT_OP) ((MUL_CONST_OP)
((MED_OP) ((SPE_CENTER_MOMENT11_OP)
))))))) ((INPUT_OP: 10))) ) ((SPE_MAX_OP) ((LOG_OP)
T_OP) ((BINARY_MEAN_OP) ((MAX_OP) ((MUL_OP)
) ((BINARY_MEAN_OP) ((MAX2_OP)

UT_OP: 10))))) ((SUB_CONST_OP)( (SPE_MAX_OP)
_MIN_OP) ((MUL_OP) ((INPUT_OP: 3))
P: 9)))) ((HF_DERIVATIVE_OP) ((SQRT_OP)
MAX2_OP) ((SPE_MOMENT01_OP) ((LOG_OP)
P_OP) ((SQRT_OP) ((MUL_CONST_OP)
((MED_OP) ((SPE_CENTER_MOMENT11_OP)
))))))))))))))))))))))))))))) )

eature generation primitive operators are shown in bold).



Fig. 10. Frequency of occurrence of primitive operators. (a) Frequency of occurrence of computational primitive operators. (b) Frequency of occurrence
of feature generation primitive operators.

Table 3
Comparison of the recognition accuracy

Bayes All (Guo
and Dyer, 2003)

Bayes FS (Guo
and Dyer, 2003)

AdaBoost (Guo
and Dyer, 2003)

Bayes GP (Bhanu
et al., 2004)

NL-SVM (Guo
and Dyer, 2003)

GP (this
paper)

Feature selection Hand Hand Hand Automatic Hand Automatic
Accuracy 63.3% 71.0% 71.9% 71% 91.9% 80.95%
# Features 612 60 80 25 612 35
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ognition. We compare all the results in Table 3. In Table 3,
‘Bayes All’ means the Bayes classifier without feature selec-
tion, which means 612 dimensional feature vector (Guo
and Dyer, 2003). ‘Bayes FS’ means Bayes classifier with
pairwise-greedy feature selection (Guo and Dyer, 2003).
‘NL-SVM’ means SVM classifier with nonlinear kernel
(Guo and Dyer, 2003). In our approach, we did not do
any pre-processing of the raw images. The input image is
the raw facial expression image. However, the other meth-
ods in Table 3 selected the fiducial points on a face image
manually and generated the Gabor coefficients as a feature
vector.

4. Conclusion

In this paper, we propose a learning algorithm for facial
expression recognition based on GP. The proposed
approach learns feature vector for facial expression recog-
nition without explicit estimation of object pose, without
any hand-tuned pre-process specific to a database. Thus,
our approach is automatic and database-independent.
Compared to the previous work, our experimental results
show that GP can find good composite operators. Our
GP-based algorithm is effective in extracting feature vec-
tors for classification. In our approach, we do not need
to perform any pre-processing of the raw image and we
do not need to find any reference points on the face. The
effectiveness of synthesized composite feature is dependent
on the effectiveness of primitive feature and the primitive
operators. It will be difficult for GP to evolve effective fea-
tures if primitive features do not capture the most signifi-
cant characteristics of the facial expression images. Thus,
it is important to design effective primitive features. With-
out any pre-processing on the facial expression images, our
approach is able to synthesize composite features in an
automatic manner and provides good classification
results.
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