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Functional template-based SAR image segmentation
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Abstract

We present an approach to automatic image segmentation, in which user selected sets of examples and counter-examples
supply information about the speci/c segmentation problem. In our approach, image segmentation is guided by a genetic
algorithm which learns the appropriate subset and spatial combination of a collection of discriminating functions, associated
with image features. The genetic algorithm encodes discriminating functions into a functional template representation, which
can be applied to the input image to produce a candidate segmentation. The performance of each candidate segmentation
is evaluated within the genetic algorithm, by a comparison to two physics-based techniques for region growing and edge
detection. Through the process of segmentation, evaluation, and recombination, the genetic algorithm optimizes functional
template design e4ciently. Results are presented on real synthetic aperture radar (SAR) imagery of varying complexity.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The segmentation problem involves partitioning an im-
age into regions which are homogeneous within themselves
and distinct from each other, according to some set of cri-
teria. There are a variety of approaches to image segmenta-
tion, including edge detection, region splitting/merging and
clustering-based techniques. Each of these approaches suf-
fers from sensitivity to parameters for thresholding, and/or
termination conditions. Still other approaches combine a
few of these methods. However, the underlying cause for
many of these algorithms to perform poorly is the inability
to specify how homogeneous a region should be and how
distinct bordering regions should be in an application de-
pendent manner.

A simpli/ed system diagram of the approach presented in
this paper is given in Fig. 1. The application dependency is
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overcome by allowing the user to interactively train the seg-
mentation tool for their own application. The image segmen-
tation is guided by a genetic algorithm (GA) which learns
the appropriate subset and spatial combination of a collec-
tion of functions, associated with image features, designed
to discriminate one image region from another. In an inter-
active session, the user selects a set of examples and a set
of counter-examples. The input SAR image is ‘denoised’ to
reduce the speckle eDect and then edge detection and region
growing (with example regions as the seed) are performed
on the denoised result. The example and counter-example
sets are used to scale the data and create histograms, which
quantify the class separation for a variety of features. Based
on histogram overlap, a set of discriminating functions is de-
signed to perform discrimination between the example class
and counter-example class.

A GA encodes these functions into a functional template
representation and produces a population of initial func-
tional templates. These functional templates are applied to
the input image to produce segmentations. The results of the
segmentations are evaluated using a /tness function, and the
population of functional templates are combined and modi-
/ed via a set of operations based on genetic evolution, in an
eDort to evolve an optimized segmentation agent. The
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Fig. 1. System for learning-integrated interactive segmentation.

process of segmentation, evaluation, and recombination, is
repeated for a given number of generations and the best re-
sult of the /nal generation (after post processing) is pre-
sented as output to the user. Although the GA evaluates
candidate segmentations via a comparison to region- and
edge-based techniques, these are only used as a guide for
the process of searching through possible segmentation out-
comes produced by the combinations of the discriminating
functions and their spatial arrangement. Since the discrim-
ination functions inherently contain classi/cation informa-
tion, it is possible to outperform the region- and edge-based
approaches that are used to evaluate the segmentation qual-
ity.

In the following Section 2, we provide background,
related work and the contributions of this paper. Section 3
provides the details of the technical approach. Section 4
presents experimental results and Section 5 presents the
conclusions of this paper.

2. Background, related work and contributions

Learning-based approaches have been explored to allow
segmentation to adapt to the appropriate problem domain
as well as incorporate new information about a given
domain quickly [1–4]. Bhanu and Lee [5] examine nu-
merous function optimization techniques including GAs,
simulated annealing and hybrid techniques such as the com-
bination of GAs and hill climbing. GAs suDer from poten-
tial premature convergence and computationally expensive
segmentation evaluation. Since simulated annealing relies
on slow ‘cooling’ to avoid local optima, it is inherently a
slow process. Neural networks can approximate Bayesian

performance with appropriate design, however, the training
process is often complex and design solutions are typically
not scalable. Further, they need large amounts of training
data, which are often unavailable.

In the context of image segmentation, classi/cation is
the problem of assigning meaningful labels to regions.
An equivalent formulation of the classi/cation problem is
assigning a label to each pixel, regions are then simply
the connected components of identical labels. Thus, in this
formulation segmentation and classi/cation are performed
simultaneously. Some typical pattern recognition tech-
niques applied to the classi/cation problem are Bayesian
[6], K-nearest neighbor [7], and template matching [8]
methods.

A traditional template classi/er applied to images speci-
/es a function of local intensities, typically represented as a
matrix of values. The template is correlated with the image
and the results are thresholded to produce a classi/cation
result. Functional templates modify this technique, such
that each element of the matrix is an index to a function.
The advantage of functional templates over standard tem-
plates is the potential for better discrimination, which may
occur when indexed functions are nonlinear. These func-
tions can also encode sensor-speci/c and/or class-speci/c
information into the functional template. Furthermore, it
provides a framework to combine information from multi-
ple features to potentially increase the discrimination power
over segmentation approaches based on a single feature.
The drawback of this technique is the need for functional
template design; that is, the selection of which functions to
incorporate and where to place them within the functional
template, which is di4cult due to the complex interac-
tions taking place between various features and associated
functions.

The work presented in this paper is an improvement over
previous functional template work. Large size (order of
20× 50) aspect dependent functional templates used for ob-
ject recognition were manually designed in Ref. [9], which
was a very time consuming process. In Ref. [8], functional
template design was automated, by limiting the design
space to simple single feature templates, where the selected
feature minimized Bayesian risk. The focus of our research
is the development of an approach which automates func-
tional template design that allows for multiple functions
and evaluate its performance for the segmentation of SAR
images.

2.1. SAR image segmentation

Algorithms developed for other types of imagery are not
directly applicable to SAR, because of the diDerences in
image properties. Although there is literature which per-
forms learning-based segmentation and/or classi/cation,
there are presently no interactive approaches such as the
approach presented in this paper [10]. Furthermore, all SAR
learning-based segmentation and/or classi/cation related
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work approaches the problem by producing a segmentation
and classifying the resulting regions rather than performing
pixel-level classi/cation as presented here. Li et al. [11]
assign classes to clusters using the distance from class
means obtained from training data. Baraldi and Parmiggiani
[12] use a neural network to cluster data using parameters
calculated on initial segments. Classi/cation of clusters is
then accomplished via domain dependent knowledge-based
classi/cation scheme. Learning-based segmentation has
also been explored with no attempt at classi/cation of the
resulting regions. Most learning-based segmentation at-
tempts use neural networks [13–15]; however, Gou and Ma
[16] present a clustering method which uses entropy-based
threshold to break the feature space into ‘mode’ and ‘valley’
regions. These ‘mode’ regions are further processed to pro-
duce a /nal segmentation. Still other approaches perform
segmentation without learning, then apply learning-based
classi/cation techniques to the segmented regions. Shoe-
makers et al. [17] use an edge detection and region growing
hybrid for segmentation and classi/cation of the resulting
regions with a neural network. Gagnon and Klepko [18]
also use neural networks for classi/cation but use direc-
tional thresholding and region growing for segmentation.
Soh and Tsatsoulis [19,20] perform segmentation using
dynamic local thresholding, but use clustering to perform
classi/cation of regions. Rogers et al. [21] use various
neural networks based approaches for preprocessing and
segmentation.

2.2. Genetic algorithms and image
segmentation/classi2cation

GAs are a learning technique based on biological evo-
lution. Given a population of candidate solutions, a /tness
function is used to evaluate each individual of the pop-
ulation. Each generation the individuals (i.e., candidate
solutions) are evaluated and recombined producing the
next generation’s population. Recombination is designed to
allow /t individuals to pass on important characteristics to
the next generation. Because the nature of genetic optimiza-
tion is randomized search from a number of search points
(the individuals), the approach is ideal for parallel imple-
mentation. GAs have been applied to optimize overall seg-
mentation quality [1,5,12,22,23], segmentation parameter
selection [4,5,24–27] and to feature design for pixel-level
classi/cation [28–30].

GAs have also been used to determine the optimal subset
of features for pixel-level classi/cation. The approach pre-
sented in this paper is one example of such work. Matsui et
al. [31] use an oLine GA to select the optimal combination
of feature indices for tissue classi/cation without testing the
neural network classi/ers into which features are incorpo-
rated. Campbell and Thomas [32] use an oLine GA to select
a subset of Gabor /lters requiring fewer convolutions for the
classi/cation technique in which they are eventually incor-
porated. Erdogan et al. [33] extract optimal texture features

from several co-occurrence matrix based texture measures
and training determines optimum ranges of the measures on
known texture regions.

2.3. Contributions of this paper

Unlike previous work on functional templates [9,34,35],
in this paper we design functional templates in a systematic
manner using GAs. Besides the selection of a subset of fea-
tures and associated functions, the GA determines the spa-
tial placement of functions within the template. During the
learning process, segmentation evaluation is performed by a
comparison of candidate segmentation to two segmentation
techniques: edge- and region-based. These are physics-based
techniques that incorporate SAR-speci/c information to pro-
duce a segmentation using a log likelihood ratio test where
the distributions used in the test are speci/cally developed
for SAR imagery. The novel /tness function, compares a
candidate segmentation to portions of the physics-based re-
gion and edge estimates using two terms. The region term
encourages a segmentation to correctly classify pixels within
the region from which the examples were selected. The edge
term encourages regions classi/ed as example regions to
have edges coinciding with image edges. A prototype of the
system has been developed and tested on SAR imagery. Our
experimental results show that genetically designed func-
tional templates perform better than functional templates de-
signed using the Bayesian best feature.

3. Technical approach

Fig. 1 presents an overview of the approach to image
segmentation. The input to the system is an image. Since
the system is designed for segmentation of SAR imagery,
the input image is denoised. While the system is denoising
the image and features are calculated, an interactive session
with the user occurs, where example and counter-example
sets of pixels are selected. The examples provide input to a
region growing process performed on the denoised image,
whose results in combination with edge-detection results are
used to perform segmentation evaluation within the GA. In
addition, examples and counter-examples are used to cre-
ate a discriminating function for each feature. The features,
represented by their corresponding discriminating functions,
are then incorporated into functional template design, which
is optimized over successive generations of the GA. When
the GA terminates, results are presented back to the user
after postprocessing.

3.1. Pre-learning phase

This subsection discusses the aspects of the approach
which occur before or after the GA attempts to optimize
the functional template design in the learning phase. The
pre-learning components of the approach include user-
interaction, wavelet denoising, computation of physics-based
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segmentations for evaluation, feature calculation, discrimi-
nating function design and calculation of associated weights.

3.1.1. User-interaction
During the user-interaction the image is simply displayed

and an example set and a counter-example set are selected
by the user. Since, the examples represent class !1 and
the counter-examples represent any other classes present in
the data, the approach is inherently a two-class segmenta-
tion/classi/cation (which is extended to N-class segmen-
tation in Section 4.2). Once the system presents results
to the user, the following things can happen: (a) the user
accepts the results on the test image. (b) the user selects
diDerent examples and counterexamples. For the results
presented here, the user selects only one example and
one counter-example. This user-interaction in the form of
examples and counter-examples is the reason for the appli-
cation independent nature of the approach because the user
is allowed to train the segmentation system for the applica-
tion at hand.

3.1.2. Wavelet denoising
Wavelet denoising is applied to dB SAR imagery to re-

move additive noise without loss of spatial resolution. The
procedure for speckle reduction depends on the initial shift
of the signal. However, a shift invariant result is obtained
by averaging the results for all possible shifts of the input
signal (as described by Odegard et al. [36]).

3.1.3. Physics-based segmentation for evaluation
The set of examples is input to a region growing algo-

rithm whose results are used later, with the results of an
edge-detection algorithm, in evaluating the /tness or quality
of candidate segmentation results in the learning phase of the
approach. However, the region growing and edge-detection
results can be calculated before the learning phase, so that
only the comparison between these results and the candidate
solution need be computed while the GA is learning.

A physics-based edge-detection test and two physics-based
segmentation algorithms (which use the test) are presented
below, all of which incorporate the SAR speckle model.
Both segmentation algorithms are based on the cartoon
model [37], which states that images are made up of re-
gions, which are separated by edges, and that regions are
homogeneous according to some criterion. This criterion is
assumed to be radar cross-section (RCS, denoted as �◦).
Because regions are separated by edges according to this
model, a test which determines whether an edge is present
can be used for both the region growing and edge detection
algorithms.

While we implement a 2-D edge-detection algorithm, for
simplicity, the following discussion is based on a 1-D ver-
sion [37]. A maximum likelihood test for detecting edges
based on a model of SAR speckle states

P(I) =
M∏
k=1

1=�◦ exp[ − Ik =�
◦]:

Fig. 2. Edge detection algorithm subwindows for detecting edges
every 45◦.

The test determines whether an edge is present at position
k in a one-dimensional window containing M pixels with
intensities I1; I2; : : : ; Ik ; : : : ; IM .

The window is assumed to contain either one or two
regions. If the window contains two regions, A and B, their
respective RCS are �◦

A and �◦
B , otherwise �◦

0 = �◦
A = �◦

B .
Given the speckle model, the joint probability of such a
window is

PA;B(�
◦
A; �

◦
B |Ij; k) =

(
k∏

j=1

1=�◦
A exp − Ij=�

◦
A

)

×

 M∏

j=k+1

1=�◦
B exp − Ij=�

◦
B


 :

OIX estimates the RCS of a region X as the mean of the
portion of the region contained in the window, where lower
subscript o refers to the entire window. Given this, the log
likelihood estimate of detecting an edge is reduced to

�D(k) = −k ln OIA − (M − k) ln OIB + M ln OI 0:

The sensitivity of this test is based on the threshold, which
can be chosen according to false alarm probabilities derived
from the distribution of OIA= OIB. Since the value of this ratio
is ideally 1, if only one region is represented in the window,
thresholds t2 and t1 must be chosen above and below 1, re-
spectively. (Edges occur where �D �∈ [t2; t1].) These thresh-
olds can be related to �D via the following two equations:

�D(k) = −k ln t1 −M lnM

+M ln[M − k + kt1]; t1 ¡ 1;

�D(k) = k ln t2 −M lnM + M ln[M − k + k=t2]; t2 ¿ 1:

3.1.4. Edge-detection
The 2-D edge detection approach is a computationally

e4cient extension of the 1-D method described above that
is designed to smooth the RCS estimates and detect edges
at 45◦ increments in a single pass. Each orientation divides
a window into two regions, A and B, each with 4 adjacent
sub-windows as shown in Fig. 2.



B. Bhanu, S. Fonder / Pattern Recognition 37 (2004) 61–77 65

The following pseudocode describes the algorithm:

for each pixel{
calculate intensity subtotals for each of the eight subwindows.
for each orientation{
Compute region A and region B means
(left and right side of the assumed orientations) from the
eight subtotals.

Compute edge magnitude.
}
Record max edge magnitude and the orientation which

produced it.
}
pixels with edge magnitudes in the top 20% are marked as edges.

A 12× 12 window is used to obtain reliable estimates of
the RCS. Because of this, the algorithm produces very thick
edges which are thinned by unmarking edge pixels whose
edge magnitude is not the local maximum of its 8-neighbors,
reducing edges to a single pixel width. When used with
measures such as edge–border coincidence for /tness com-
putation, the region boundary would have to match thinned
edges exactly. In order to provide more Pexibility to seg-
mentation evaluation measures, the edges are thickened to
a width of 3 pixels, by marking the pixel on either side of
each thin edge pixel.

3.1.5. Region growing
The region growing algorithm starts with the example

pixels as a seed. It uses 5× 5 blocks in order to /nd a reliable
RCS estimate for the region the block is in. There are two
thresholds, above and below the value one, which are used
by the edge test to determine whether to merge the blocks.
Since a result that ‘overgrows’ the region would misguide
the /tness function, conservative thresholds are empirically
determined. The following pseudocode describes the region
growing algorithm.

while (merged>0){
set merged = 0
for each 5× 5 block around the perimeter of the current

grown region{
Apply the edge test to compare the 5× 5 block and the

grown region
if (0.8 ¡= edge magnitude ¡= 1.2){

merge block into grown region
set merged=merged+1;

}
}

}

3.1.6. Features
Table 1 lists the features used in this work. The index

associated with a given feature is used consistently to re-
fer to the discriminating function based on that feature
in functional templates. The /rst seven features represent

local image intensity statistics, while the remainder spec-
ify means or standard deviations of Gabor wavelet /ltered
images. Two scales (13× 13 and 11× 11) and four ori-
entations (0◦; 45◦; 90◦; 135◦) of Gabor wavelet /lters are
used and then means and standard deviations are calcu-
lated from a 13× 13 area rather than the entire image in
order to have a feature value at every pixel. The 13× 13
local area was chosen empirically, because it provided
a better estimate than smaller areas while still providing
Puctuation from pixel to pixel. Also, areas larger than this
caused biased feature values on larger areas of the image
boundary.

3.1.7. Discriminating functions and weights
Given the example and counter-example sets as well as

the feature images, a discriminating function and a weight
are calculated for each feature. The design of the function
is automated by a set of equations which measure the over-
lap of example and counter-examples in the feature value
histogram. The weight associated with this discriminating
function is based on the Bayesian classi/cation error

of the feature. Before calculating discriminating functions,
feature values are scaled to the range [0; 255] by mapping
the mean � to 128 and � ± 3� (� is standard deviation) to
0 and 255, respectively.
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Table 1
Features used and their corresponding indexes

Index Feature

0 Intensity
1 3× 3 local mean
2 3× 3 local standard deviation
3 5× 5 local mean
4 5× 5 local standard deviation
5 7× 7 local mean
6 7× 7 local standard deviation
7 Scale: Large, Orientation: 0◦ mean
8 Scale: Large, Orientation: 45◦ mean
9 Scale: Large, Orientation: 90◦ mean
10 Scale: Large, Orientation: 135◦ mean
11 Scale: Small, Orientation: 0◦ mean
12 Scale: Small, Orientation: 45◦ mean
13 Scale: Small, Orientation: 90◦ mean
14 Scale: Small, Orientation: 135◦ mean
15 Scale: Large, Orientation: 0◦ standard deviation
16 Scale: Large, Orientation: 45◦ standard deviation
17 Scale: Large, Orientation: 90◦ standard deviation
18 Scale: Large, Orientation: 135◦ standard deviation
19 Scale: Small, Orientation: 0◦ standard deviation
20 Scale: Small, Orientation: 45◦ standard deviation
21 Scale: Small, Orientation: 90◦ standard deviation
22 Scale: Small, Orientation: 135◦ standard deviation

The histogram of examples and counter-examples has 255
bins, where a feature which discriminates well should have
example pixels near the mean and most counter-examples
at the extreme values. The following function, Fl (patterned
after [33]) is then applied to each bin, l, of the example and
counterexample histogram, denoted by El and Cl, respec-
tively, to produce a score for that feature value. Bins with
many examples and few counter-examples produce high
scores, while the opposite case produces low scores. The
function H (:), clips values to the range [0; 1]. The parame-
ters of H (:) determine histogram overlap, while the 16 and
−16 factors scale the result. Special cases are handled when
there are no examples, no counter-examples, or both. The
discriminating function is given by

Fl =


0:0 if El=0 and Cl=0;

16×H

(
4×

(
El=

255∑
l=0

El

))
if Cl = 0;

−16×H

(
4×

(
Cl=

255∑
l=0

Cl

))
if El = 0;

16×H ((1=39)×((El=Cl)−1)) if El¿Cl;

−16×H ((1=39)×((Cl=El)−1)) otherwise:

The Bayesian weight, Wl, associated with the discrimi-
nating function is de/ned as

Wl = 1:0 −
(

2×
255∑
l=0

min(Cl; El)
(Cl + El)

)
:

3.2. Learning loop

The learning loop consists of image segmentation, seg-
mentation evaluation and evolutionary template design pro-
cesses that use a GA approach for optimization. Although
the design decisions such as representation, operator design,
parameter selection, and /tness function design are done be-
fore the learning phase, they are discussed here because of
their relevance to the GA.

The design of the functional template of a given size re-
quires a solution of a combinatorics problem. For example,
for 20 functions, the size of the search space for a 3× 3
template is 512 billion. We use GAs as function optimizers
[5] for functional template design since they allow the pos-
sibility of achieving the global maximum without exhaus-
tive search. The appropriate combination and arrangement
of discriminating functions are optimized by the GA for
good segmentation results. A GA is composed of a popula-
tion of candidate solutions, or individuals. In this research,
an individual is a functional template, represented as a 2-D
array of binary strings. The binary to decimal conversion of
each bit string gives the index of the discriminating func-
tion represented for that location in the functional template.
Each discriminating function is developed from a single fea-
ture, and referenced by the index associated with that fea-
ture. Features and their indexes are given in Table 1. Size
large and small refer to 13× 13 and 11× 11, respectively.
Features 0 to 6 are intensity based features, and features 7
to 22 are Gabor wavelet based features.

3.2.1. Segmentation
After randomly generating generation zero, the initial

population of the GA, the segmentation associated with
each functional template is then produced using the func-
tional template classi/cation rule:

M=2∑
i=−M=2

N=2∑
j=−N=2

Wi;j × Si; j(I(a + i; b + j))¿t

Assign I(a; b) to class !1;

M=2∑
i=−M=2

N=2∑
j=−N=2

Wi;j × Si; j(I(a + i; b + j))6 t

Assign I(a; b) to class !2:

The above equation describes the classi/cation of an im-
age pixel I(a; b) using a (M +1)× (N +1) functional tem-
plate T . Si; j denotes the discriminating function Fl indexed
at position T (i; j) of the template and Wi;j is the weight (Wl)
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associated with function Si; j . In this paper, all templates are
3× 3 and the threshold t = 0.

After producing a segmentation for each individual, the
segmentations are evaluated by the /tness function described
in the next subsection.

3.2.2. Segmentation evaluation and 2tness function
Once an image segmentation result on an image has been

obtained, we need to evaluate its quality using a /tness func-
tion. In real applications groundtruth information is gener-
ally not available. In our approach, all that is known about
the image is that the user selected example set is part of
a region corresponding to class !1 and the user selected
counter-example set is part of a region corresponding to
class !2. The /tness function is made up of two terms, a
region term, T1, and an edge term, T2.

The intuition for the region term of the /tness function is
the desire to /ll in as much of the example region as possible.
The region term uses the grown region as the groundtruth
region. Thus, if R is the set of pixels in the segmented ex-
ample region, a candidate segmentation (the region incor-
porating the example set) and G is the set of pixels from the
grown region

T1 = n(G ∩ R)=n(G);

where n(X ) is the number of pixels in set X .
If only the region term were used for /tness, a segmenta-

tion which classi/ed all pixels as !1 would receive the same
value as a segmentation that classi/ed all pixels correctly.
However, the /tness function should not prevent other re-
gions in the image from being classi/ed as belonging to class
!1, since other regions pertaining to class !1 may be con-
tained in the input image. Intuitively, the second /tness term
should prevent evolved segmentations from having regions
which ‘overrun’ their region boundaries. The edge term is
de/ned below, where S is the boundary of the region in the
segmentation image and E is the set of detected edges within
the minimum bounding rectangle of the region growing re-
sult, extended 10 pixels in each direction. This is essentially
edge border coincidence (EBC) within a limited area of the
image, multiplied by a factor of 3. Because edge detection
/rst thins edges to 1 pixel and then dilates them again to
a width of 3 pixels, n(E) is typically 3 times as large as a
good segmentation boundary. So, edge border coincidence
is multiplied by 3 to account for this eDect. Thus, edge term,
T2, is de/ned as

T2 = 3× n(E ∩ S)=n(E):

Combining the region term and the edge term, the overall
/tness is then de/ned as

fitness function = (T1 + T2)=4:

3.2.3. Evolutionary template design
Having evaluated every individual in a generation N , gen-

eration N + 1 is obtained through a recombination process

consisting of the application of three genetic operators: se-
lection, crossover, and mutation. Selection is applied twice,
to select high /tness individuals for input to the crossover
operator, which swaps discriminating function indexes be-
tween the selected individuals, the parents. The output of
each application of the crossover operator are two new in-
dividuals, the children, who replace low /tness individuals
from the population, also chosen by the selection operator.
After crossover, the mutation operator is applied to the en-
tire population. Evolution is completed when the termina-
tion criteria are met.

Selection: A standard tournament selection method was
used. Tournament selection is the random selection of a
subset (of a certain size) from the population. From this sub-
set, the individual with the highest /tness or lowest /tness
is chosen when selecting for crossover or replacement (i.e.,
death), respectively.

Crossover: Crossover is the combination of two indi-
viduals to produce two new individuals and its rate is the
percentage of the population to participate in crossover each
generation. A crossover operator that preserves the 2-D
spatial information has been developed, based on the hy-
potheses that spatial layout of information in the template
is important. Crossover is performed by randomly selecting
two locations in the functional template to de/ne a rectan-
gle. The /rst location corresponds to the upper right corner
of a rectangle and the second to the lower left. Copies of the
rectangle are placed on both parent functional templates, and
elements within the rectangle boundary are swapped. In our
crossover method bias is removed by allowing the selected
rectangle to conceptually wrap around in both horizontal
and vertical directions (this makes the probability of a given
element to be swapped equal for every element in the func-
tional template). This crossover operation is illustrated in
Fig. 3 where the selected locations are marked on parent 1,
while the rectangle resulting from this selection is indicated
on parent 2.

Mutation: For mutation, the standard operator was cho-
sen. That is, each bit in the representation of the functional
template is Pipped (i.e. mutated) with probability p�, where
p� is the rate of mutation.

The /nal output of the GA, the evolved functional tem-
plate is the functional template with the highest /tness in
the /nal generation.

3.3. Post-processing

Post-processing is performed after the GA terminates
and consists of two tasks: false positive removal and false
negative 2lling. False positives occur when pixels belong-
ing to the counter-example class are incorrectly classi/ed
as belonging to the example class. False positive removal
/nds the connected components using the segmentation re-
sults and removes any component making up less than X%
(default: X = 1) of the image. False negatives occur when
pixels belonging to the example class are classi/ed as
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Fig. 3. Illustration of a crossover operator incorporating 2-D wrap
around.

belonging to the counter-example class. False negative 2ll-
ing looks at each pixel which is unmarked, if Y (default:
Y =6) or more of its 8-neighbors are marked with the iden-
tical class labels the pixel is assigned this class label.
N -class post-processing consists of an additional process-

ing step.N -class classi/cation is actually performed as N+1
class classi/cation, where the N + 1th class is an unknown
class consisting of pixels not belonging to classes 1 through
N . If there are known to be onlyN classes present in the data,
majority 2ltering is performed to reclassify pixels which
were originally classi/ed to class N + 1. These pixels are
reclassi/ed as the class that the majority of its neighbors
were assigned to.

4. Performance results and analysis

Several experiments are performed using real SAR im-
ages to demonstrate the performance of the technique. They
include two-class and multiple class experiments. Also ex-
periments are shown where the evolved functional tem-
plates obtained during training are applied to a new image.
Further, experiments are performed that demonstrate the ef-
fectiveness of the crossover operator. For all of these exper-
iments the value of parameters used in the algorithms are
kept the same. These parameter settings are: template size
3× 3, population size 100, tournament size 10, crossover
rate 0.25 and mutation rate 0.01, number of generations=10.
The edge detection picks up the important edges, but lots of
extra edges as well. Fortunately, most are outside of ±10
pixels of region growing estimate and these are the only
edge pixels used by the /tness function.

Several measures of segmentation quality are presented
for experiments which demonstrate the quality of evolved
segmentations. The /tness function and its individual com-
ponents are used for both evaluation and interpretation of
results. The /tness of an individual demonstrates the evolu-
tionary performance, while the terms of the /tness function
add intuition about their relative importance and interaction.
All of the additional measures use groundtruth information
and are not used during evolution, but are useful for /nal
quanti/cation of results.

The percentage of Pixels Classi/ed Correctly (PCC) is
de/ned as

PCC = max(1 − [(n(G) − n(G ∩ R))

+ (n(R) − n(G ∩ R))=n(G)]; 0);

where n(X ) is the number of pixels in the set X; G is the
set of pixels which belong to class !1 from the groundtruth
image, and R is the set of pixels classi/ed as belonging to
class !1 in the segmented image. PCC measures the overall
performance, but can sometimes be misleading. This is par-
ticularly true when there are many more counter-example
pixels than example pixels or vice-versa. As this is often
the case, it gave rise to three additional measures, example
accuracy (EA), counter-example accuracy, and normalized
percent pixels classi/ed correctly (NPCC). These measures
are de/ned below where R; G, and n(X ) are de/ned as
above and X ′ is the complement of X . NPCC is particu-
larly useful as it gives more meaningful results in the cases
where PCC is misleading, because it is normalized by the
class populations

EA = n(R)=n(G);

CA = n(R′)=n(G′);

NPCC = (EA + CA)=2:

EA is of most concern since templates are trained to dis-
criminate the example class in later testing images. However,
EA does not penalize for segmentations which ‘overrun’ the
example region and include many counter-examples. Thus,
both EA and CA must be considered for analysis.

Evolved results are compared to three default seg-
mentations (Bayesian, PCC, and NPCC), which use a
single feature in all functional template locations. The
Bayesian default selects the (discriminating function) fea-
ture which minimizes classi/cation error for the example
and counter-example sets. (In our discussion in this section
we use the word feature and discriminating function inter-
changeably.) However, the remaining two defaults utilize
groundtruth. Single feature templates are exhaustively ap-
plied to the image and the segmentation corresponding to
the feature which maximizes PCC is selected for the PCC
default. Similarly, the segmentation corresponding to the
feature which maximizes NPCC is selected for the NPCC
default. Often two or more of the defaults select the same
feature, and thus correspond to the same segmentation.
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All SAR data in these experiments are obtained from the
MSTAR (public) clutter data set. All images are one foot
resolution X -band data at a 15◦ depression angle. In the
experiments, borders of examples are marked in yellow and
blue, and border of counter-examples are marked in green
and purple.

Fig. 4. Paved road vs. /eld: (a) original image with examples
(yellow/blue) and counter-examples (green/purple), (b) denoised
image with ground truth (red), (c) region growing (Red) and (d)
edge results.

Fig. 5. Paved road vs. /eld results.

4.1. Two-class image segmentation

This subsection provides details on three typical experi-
ments and a discussion on the overall two-class results.

4.1.1. Example 1: paved road vs. 2eld
Fig. 4 shows the original image, results of denoising, re-

gion growing, and edge detection, as well as ground truth
for the image with paved road and /eld. Fig. 5 presents the
overall results which include segmentation results and the
corresponding templates. Feature 8 is the best Bayesian fea-
ture (which also happens to be the best feature for NPCC),
feature 5 is the best feature for PCC. The /nal evolved re-
sults are better than the best Bayesian and the best PCC
default, both according to PCC and NPCC.

In the evolved results, every template has 3 or 4 instances
of the local intensity features, involving some combination
of intensity and 3× 3 mean. It is apparent from the PCC
default that intensity features do much of the classi/cation;
however, the boundary and some gaps inside the example
area are compensated for by other features, such as local
intensity standard deviation and Gabor standard deviation.

4.1.2. Example 2: paved road vs. grass
The region growing and edge detection results for paved

road vs. grass are given in Fig. 6 along with original and
denoised images, example/counter-example sets and ground
truth. Region growing /nds just over half of the road, as
the region only grew downward. Edge detection /nds the
edges of the road particularly well, as well as some tex-
ture edges in the grass class. Although a few of the extra
texture edges are included in the /tness term, the majority
are excluded. The evolved segmentation results in Fig. 7
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are better than the default results. It is not surprising then,
that evolved results have signi/cantly better example accu-
racy performance and have nearly perfect counter-example
accuracy, which is consistent with the defaults. Thus, the
evolved results are signi/cantly better than default segmen-
tations according to the NPCC. (The PCC does not show
this improvement as dramatically since example pixels
represent only 23% of the image.) The intensity feature

Fig. 6. Paved road vs. grass: (a) original image with examples
(yellow/blue) and counter-examples (green/purple), (b) denoised
image with ground truth (red), (c) region growing (red) and (d)
edge results.

Fig. 7. Paved road vs. grass results.

was the most common in the evolved results (Fig. 7). This
is also not surprising as it was the selected feature for both
NPCC and PCC defaults. However, most of the example
area can be classi/ed correctly with an average of four in-
stances of this feature, leaving the remaining template posi-
tions for other features to improve performance. Boundary
accuracy and edge term improve with the remaining func-
tions, typically 90◦ and 135◦ orientations of the small scale
Gabor standard deviation feature. These features make in-
tuitive sense for edge performance in this image as they are
aligned with the orientation of the road.

4.1.3. Example 3: river vs. 2eld
The data and the results for river vs. /eld are shown

in Figs. 9 and 10. The region growing did well, capturing
almost all of the river class and none of the /eld class. The
edge detection captures all of the rivers edges, with very
few gaps (Fig. 8).

However, several false edges and texture edges are also
detected, many of which will be included for /tness eval-
uation. Evolved results perform better than the defaults in
terms of both the region term and the edge term. Demon-
strating the eDectiveness of the /tness function, example
accuracy is higher for the evolved templates as well.
Unfortunately, counter-example accuracy is signi/cantly
lower than that of the defaults. Despite the fact that the
PCC of evolved templates is signi/cantly lower due to
counter-example performance, example accuracy improved
enough that in terms of the NPCC evolved template
performance is signi/cantly better. Because the exam-
ple class comprises only 17% of the image, the NPCC
is the more applicable term. The intensity and 3× 3
mean features perform most of the classi/cation and thus
use most of the positions in the template. On average
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there are seven instances of some combination of these two
features (approximately /ve of intensity and two of 3× 3
mean). Thus, NPCC/PCC single feature defaults are incor-
porating too much smoothing and the genetic algorithm com-
bines features in an eDort to produce the correct amount of
smoothing. Remaining positions are /lled solely with Ga-
bor standard deviation features, which help both for region

Fig. 8. River vs. /eld: (a) original image with examples (yel-
low/blue) and counter-examples (green/purple), (b) denoised im-
age with ground truth (red), (c) region growing (Red) and (d)
edge results.

Fig. 9. River vs. /eld results.

and edge term performance. The most frequently selected
of these are the small scale 0◦ and 135◦ orientations.

4.1.4. Discussion on two-class experiments
We have carried out these experiments on many im-

ages. In addition to the three two-class examples discussed
above, we have also used lake vs. grass, lake vs. /eld,
unpaved road vs. /eld and grass vs. /eld. We /nd that
evolved templates consistently outperform the Bayesian
default. Only in highly textured examples where /tness
was misguided did the improvement over the Bayesian
default fall below 1% for both PCC and NPCC. For all
other experiments, the improvements were dramatically
better. It is clear that example accuracy improved over the
default for most examples. Furthermore, counter-example
accuracy typically stabilized or improved due to post-
processing.

Fig. 10. (a) Original image and (b) ground truth image (lake-red,
grass-blue, road-green).
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Fig. 11. Lake vs. paved road vs. grass results.

The reasons for improvement over the Bayesian single
feature default are:

• Examples and counter-examples may not fully characte-
rize the classes.

• If a priori probabilities are assumed to be equal, the
weighting of each pixel in terms of classi/cation er-
ror is equal as in the PCC. This is biased for images
with large discrepancies between example class and
counter-example class.

• Placing the Bayesian best feature in all template positions
generally implies an additional smoothing of the result.

In addition, evolved results perform at least as well or
better than the NPCC/PCC defaults. Note, however, that
while Bayesian and evolved results train only on the ex-
ample and counter-example regions, NPCC/PCC defaults
use the ground truth for the entire image to select the best
feature. Despite this disadvantage, evolved results typically

outperform NPCC/PCC defaults at example boundaries.
Thus, for the set of experiments with higher example region
perimeter/area ratio, (paved roads and the river examples)
the evolved results are signi/cantly better. We have found
that when the perimeter/area ratio of the example region is
lower, the evolved results are consistent with the NPCC/PCC
defaults.

Most improvement due to evolution occurs within the
/rst few generations. At this time the GA is typically opti-
mizing the region term, until it reaches a plateau. However,
the improvement in early generations can be misleading.
This is improvement of the initial random templates of
the population, not over default templates. Later genera-
tions typically re/ne the segmentation by optimizing the
edge term. These optimizations may have less eDect in the
overall improvement from randomness but are crucial to
improvements in boundary accuracy, which typically is the
margin of improvement over the single feature default
templates.



B. Bhanu, S. Fonder / Pattern Recognition 37 (2004) 61–77 73

4.2. N -class image segmentation—lake vs. paved road vs.
grass

Fig. 10 presents the original image and ground truth for
this experiment. The original image is 256× 256, and con-
tains 22.5% Lake pixels (red), 14.7% Road pixels (green),
and 62.8% Grass pixels (blue). N -class segmentation results
are generated using hierarchical 2-class classi/ers. The grass
classi/er is applied /rst, followed by the road classi/er, and
/nally the lake classi/er. Any pixel not assigned to one of
these classes is handled by majority /ltering. Fig. 12 shows
the experimental results after false positive removal, false
negative /ll-in, and majority /ltering. The single feature de-
faults and a typical GA result are given, along with con-
fusion matrices and a table summarizing their NPCC/PCC
performance. Although the evolved segmentation performs
better than any default for the road region, it does not per-
form as well as the NPCC/PCC default for the grass and
lake regions. Thus, evolved segmentations are signi/cantly
better than the Bayesian default and are consistent with the
NPCC/PCC default (Fig. 11).

4.3. Evaluation of functional template design

The design of functional templates can be empirically
evaluated by testing templates designed for a speci/c class
on similar images. To accomplish this, some data must be
preserved from the training of the template: the example set
mean and standard deviation, discriminating functions, and
Bayesian weights associated with discriminating functions.

4.3.1. Example: lake vs. grass
Fig. 12 shows the training and testing images used in this

experiment. Both are 128× 128 images containing visually
similar data. Fig. 13 summarizes the training phase of the
experiment showing the original image with example and
counter-example set selection, denoised image with ground
truth, as well as the region growing and edge detection re-
sults. To verify that the region growing result is correct, de-
spite the missing areas in the middle of the lake region, the
histogram equalized denoised image is also presented. It is
visible from this image, Fig. 13(e), that the areas missed by
region growing are statistically diDerent. The /nal image in
the /gure is a typical evolved segmentation for the training
image.

The results are presented in Table 2. The evolved tem-
plates (averaged over 10 runs with diDerent random seeds)
perform consistently with the NPCC/PCC single feature
default segmentation for all criterion and outperform the
Bayesian default segmentation by over 1% for all measures
except counter-example accuracy, for which performance is
consistent. These same evolved templates are applied to a
second, testing image, to evaluate template design. The re-
sults on this testing image are slightly lower, but are still
consistent with the training image for all measures. Further-
more, no single feature template outperforms the evolved

Fig. 12. Original SAR Image with training subimage (yellow) and
testing subimage (red).

result on the testing image. The average of the evolved re-
sults over 10 random seeds is consistent with the NPCC/
PCC default for all criterion and signi/cantly outperforms
the Bayesian default.

4.4. E=ectiveness of crossover operator

Fig. 14 presents the genetic algorithm’s /tness optimiza-
tion, both with and without the crossover operator, for the
/rst three examples and another example of lake vs. grass.
After a small number of generations it is expected that a well
designed crossover operator will outperform evolution with
no crossover operator. For the system prototype, this trend
is evident, within ten generations. The value of the /tness
of the best individual of each generation is plotted for each
system run. In all cases, the crossover operator improves the
optimization performance of the genetic algorithm.

4.5. Computational e>ciency

The system shown in Fig. 1 was implemented on a
SUN Ultra II workstation which has a 200 MHZ CPU.
To measure the system’s capability for interactivity, sev-
eral timing experiments were performed measuring ef-
/ciency of various segments of the prototype. Each of
the user CPU time measurements presented in Table 3
is the average of measurements collected from four sep-
arate experiments on 128× 128 images, each of which
was run ten times. The total system user cpu time av-
erage is 40:96 s, given that the genetic algorithm is run
for 10 generations. Of the total time the pre-learning
portions of the code (not including post-processing)
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Fig. 13. Lake vs. grass training data: (a) original image with ex-
amples (yellow/blue) and counter-examples (green/purple), (b) de-
noised image with ground truth (red), (c) region growing (red),
(d) edge results, (e) histogram equalization of denoised image and
(f) GA segmentation result.

Table 2
Summary of lake vs. grass template design experiment

Bayes default NPCC/PCC default GA result Ave. (10 seeds)

Template
1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

0 19 17
0 0 20
0 0 0

Training PCC 0.960 0.984 0.987 0.984
image NPCC 0.961 0.984 0.987 0.984
128× 128 EA 0.922 0.969 0.974 0.970

CA 1.000 1.000 0.999 0.999

Testing PCC 0.951 0.979 0.980 0.979
image NPCC 0.962 0.984 0.985 0.983
128× 128 EA 0.924 0.967 0.970 0.967

CA 1.000 1.000 1.000 1.000

took 7.28 cpu seconds, approximately half of which is com-
prised of feature computation. However, for a completely
interactive system, in which the user can review the seg-
mentation result and re/ne example and counter-example
selection, feature computation needs to be performed for
the /rst pass only. Initialization of the genetic algorithm
population took 5.2 cpu seconds, longer than other gen-
erations due to the need to generate and evaluate every
individual in the population. Later generations, which per-
form selection, crossover, and mutation operations as well
as evaluation of new individuals took on average 3.44 cpu
seconds and represent the bottleneck of the approach, as
would be expected. However, if the genetic algorithm is
terminated after ten generations as in our experiments, evo-
lution would take an average of 34 s, which is still within
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Fig. 14. Evolution of /tness both with and without crossover.
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reason for user interactivity. In addition, it should be noted
that although e4ciency was considered in the implemen-
tation of the prototype as noted in the approach, extreme
attempts at optimizations were not made. E4ciency could
be improved by (a) taking more extreme eDorts in im-
plementation, (b) using faster processors, and (c) utilizing
parallelizable nature of the genetic algorithm. With such
improvements not only the computation time can be sig-
ni/cantly reduced but also larger populations and longer
evolution periods could be considered while still maintaining
interactivity, which would allow more of the search space
to be explored.

5. Conclusions

Functional templates can be used for successful interac-
tive segmentation and classi/cation of SAR imagery using
the approach developed in the system prototype discussed
in this paper. Furthermore, functional templates can be re-
tained for successful segmentation and classi/cation of sim-
ilar images in the future. The success of the prototype is
described in four parts: genetic learning for functional tem-
plate design, the physics-based segmentation evaluation, the
crossover operator and the /tness function. Experimental
results demonstrate that genetic learning is successfully ap-
plied for design of functional templates. Evolved templates
select meaningful features, which complement each other
for improved segmentation quality over any single feature.
Evolved segmentations consistently outperform segmenta-
tions derived from the Bayesian best single feature and
typically perform at least as well, if not better than segmen-
tations derived from the actual best single feature defaults.
Real SAR data was also used to illustrate the extension to
N -class segmentation.

Physics-based segmentation incorporates SAR-speci/c
information into the region growing and edge detection
algorithms used for segmentation evaluation of the evolved
templates. These algorithms, while not optimum, are used
only in the example regions for comparisons to the evolved
results and they have proven to be a suitable benchmark
for optimizing the evolved results for the entire image. The
crossover operator is successful at optimizing the /tness
during evolution. This crossover operator provides a mech-
anism for preserving important spatial information about
the arrangement of functions in the functional template. For
all experiments, the /tness was clearly increasing as the
functional templates evolved.

The margin of improvement for evolved segmentations
typically occurs at the boundary of the image, illustrating
the power of the /tness function. Given reasonable region
growing and edge detection results the /tness function is
eDective for optimizing example accuracy. The region term
successfully ensures correct classi/cation of most of the pix-
els within a region (or at least the parts similar and adjacent
to the example set). This term is typically improved to some
level in the /rst few generations leaving the edge term for

Table 3
User CPU time measurements for code segments

Code User CPU time (s)

Total computation time (10 generations) 40.96
Feature computation (FC) 3.57
Pre-learning computation time (incl. FC) 7.28
Generation 0 5.20
Ave/generation (after generation 0) 3.44

the focus of later generations. The edge term is most eDec-
tive for perfecting results that are already good and for dis-
couraging segmentations which classify the example region
well but ‘overrun’ the region boundary.
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