
Genetic algorithm based feature selection for target detection

in SAR images

Bir Bhanu*, Yingqiang Lin

Center for Research in Intelligent Systems, College of Engineering, University of California, B232 Bourns Hall,

Riverside, CA 92521-0425, USA

Abstract

A genetic algorithm (GA) approach is presented to select a set of features to discriminate the targets from the natural clutter false alarms in

SAR images. Four stages of an automatic target detection system are developed: the rough target detection, feature extraction from the

potential target regions, GA based feature selection and the final Bayesian classification. A new fitness function based on minimum

description length principle (MDLP) is proposed to drive GA and it is compared with three other fitness functions. Experimental results show

that the new fitness function outperforms the other three fitness functions and the GA driven by it selected a good subset of features to

discriminate the targets from clutters effectively.
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1. Introduction

Automatic detection of potential targets in SAR imagery

is an important problem [1,2]. A constant false alarm rate

(CFAR) detector is commonly used to ‘prescreen’ the image

to localize the possible targets [2]. Generally, targets

correspond to bright spots caused by strong radar return

from natural or man-made objects. Parts of the imagery that

are not selected are rejected from further computation. In

the next stage of processing, regions of interest are further

examined to distinguish man-made objects from natural

clutter. Finally, a classifier such as a Bayesian classifier, a

template matcher or a model-based recognizer is used to

reject man-made clutter.

In general, the goal of feature selection is to find the

subset of features that produces the best target detection

and recognition performance and requires the least

computational effort. Feature selection is important to

target detection and recognition systems mainly for three

reasons:

First, using more features can increase system

complexity, yet it may not always lead to higher

detection/recognition accuracy. Sometimes, many features

are available to a detection/recognition system.

However, these features are not independent and may be

correlated. A bad feature may greatly degrade the

performance of the system. Thus, selecting a subset of

good features is important.

Second, features are selected by a learning algorithm

during the training phase. The selected features are used as a

model to describe the training data. Selecting many features

means a complicated model being used to approximate the

training data. According to the minimum description length

principle (MDLP), a simple model is better than a complex

model [21]. Since the training data may be corrupted with a

variety of noises, a complex model may overfit the training

data. Thus, a complex model may be sensitive to noises in

the training data and its performance on unseen test data

may be bad. In this paper, we use genetic algorithm (GA) to

select as few features as possible to describe the training

data effectively.

Third, using fewer features can reduce the computational

cost, which is important for real-time applications. Also it

may lead to better classification accuracy due to the finite

sample size effect.

GAs are widely used in image processing, pattern

recognition and computer vision [1,3,4]. They are used to

evolve morphological probes that sample the multi-

resolution images [5], to generate image filters for target

detection [6], to select good parameters of partial shape

matching for occluded object recognition [7], to perform
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pattern clustering and classification [8], etc. GAs are also

used to automatically determine the relative importance of

many different features and to select a good subset of

features available to the system [9].

The focus of this paper is to select a minimal set of

features to distinguish targets from natural clutter.

The approach is based on a closed loop system involving

GA based feature selection and a Bayesian classifier.

GA uses a MDLP-based fitness function that combines

the number of features to be used and the error rate of the

classifier. The results are presented using real SAR

images. The experimental results show that the

MDLP-based fitness function is the most effective in

selecting a minimal set of features to describe the data

accurately compared to other three fitness functions,

and the subset of features selected by GA can greatly

reduce the computational cost while at the same time

maintaining the desired detection accuracy.

Section 2 presents the related research and the

contribution of this paper. Section 3 describes the approach,

feature evaluation criteria, fitness functions, the prescreener

used to detect potential target regions, the features for target

discrimination and the application of GAs to feature

selection. Experimental results are presented in Section 4

and Section 5 provides the conclusions of the paper.

2. Related research

Bhanu and Lee [10] present a closed loop image

segmentation system which incorporates a GA to adapt

the segmentation process to changes in image

characteristics caused by variable environmental conditions

such as time of day, time of year, clouds, etc.

The segmentation problem is formulated as an optimization

problem and the GA efficiently searches the hyperspace of

segmentation parameter combinations to determine the

parameter set which maximizes the segmentation quality

criteria in terms of edge-border coincidence, boundary

consistency, pixel classification, object overlap and object

contrast. Their experimental results demonstrate that GA

can continuously adapt the segmentation process to normal

environmental variations to provide robust performance

when interacting with a dynamic environment.

Emmanouilidis et al. [11] discuss the use of multi-criteria

GAs for feature selection. With multi-criteria fitness

functions, GA tries to minimize the number of features

selected while maintaining the high classification accuracy.

The algorithm is shown to yield a diverse population of

alternative feature subsets with various accuracy and

complexity trade-off. It is applied to select features for

performing classification with fuzzy models and is

evaluated on real-world data sets such as cancer data set

in which each data point has nine input features and one

output label (malignant or benign). Estevez and Caballero

[12] propose a GA for selecting features for neural network

classifiers. Their algorithm is based on a niching method to

find and maintain multiple optima. They also introduce a

new mutation operator to speed up the convergence of the

GA. Rhee and Lee [13] present an unsupervised feature

selection method using a fuzzy-genetic approach.

The method minimizes a feature evaluation index which

incorporates a weighted distance between a pair of patterns

used to rank the importance of the individual features. A

pattern is represented by a set of features and the task of GA

is to determine the weighting coefficients of features in the

calculation of weighted distance. Matsui et al. [14] use GA

to select the optimal combination of features to improve the

performance of tissue classification neural networks and

apply their method to problems of brain MRI segmentation

to classify gray matter/white matter regions.

Quilan and Rivest [15] explore the use of MDLP for the

construction of decision trees. The MDLP defines the best

decision tree to be the one that yields the minimum combined

length of the decision tree itself plus the description of the

misclassified data items. Their experimental results show

that the MDLP provides a unified framework for both

growing and pruning the decision tree, and these trees seem

to compare favorably with those created by other techniques

such as C4 algorithm. Gao et al. [16] use MDLP to determine

the best model granularity such as the sampling interval

between the adjacent sampled points along the curve of

Chinese characters or the number of nodes in the hidden layer

of a three layer feed-forward neural network.

Their experiments show that in these two quite different

settings the theoretical value determined using MDLP

coincides with the best value found experimentally.

The key point of their work is that using MDLP the optimal

granularity of the model parameters can be computed

automatically rather than being tuned manually.

In this paper, we use GA to select a good subset of

features used for target detection in SAR images. The target

detection task involves the selection of a subset of features

to discriminate SAR images containing targets from those

containing clutter. Our method is a novel combination of

GA based optimization of a criterion function that involves

classification error and the number of features that are used

for the discrimination of targets from natural clutter in

SAR images. The criterion (fitness) function we propose in

this paper is based on the MDLP and it compares favorably

with other three fitness functions. We assume the joint

distribution of features follows Gaussian distribution.

The criterion function is optimized in closed-loop with a

Bayesian classifier evaluating the performance of each set

of features. The GA used in feature selection is adaptive in

the sense that it can automatically adapt the parameters

such as crossover rate and mutation rate based on the

efficiency of GA search in the feature space. As compared

to this work, the feature selection presented in Refs. [2,17]

for target vs. natural clutter discrimination measures

exhaustively the performance of each combination of

the features by the Pd (probability of detection) vs. Pfa
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(probability of false alarm) plot produced by it. The higher

the Pd and the lower the Pfa; the better the combination of

features.

3. Technical approach

The purpose of the GA based feature selection approach

presented in this paper is to select a set of features to

discriminate the targets from the natural clutter false

alarms in SAR images. The approach includes four stages:

rough target detection, feature extraction from the potential

target regions, feature selection based on the training data

and the final discrimination. The first stage is based on the

Lincoln Lab ATR system and the second stage uses some

of features (first 10 of the 20 features) used in their system

[2,17,18]. In the feature selection stage, we use GA to

select a best feature subset, defined as a particular set of

features that is the best in discriminating the target from

the natural clutter. The diagram for feature selection is

given in Fig. 1.

3.1. Feature evaluation

Adding more features does not necessarily improve

discrimination performance. An important goal is to choose

the best set of features from the discriminating features that

are available. Before we do the feature selection, it is

appropriate to give a set of feature evaluation criteria,

which measure the discrimination capability of each feature

or a combination of several features.

3.1.1. Divergence

Divergence is basically a form of the Kulback–Liebler

distance measure between density functions. If we assume

that the target as well as the natural clutter feature

vectors follow the Gaussian distributions, respectively,

that is, Nðu1;S1Þ and Nðu2;S2Þ; where u1 and u2 are

mean values and S1 and S2 are covariance matrices,

respectively, the divergence can be computed as follows

d12 ¼ 1
2

trace{S21
1 S2 þ S21

2 S1 2 2I} þ 1
2
ðu1 2 u2Þ

T

� ðS21
1 þ S21

2 Þðu1 2 u2Þ ð1Þ

One major drawback of the divergence d12 is that it is not

easily computed, unless the Gaussian assumption is

employed. For SAR imagery, the Gaussian assumption

itself is in question.

3.1.2. Scatter matrices

These criteria are based upon the information related

to the way feature vector samples are scattered in the

l-dimensional feature space. We define two kinds of

scatter matrices, that is, within-class scatter matrix and

between-class scatter matrix. Within-class scatter matrix for

M classes is, Sw ¼
PM

i¼1 PiSi; where Si is the covariance

matrix for class vi and Pi is the a priori probability of class

vi: Sw matrix measures how feature vector samples are

scattered within each class. Between-class scatter matrix Sb;

is defined as follows: Sb ¼
PM

i¼1 Piðui 2 u0Þðui 2 u0Þ
T;

where u0 is the global mean vector and ui is the mean for

each class, i ¼ 1;…;M: The between-class scatter matrix

measures how the feature vector samples are scattered

between different classes. Based on the different

combinations of these two scatter matrices, a set of class

separability criteria can be derived; one such measure can be

defined as: J ¼ lSbl=lSwl: If the feature vector samples

within each class are scattered compactly and the feature

vector samples from different classes are far away from one

another, we expect the value for J would be high. This also

implies that the features we choose have high

discrimination.

3.1.3. Feature vector evaluation using a classifier

Another method for feature evaluation depends on the

specific classifier. The task of feature selection is to select or

determine a set of features, when fed into the classifier,

will let the classifier achieve the best performance. So it

makes sense to relate the feature selection procedure with

the particular classifier used. During the training time, we

have all the features extracted from the training data.

What we can do is to select a subset of features and feed

them into the classifier and see the classification result.

Then the goodness of each feature subset is indicated by its

classification error rate.

3.2. Various criteria for fitness functions

We use GA to seek the smallest (or the least costly)

subset of features for which the classifier’s performance

does not deteriorate below a certain specified level [9,19].

The basic system framework is shown in Fig. 1.

Fig. 1. System diagram.
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When the error of a classifier is used to measure the

performance, a subset of features is defined as feasible if

the classifier’s error rate is below the so-called feasibility

threshold. We search for the smallest subset of features

among all feasible subsets. During the search, each subset

can be coded as a d-element bit string (d is the total number

of features). The ith element of the bit string assumes 0 if the

ith feature is excluded from the subset and 1 if it is present in

the subset.

In order for the GA to select a subset of features, a

fitness function must be defined to evaluate the

performance of each subset of features. GA explores

the space of subset of features to try to find a

minimum subset of features with good classification

performance.

3.2.1. Fitness function based on MDLP
In our system, the classifier is fixed, which is a

Bayesian classifier, but the set of features that is input

into the classifier is a variable. In order to apply

MDLP to feature selection, we view the features selected

by GA as the model used to describe the training data.

Selecting more features means that a more complex

model is used to approximate the data. Although a

complex model may have perfect performance on the

training data, it may not be a good model, since it may

be overly sensitive to statistical irregularities and

idiosyncrasies of the data and causes accidental noise

to be modeled as well, leading to the poor performance

on the unseen test data.

To fix the above problem, we use the MDLP to prevent

the overfitting of the training data by an overly complex

model. Roughly speaking, the MDLP states that among all

the models approximating the data to or above certain

accuracy, the simplest one is the best one. To restrict the

model from growing too complex while maintaining

the description accuracy, the cost of describing a set of

data with respect to a particular model is defined as the

sum of the length of the model and the length of the data

when encoded using the model as a predictor for the data.

The description length of data-to-model error is defined as

the combined length of all data items failed to be described

by the model. GA is used to select the subset of features

minimizing the above cost. Here, both description lengths

are measured in bits and the details of the coding

techniques are relevant. The trade-off between simplicity

and complexity of both lengths is that if a model is too

simple, it may not capture the characteristics of the data

and lead to increased error coding length; if a model is

too complicated, it may model the noise and become too

sensitive to minor irregularities to give accurate prediction

of the unseen data. The MDLP states that among the given

set of models, the one with the minimum combined

description lengths of both the model and data-to-model

error is the best approximation and can perform best on

the unseen test data.

Based on MDLP, we propose the following fitness

function for GA to maximize

FðciÞ ¼ 2ðk logðf Þ þ ne logðnÞÞ ð2Þ

where ci is a chromosome coding the selected set of features,

f is the total number of features extracted from each training

data, k is the number of features selected (ci has k bits of 1

and f 2 k bits of 0), n is the total number of data items in the

training set and ne is the number of data items misclassified.

It is easy to see that the fewer the number of features

selected and smaller the number of data items misclassified,

the larger the value of fitness function.

We now give a brief explanation of the above fitness

function. Suppose a sender and a receiver both know all the

data items and their order in the training set and also they

agree in advance on the feature extractor used to extract the

f features from each data item and the classifier used to

classify each data based on the features extracted. But only

the sender knows the label (target or clutter) of each data

item. Now, the sender wants to tell the receiver the label of

each data item. One simple approach to do this is to send a

bit sequence of n bits where 1 represents the target and 0

represents the clutter. If n is large, then the communication

burden will be heavy. In order to reduce the number of bits

to be transmitted, in an alternative approach, the sender can

tell the receiver which features can be used to classify the

data, since the receiver can extract the features and apply

the classifier on the features extracted to get the label of

each data item. There are a total of f features and logðf Þ

bits are needed to encode the index of each feature. If k

features are selected, k logðf Þ bits are needed in order to

inform the receiver which features should be extracted.

However, some data items may be misclassified, so the

sender needs to tell the receiver which data items are

misclassified so that the receiver can get the correct labels of

all the data in the training set. Since there are a total of n data

items, logðnÞ bits are needed to encode the index of each

data item. If ne data items are misclassified, then ne logðnÞ

bits are needed to convey to the receiver the indices of these

misclassified data items. If the set of features selected is

effective in discriminating targets from clutter, ne may be

very small, thus the number of bits needs to be transmitted is

much smaller than n:

3.2.2. Other fitness functions

We have three other fitness functions to drive GA and

compare their performances with that of the fitness function

based on MDLP.

In order to define two other fitness functions, we first

define the following penalty function [19]

pðeÞ ¼
expððe 2 tÞ=mÞ2 1

expð1Þ2 1
ð3Þ

where e is the error rate (the number of misclassified data

item divided by the total number of data items in the training

set) of the classifier, t the feasibility threshold and m is
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called the ‘tolerance margin’. In this paper, t ¼ 0:01 and

m ¼ 0:005: We can see easily that if e , t; pðeÞ is negative

and as e approaches zero, pðeÞ slowly approaches its

minimal value. Note also that pðtÞ ¼ 0 and pðt þ mÞ ¼ 1:

For greater values of the error rate, this penalty function

rises quickly toward infinity.

The second fitness function is defined as follows

FðciÞ ¼ 2pðeÞ ð4Þ

This fitness function considers only the error rate of the

classifier and does not care about how many features are

selected. It can be predicted that this fitness function may

lead to the selection of many features.

The third fitness function takes the complexity of the

model, that is the number of features selected,

into consideration. It combines the complexity of the

model and its performance on the training data and is

defined as follow

FðciÞ ¼ 2ðg £ number_of_features þ ð1 2 gÞpðeÞÞ ð5Þ

where g ranges from 0 to 1 and determines the relative

importance of the number of features selected and the error

rate of the classifier. If we want to use fewer features, we can

assign a large value to g; if we think lower error rate is more

important, we can assign a small value to g: In our

experiments, g takes value 0.1, 0.3, and 0.5.

The fourth fitness function is defined as follows

FðciÞ ¼ 2 g
k

20
þ ð1 2 gÞe

� �
ð6Þ

where k is the number of features selected by GA and g

ranges from 0 to 1 and is a parameter that determines the

relative importance of the number of feature selected and the

error rate of the classifier.

GA tries to maximize these three fitness functions in

order to find an optimal set of features for discriminating

targets from clutter.

3.3. System description

3.3.1. CFAR detector

A two-parameter CFAR detector is used as a

prescreener to identify potential targets in the image on

the basis of radar amplitude. A guard area around a

potential target pixel is used for the estimation of clutter

statistics. The amplitude of the test pixel is compared

with the mean and standard deviation of the clutter

according to the following rule

Xt 2 ûc

ŝc

. KCFAR ) target; otherwise clutter ð7Þ

where Xt is the amplitude of the test pixel, ûc is the

estimated mean of the clutter amplitude, ŝc is the

estimated standard deviation of the clutter amplitude, and

KCFAR is a constant threshold value that defines the false-

alarm rate.

Only those test pixels whose amplitude is much higher

than that of the surrounding pixels are declared to be

targets. The higher we set the threshold value of KCFAR;

the more a test pixel must stand out from its background

for it to be declared as a target. Because a single target

can produce multiple CFAR detections, the detected

pixels are grouped together if they are within a target-

sized neighborhood. The CFAR detection threshold in the

prescreener is set relatively low to obtain a high initial

probability of detection for the target data. It is the

responsibility of the discriminator to capture and reject

those escaping clutter false alarms from the prescreener

stage. An example SAR image and corresponding

detection results are shown in Fig. 2.

3.3.2. Feature extractor

First, we use a target-sized rectangular template to

determine the position and orientation of the detected target

[20]. The algorithm slides and rotates the template until the

energy within the template is maximized. Then we extract a

set of features from the target-sized template or the region of

interest. By using this set of features, we attempt to

discriminate the targets from the natural clutter. First ten

features are the same as those used in Ref. [2]. All the

features from eleven to twenty are not used in their work,

they are general features used in pattern recognition and

object recognition.

Fig. 2. SAR image and CFAR detection result. (a) Example SAR image.

(b) Detection result.
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The standard-deviation feature ( feature 1). The standard

deviation of the data within the template is a statistical

measurement of the fluctuation of the pixel intensities. If we

use Pðr; aÞ to represent the radar intensity in power from

range r and azimuth a; the standard deviation can be

calculated as follows

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
S2 2

S2
1

N
N 2 1

vuuut
where

S1 ¼
X

r;a[region

10 log10Pðr; aÞ

S2 ¼
X

r;a[region

½10 log10Pðr; aÞ�2

ð8Þ

and N is the number of points in the region.

Targets usually exhibit much larger standard deviation

than the natural clutter, as illustrated in Fig. 3.

The fractal dimension feature ( feature 2). The fractal

dimension of the pixels in the region of interest provides

information about the spatial distribution of the brightest

scatterers of the detected object. It complements the

standard-deviation feature, which depends only on

the intensities of the scatterers, not on their spatial locations.

Thefirst step inapplying the fractal-dimensionconcept toa

radar image is to select an appropriately sized region of

interest, and then convert the pixel values in the region of

interest tobinary.Onemethodofperformingthisconversionis

to select the N brightest pixels in the region of interest and

convert their values to 1, while converting the rest of pixel

values to 0. Based on these N brightestpixels, we approximate

the fractal dimension by using the following formula:

dim ¼ 2
log M1 2 log M2

log 1 2 log 2
¼

log M1 2 log M2

log 2
ð9Þ

where M1 represents the minimum number of 1-pixel-by-1-

pixel boxes that cover all N brightest pixels in the region of

interest (This number is obviously equal to N) and M2

represents the minimum number of 2-pixel-by-2-pixel boxes

required to cover all N brightest pixels.

The bright pixels for a natural clutter tend to be widely

separated, thus produce a low value for the fractal

dimension, while the bright pixels for the target tend to be

closely bunched, thus we expect a high value for the fractal

dimension, which is illustrated in Fig. 4. Fig. 4(a) shows a

target image chip. In Fig. 4(b), the 50 brightest pixels from

the target image are tightly clustered, and 22 2 £ 2-pixel

boxes are needed to cover them, which results in a high

fractal dimension of 1.2.

Fig. 4(c) shows a natural clutter image chip. In Fig. 4(d),

the 50 brightest pixels from this natural clutter are relatively

isolated, and 46 2 £ 2-pixel boxes are needed to cover them,

which results in a low fractal dimension of 0.29.

Weighted-rank fill ratio feature ( feature 3). This textual

feature measures the percentage of the total energy

contained in the brightest scatterers of a detected object.

We define the weighted-rank fill ratio as follows

h ¼

X
k brightest pixels

Pðr; aÞ

X
all pixels

Pðr; aÞ
ð10Þ

This feature attempts to exploit the fact that power returns

from most targets tend to be concentrated in a few bright

scatters, whereas power returns form natural-clutter false

alarm tend to be more diffuse. The weighted-rank fill ratio

values of target in Fig. 3(a) and clutter in Fig. 3(b) are

0.3861 and 0.2321, respectively.

Size-related feature ( features 4–6). The three size-

related features utilize only the binary image created by the

morphological operations on the CFAR detection result.

1. The mass feature is computed by counting the number of

pixels in the morphological blob.

Fig. 3. Example of the standard deviation feature. (a) A typical target image

with standard deviation 5.2832. (b) A typical target image with standard

deviation 4.5187.

Fig. 4. Example of the fractal dimention feature. (a) Target image. (b) 50

brightest pixels in (a). (c) Natural clutter image. (d) 50 brightest pixel in (c).
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2. The diameter is the length of the diagonal of the smallest

rectangle that encloses the blob.

3. The square-normalized rotational inertia is the second

mechanical moment of the blob around its center of

mass, normalized by the inertia of an equal mass square.

In our experiments, we found the size features are not

effective in scenarios where the targets are partially

occluded or hidden. After the prescreener stage, the size

and the shape of the detected morphological blob can be

arbitrary. For the clutter, there is also no ground to assert

that the resulting morphological blob will exhibit

a certain amount of coherence. The experimental results

in Fig. 5 show the arbitrariness of the morphological blobs

for the targets as well as the clutter.

The contrast-based features ( features 7–9). The CFAR

statistic is computed for each pixel in the target-shaped blob

to create a CFAR image. Then the three features can be

derived as follows:

1. The maximum CFAR feature is the maximum value in

the CFAR image contained within the target-sized blob.

2. The mean CFAR feature is the average of the CFAR

image taken over the target-shaped blob.

3. The percent bright CFAR feature is the percentage of

pixels within the target-sized blob that exceed a

certain CFAR value.

The maximum CFAR feature, the mean CFAR feature

and the percent bright CFAR feature values of target in

Fig. 3(a) are 55.69, 5.53, and 0.15, respectively, and these

feature values of clutter in Fig. 3(b) are 10.32, 2.37, and

0.042, respectively. We can see that CFAR feature values

for the target are much larger than those for the natural

clutter false alarm.

The count feature ( feature 10). The count feature is very

simple; it counts the number of pixels that exceeded the

threshold T and normalize this value by the total possible

number of pixels in a target blob. The threshold T is set to

the quantity corresponding to the 98th percentile of the

surrounding clutter. The count feature values of target in

Fig. 3(a) and clutter in Fig. 3(b) are 0.6 and 0.1376,

respectively. We can see that the count feature value for the

target is much larger than that for the natural clutter false

alarm. This makes sense because the intensity values of the

pixels belonging to the target stand out from the surrounding

clutter, while the natural clutter false alarms do not have this

property.

The following 10 features, four projection features,

three distance features and three moment features,

are common features used in image processing and object

recognition. They are extracted from the binary image

resulting from the CFAR detection. In these images,

foreground pixels (pixels with value 1) are potential target

pixels.

Projection features ( features 11–14). four projection

features are extracted from each binary image:

1. horizontal projection feature: project the foreground

pixels on a horizontal line (x-axis of image) and compute

the distance between the leftmost point and the rightmost

point;

2. vertical projection feature: project the foreground pixels

on a vertical line (y-axis of image) and compute the

distance between the uppermost point and the lowermost

point.

3. major diagonal projection feature: project the

foreground pixels on the major diagonal line and

Fig. 5. Example of the size feature for (a) targets and (b) clutter. (a) The lift-

hand side figures represent the target images and right-hand side figures

represent their corresponding morphological blobs. (b) The lift-hand side

figures represent the clutter images and right-hand figures represent their

corresponding morphological blobs.
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compute the distance between the upper leftmost point

and the lower rightmost point.

4. minor diagonal projection feature. project the

foreground pixels on the minor diagonal line and

compute the distance between the lower leftmost point

and the upper rightmost point.

The average values of horizontal, vertical, major and

minor diagonal projection features of all the clutter

images, we collected, are approximately 60.0, 60.0, 90.0,

and 90.0, respectively. Their corresponding values for

target images are 34.5, 29.5, 46.7, and 47.8, respectively.

It can be seen that the feature values for the clutter are

larger than those for the target. This result is reasonable,

since the bright pixels of a natural clutter tend to be widely

separated. This has already been shown by the fractal

dimension feature value.

Distance features ( features 15–17). Three distance

features are extracted from each binary image.

Before computing distance features, we first compute the

centroid of all the foreground pixels in the binary image.

1. minimum distance: compute the distance from each

foreground pixel to the centroid and select the minimum

one.

2. maximum distance: compute the distance from each

foreground pixel to the centroid and select the maximum

one.

3. average distance: compute the distance from each

foreground pixel to the centroid and get the average

value of all these distances.

The average values of minimum, maximum and average

distance features of all the clutter images we collected are

approximately 40.0, 70.0, and 60.0, respectively.

Their corresponding values of target images are 3.8, 26.7,

and 11.5, respectively. It can be seen that the feature values

for the clutter are larger than those for the target. This result

is reasonable, since the bright pixels of a natural clutter tend

to be widely separated.

Moment features ( features 18–20). Three moment

features are extracted from each binary image. All three

moments are central moments, so before computing

moment features, we first compute the centroid of all the

foreground pixels in the binary image.

The central moments can be expressed as

mpq ¼
ð1

21

ð1

21
ðx 2 �xÞpðy 2 �yÞqdx dy ð11Þ

where ð�x; �yÞ is the centroid and p and q are integers.

We compute m20; m02 and m22 from each binary image

and we call them horizontal, vertical and diagonal

second-order moment features, respectively.

The average values of horizontal, vertical and diagonal

second-order moment features of all the clutter images we

collected are approximately 910.0, 910.0, and 37,4020.0,

respectively. Their corresponding values of target images

are 80.5, 46.7, and 4021.6, respectively. It can be seen that

the feature values for the clutter are larger than those for

the target. This result is reasonable, since the bright pixels of

a natural clutter tend to be widely separated.

3.3.3. GAs for feature selection

The GA is an optimization procedure that operates in

binary search spaces (the search space consists of binary

strings). A point in the search space is represented by a finite

sequence of 0s and 1s, called a chromosome. The algorithm

manipulates a finite set of chromosomes, the population, in a

manner resembling the mechanism of natural evolution.

Each chromosome is evaluated to determine its ‘fitness’,

which determines how likely the chromosome is to survive

and breed into the next generation. The probability of

survival is proportional to the chromosome’s fitness value.

Those chromosomes which have higher fitness values are

given more chances to ‘reproduce’ by the processes of

crossover and mutation. The function of crossover is to mate

two parental chromosomes to produce a pair of offspring

chromosomes. In particular, if a chromosome is represented

by a binary string, crossover can be implemented by

randomly choosing a point, called the crossover point,

at which two chromosomes exchange their parts to create

two new chromosomes. Mutation randomly perturbs the bits

of a single parent to create a child. This procedure can

increase the diversity of the population. Mutations can be

performed by flipping randomly one or more bits in

chromosomes. In this paper, we implement an adaptive

GA that can automatically adapt the parameters such as

crossover rate and mutation rate based on the performance

of GA. To be specific, if the fitness value of the best

individual is not improved for three or five generations in a

row, GA will automatically raise the mutation rate to

increase the diversity of the population. Also, elitism

mechanism is adopted such that the best individual (set of

features selected) is copied from generation to generation

when performing reproduction.

In this paper, there are 20 features as described earlier.

Each feature is represented as a bit in the GA. There are 220

possible combinations of these features.

4. Experimental results

We use SAR images from MSTAR public data (target and

clutter data) and generate 1008 target chips (small SAR

images containing target) and 1008 clutter chips (small SAR

images containing clutter) of size 120 £ 120. We also use

SAR images that are downloaded from the website of MIT

Lincoln Lab. From these SAR images, 40 target chips and

40 clutter chips of size 120 £ 120 are generated. By adding

these two sets of images, we have 1048 target chips and

1048 clutter chips. Some of the chips are used in training

and the rest are used in testing. The chips used in training are
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randomly selected. The GA selects a good subset of features

from the 20 features described previously to classify a SAR

image chip into either a target or a clutter. We use the CFAR

detector in the prescreener stage to detect the potential

target regions. Since we know the ground truth, we know

which one is the real target and which one is the clutter false

alarm among the potential target regions detected.

This allows us to construct a set of training data

(training target data and training natural clutter false alarm

data) for feature selection. Then we extract a set of 20

features from each potential target region and do the feature

selection. Finally in the testing stage we use the selected

features to discriminate the targets from the natural clutter

false alarms.

For our GA-based feature selection framework, we adopt

a Bayesian Classifier to classify the training data and the

resulting error rate is used as the feedback into the feature

selection algorithm. The size of the population is 100,

the initial crossover rate is 0.8 and the initial mutation rate is

0.01. If the fitness value of the best individual is not

improved for three generations in a row, GA increases the

mutation rate by 0.02. In order to reduce the training time,

we set an error rate threshold 1: The GA stops when either

the error rate of the best set of features selected is below the

specified threshold 1 or the mutation rate is increased

above 0.09.

We carried out a series of experiments to test the

efficacy of GA in feature selection. First, we use the

MDLP-based fitness function. Then we use the other

three fitness functions. Finally, we compare and analyze

the performances of these fitness functions. In order to have

an objective comparison of various experiments, the GA is

invoked 10 times for each experiment with the same set of

parameters and the same set of training chips. Only the

average performances are used for comparison.

4.1. MDLP-based fitness function

We performed four experiments with this fitness

function. In the first experiment, 300 target chips and 300

clutter chips are used in training and 748 target chips and

748 clutter chips are used in testing, the error rate threshold

value 1 is 0.002; in the second experiment, 500 target chips

and 500 clutter chips are used in training and 548 target

chips and 548 clutter chips are used in testing, the error rate

threshold value 1 is 0.0015; in the third and fourth

experiments, 700 target chips and 700 clutter chips are

used in training and 348 target chips and 348 clutter chips

are used in testing, the error rate threshold value 1 is 0.0015

and 0.0011, respectively. The features selected during

training are used for classification during testing. It is

worth noting that the training chip set in the third and fourth

experiments is the superset of that in the second experiment

and the training chip set in the second experiment is the

superset of that in the first experiment. The target and clutter

chips used during training are selected at random.

Table 1 shows the experimental results where 300 target

and 300 clutter chips are used in training. GA is invoked 10

times and each row records the experimental results from

the corresponding invocation. The last row records

Table 1

Experimental results with 300 training target and clutter chips (MDLP, Eq. (2); 1 ¼ 0:002)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 29 47 4 0100101001 0.003 1 1 0.001 0 2

0000000000

2 9 27 6 0110001011 0.003 1 1 0.011 0 16

0000100000

3 10 28 4 0100001001 0.003 1 1 0.011 0 16

0100000000

4 43 61 4 0000001001 0.003 1 1 0.005 0 7

0100100000

5 19 37 4 0101001001 0.003 1 1 0.017 0 25

0000000000

6 13 31 4 0100001001 0.003 1 1 0.007 0 10

1000000000

7 23 41 4 0100001001 0.003 1 1 0.011 0 16

0010000000

8 6 24 6 0010011011 0.003 1 1 0.011 0 16

0000100000

9 17 35 5 0100001001 0.003 1 1 0.003 0 5

0011000000

10 11 29 5 0100001001 0.003 1 1 0.005 0 7

0010100000

Ave 18 36 4.6 0.003 1 1 0.0082 0 12
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the average results of 10 runs. The column ‘Best generation’

records the generation number in which the best set of

features is found and the column ‘Total generation’ shows

the total number of generations GA runs. It can be seen that

although the training error rate is 0.003 in each run, different

features are selected. In some runs, the same number of

testing clutter chips are misclassified, but the clutter chips

that are misclassified in each run are different. From the

testing results, we can observe that sometimes clutter chips

are misclassified as target chips. The testing results show

that GA finds an effective set of features to discriminate

target from clutter.

Table 2

Experimental results with 500 training target and clutter chips (MDLP, Eq. (2); 1 ¼ 0:0015)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 17 35 5 0100001001 0.002 1 1 0.006 0 7

1000100000

2 13 31 5 0100001001 0.002 1 1 0.006 0 7

0000001001

3 19 38 5 0100001001 0.002 1 1 0.006 0 7

0000011000

4 20 38 5 0100001001 0.002 1 1 0.006 0 7

0000011000

5 10 28 5 0100001001 0.002 1 1 0.006 0 7

0010100000

6 26 44 5 0100001001 0.002 1 1 0.003 0 3

1100000000

7 25 43 5 0100001001 0.002 1 1 0.007 0 8

0000010100

8 9 27 6 0000001011 0.002 1 1 0.007 0 8

0000011010

9 8 26 5 0100001001 0.002 1 1 0.006 0 7

0000011000

10 17 35 5 0001001001 0.002 1 1 0.004 0 4

0011000000

Ave 16.4 34.5 5.1 0.002 1 1 0.0057 0 6.5

Table 3

Experimental results with 700 training target and clutter chips (MDLP, Eq. (2); 1 ¼ 0:0015)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 8 8 9 0101101001 0.0014 1 1 0.006 0 4

1010001001

2 9 9 10 1101001001 0.0014 1 1 0.001 0 1

1010101010

3 7 7 7 0000001011 0.0014 1 1 0.012 0 8

0100101010

4 2 2 10 1101001001 0.0014 1 1 0.001 0 1

0110011010

5 5 5 8 0100001001 0.0014 1 1 0.007 0 5

0011111000

6 2 2 7 1000011011 0.0014 1 1 0.012 0 8

0100001000

7 5 5 10 1101001001 0.0014 1 1 0.001 0 1

0110101100

8 3 3 10 1100101011 0.0014 1 1 0.003 0 2

0101010001

9 4 4 11 1101011001 0.0014 1 1 0.001 0 1

1010111000

10 4 4 10 1101001001 0.0014 1 1 0.001 0 1

0011111000

Ave 4.9 4.9 9.2 0.0014 1 1 0.0045 0 3.2
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Tables 2 and 3 show the experimental results when 500

target and clutter chips and 700 target and clutter chips are

used in training, respectively. The results in Table 2 are very

good. On the average, 5.1 features are selected and both the

training and testing error rate are very low. However, the

results in Table 3 are not good. Although the training and

testing error rates are low, 9.2 features are selected on the

average. From Table 3, we can see that GA runs 4.9

generations on the average. It is clear that GA stops

prematurely. The reason for the premature termination is

that the error rate threshold value 0.0015 is high in this case,

since there are 700 target chips and 700 clutter chips.

In order to force GA to explore the search space, we lower

the error rate threshold value to 0.0011 and get the results

shown in Table 4. These results are much better than those

in Table 3. Only 5.3 features are selected on the average,

although the average testing error rate is almost doubled.

Considering both the test error rate and the number of

features selected, the first run in Tables 1 and 4, and the sixth

run in Table 2 yield the best results. Fig. 6 shows how fitness

values change as GA searches the feature subset space

during these runs; Fig. 7 shows how training error rate

changes and Fig. 8 shows how the number of features

selected changes.

From the above experiments, we can see that the

MDLP-based fitness function and adaptive GA are very

efficient in feature selection. Only 4–6 features are selected

on the average while the detection accuracy is kept high.

4.2. Other fitness functions

For the purpose of objective comparison, the training

chip set in the following experiments is the same as that in

the second experiment above, that is, 500 target chips and

500 clutter chips are used in training and 548 target chips

and 548 clutter chips are used in testing.

First, we use function (4) as the fitness function and

invoke GA 10 times. The error rate threshold value is

Table 4

Experimental results with 700 training target and clutter chips (MDLP, Eq. (2); 1 ¼ 0:0011)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 10 28 6 0001001001 0.0014 1 1 0.004 0 3

1000001010

2 19 37 5 0100001001 0.0014 1 1 0.012 0 8

0000001010

3 17 35 5 0100001001 0.0014 1 1 0.01 0 7

0010100000

4 16 34 6 0001011001 0.0014 1 1 0.006 0 4

0010001000

5 16 34 5 0100001001 0.0014 1 1 0.01 0 7

0000011000

6 19 37 5 0100001001 0.0014 1 1 0.01 0 7

0010100000

7 10 28 5 0100001001 0.0014 1 1 0.01 0 7

0000010100

8 15 33 5 0100001001 0.0014 1 1 0.01 0 7

0000011000

9 10 28 6 0100011001 0.0014 1 1 0.007 0 5

1000010000

10 23 41 5 0100001001 0.0014 1 1 0.01 0 7

0000001001

Ave 15.5 33.5 5.3 0.0014 1 1 0.0089 0 6.1

Fig. 6. Fitness values vs. generation number. (a) 300 training target and clutter chips. (b) 500 training target and clutter chips. (c) 700 training target and clutter

chips.
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0.0015. Table 5 shows the experimental results.

This function is only dependent on the error rate, so GA

found a set of features with very low error rate quickly.

The selected features are shown by the ‘Number of features’

and ‘Features selected’ columns. However, since the number

of features is not taken into consideration by the fitness

function, many features are selected. More than 10 features

are selected on the average in 10 runs.

Next, we use function (5) as the fitness function.

We performed three experiments with this function, and

Fig. 8. The number of features selected vs. generation number. (a) 300 training target and clutter chips. (b) 500 training target and clutter chips. (c) 700 training

target and clutter chips.

Fig. 7. Error rates vs. generation number. (a) 300 training target and clutter chips. (b) 500 training target and clutter chips. (c) 700 training target and clutter

chips.

Table 5

Experimental results with 500 training target and clutter chips (penalty function, Eq. (4); 1 ¼ 0:0015)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 4 22 13 0111111011 0.002 1 1 0.004 0 4

1100111000

2 11 11 10 1011011011 0.001 1 0 0.005 0 5

0001100100

3 2 20 9 0101101001 0.002 1 1 0.005 0 5

1011000100

4 4 22 11 1010011011 0.002 1 1 0.004 0 4

0101011100

5 3 21 10 1110001011 0.002 1 1 0.003 0 3

1010010100

6 10 10 9 0011011011 0.001 1 0 0.005 0 5

0000110100

7 8 26 10 1101101001 0.002 1 1 0.001 0 1

0011010010

8 2 20 11 1110101011 0.002 1 1 0.003 0 3

0001001110

9 3 21 10 0110011011 0.002 1 1 0.005 0 5

1101100000

10 3 21 9 1110011011 0.002 1 1 0.008 0 9

0000110000

Ave 5 19.4 10.2 0.0018 1 1 0.0043 0 4.4
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the values of g are 0.1, 0.3, and 0.5 in these three

experiments, respectively. The error rate threshold is

0.0015. Since this function considers the number of features

selected, you can imagine that few features will be selected.

Tables 6–8 show the corresponding experimental results

when g is 0.1, 0.3, and 0.5.

From Table 6, we can see that since the training error rate

is low, the number of features selected accounts for a large

percentage of the value of the fitness function, forcing GA to

select only two features in each run. However, the error rate

for testing results is not encouraging. It is more than 0.02 on

the average.

Table 7

Experimental results with 500 training target and clutter chips (penalty and number of features, Eq. (5); g ¼ 0:3; 1 ¼ 0:0015)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 23 41 1 0000001000 0.01 1 9 0.036 0 39

0000000000

2 20 38 1 0000001000 0.01 1 9 0.036 0 39

0000000000

3 11 29 2 1000001000 0.005 1 4 0.033 0 36

0000000000

4 8 26 3 0000000010 0.008 4 4 0.005 0 5

0010010000

5 30 48 1 0000001000 0.01 1 9 0.036 0 39

0000000000

6 14 32 1 0000001000 0.01 1 9 0.036 0 39

0000000000

7 25 43 1 0000001000 0.01 1 9 0.036 0 39

0000000000

8 20 38 1 0000001000 0.01 1 9 0.036 0 39

0000000000

9 22 40 1 0000001000 0.01 1 9 0.036 0 39

0000000000

10 27 45 1 0000001000 0.01 1 9 0.036 0 39

0000000000

Ave 20 38 1.3 0.0093 1.3 8 0.0326 0 35.3

Table 6

Experimental results with 500 training target and clutter chips (penalty and number of features, Eq. (5); g ¼ 0:1; 1 ¼ 0:0015)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 18 36 2 0000001001 0.005 2 3 0.024 0 26

0000000000

2 12 30 2 0000001000 0.007 1 6 0.007 0 8

0000001000

3 17 35 2 0000001001 0.005 2 3 0.024 0 26

0000000000

4 20 38 2 0000001001 0.005 2 3 0.024 0 26

0000000000

5 16 34 2 0000001001 0.005 2 3 0.024 0 26

0000000000

6 11 29 2 0000001001 0.005 2 3 0.024 0 26

0000000000

7 15 33 2 0000001001 0.005 2 3 0.024 0 26

0000000000

8 17 35 2 0000001001 0.005 2 3 0.024 0 26

0000000000

9 14 32 2 0000001001 0.005 2 3 0.024 0 26

0000000000

10 12 30 2 0000001000 0.007 1 6 0.007 0 8

0000001000

Ave 15.2 33.2 2 0.0054 1.8 3.6 0.0206 0 22.4
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When g is 0.3, the number of features account for a larger

part of the value of the fitness function than when g is 0.1,

forcing GA to select almost only one feature. Actually, in

eight runs, GA selects the best feature among all the 20

features (Table 12) to discriminate the target from clutter.

When g is 0.5, the number of features almost dominates

the value of fitness function. The same phenomenon occurs

and the experimental results are shown in Table 8.

Finally, we use function (6) as the fitness function.

We did three experiments with this function, and the

values of g are 0.1, 0.3, and 0.5 in these three

experiments, respectively. The error rate threshold is

Table 9

Experimental results with 500 training target and clutter chips (error rate and number of features, Eq. (6); g ¼ 0:1; 1 ¼ 0:0015)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 21 39 1 0000001000 0.01 1 9 0.036 0 39

0000000000

2 16 34 1 0000001000 0.01 1 9 0.036 0 39

0000000000

3 14 32 2 0000100010 0.01 7 3 0.006 0 7

0000000000

4 25 43 1 0000001000 0.01 1 9 0.036 0 39

0000000000

5 13 31 1 0000001000 0.01 1 9 0.036 0 39

0000000000

6 17 35 1 0000001000 0.01 1 9 0.036 0 39

0000000000

7 17 35 2 0000100010 0.01 7 3 0.006 0 7

0000000000

8 33 51 1 0000001000 0.01 1 9 0.036 0 39

0000000000

9 22 40 1 0000001000 0.01 1 9 0.036 0 39

0000000000

10 12 30 1 0000001000 0.01 1 9 0.036 0 39

0000000000

Ave 19 37 1.2 0.01 2.2 7.8 0.03 0 32.6

Table 8

Experimental results with 500 training target and clutter chips (penalty and number of features, Eq. (5); g ¼ 0:5; 1 ¼ 0:0015)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 17 35 1 0000001000 0.01 1 9 0.036 0 39

0000000000

2 29 41 1 0000001000 0.01 1 9 0.036 0 39

0000000000

3 22 40 1 0000001000 0.01 1 9 0.036 0 39

0000000000

4 15 33 1 0000001000 0.01 1 9 0.036 0 39

0000000000

5 32 50 1 0000001000 0.01 1 9 0.036 0 39

0000000000

6 11 29 1 0000001000 0.01 1 9 0.036 0 39

0000000000

7 11 29 1 0000001000 0.01 1 9 0.036 0 39

0000000000

8 23 41 1 0000001000 0.01 1 9 0.036 0 39

0000000000

9 9 27 2 0000000010 0.012 5 7 0.011 0 12

0000001000

10 23 41 1 0000001000 0.01 1 9 0.036 0 39

0000000000

Ave 19.2 37.2 1.1 0.01 1.5 8.8 0.0335 0 36.3
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0.0015. Like the function (6), this function considers both

the number of features selected and the error rate. When g is

large, this function forces GA to select one feature. Usually,

the best feature is selected (Table 12). Tables 9–11 show

the corresponding experimental results when g is 0.1, 0.3,

and 0.5, respectively.

In order to show that GA selects the best feature when the

number of features dominates the fitness function,

Table 11

Experimental results with 500 training target and clutter chips (penalty and number of features, Eq. (6); g ¼ 0:5; 1 ¼ 0:0015)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 25 43 1 0000000010 0.019 7 12 0.028 0 31

0000000000

2 11 29 1 0000001000 0.01 1 9 0.036 0 39

0000000000

3 8 26 1 0000000010 0.019 7 12 0.028 0 31

0000000000

4 11 29 1 0000001000 0.01 1 9 0.036 0 39

0000000000

5 8 26 1 0000001000 0.01 1 9 0.036 0 39

0000000000

6 15 33 1 0000001000 0.01 1 9 0.036 0 39

0000000000

7 9 27 1 0000001000 0.01 1 9 0.036 0 39

0000000000

8 12 30 1 0000001000 0.01 1 9 0.036 0 39

0000000000

9 29 47 1 0000001000 0.01 1 9 0.036 0 39

0000000000

10 24 42 1 0000001000 0.01 1 9 0.036 0 39

0000000000

Ave 15.2 33.2 1 0.013 2.2 9.4 0.0344 0 37.4

Table 10

Experimental results with 500 training target and clutter chips (penalty and number of features, Eq. (6); g ¼ 0:3; 1 ¼ 0:0015)

Runs Best

generation

Total

generation

Number

of features

Features

selected

Training

error rate

Number of errors Testing

error rate

Number of errors

Target Clutter Target Clutter

1 11 29 1 0000001000 0.01 1 9 0.036 0 39

0000000000

2 27 45 1 0000001000 0.01 1 9 0.036 0 39

0000000000

3 17 35 1 0000001000 0.01 1 9 0.036 0 39

0000000000

4 11 29 1 0000001000 0.01 1 9 0.036 0 39

0000000000

5 11 29 1 0000001000 0.01 1 9 0.036 0 39

0000000000

6 11 29 1 0000001000 0.019 7 12 0.028 0 31

0000000000

7 20 38 1 0000000010 0.01 1 9 0.036 0 39

0000000000

8 30 48 1 0000000010 0.019 7 12 0.028 0 31

0000000000

9 7 25 1 0000000010 0.019 7 12 0.028 0 31

0000000000

10 12 30 1 0000001000 0.01 1 9 0.036 0 39

0000000000

Ave 15.7 33.7 1 0.013 2.8 9.9 0.0336 0 36.3
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we examine the efficacy of each feature in discriminating

the targets from clutter. The data used in examination are

500 target chips and 500 clutter chips used in the above

training. The results are shown in Table 12. From this table,

it can be seen that the best feature (feature 7, the maximum

CFAR feature) is selected by GA.

4.3. Comparison and analysis

Fig. 9 shows the average performances of the above

experiments pictorially. The x-axis is the average number

of features selected and the y-axis is the average training

error rate. We use the average number of features

selected and average training error rate to form a

performance point and evaluate the performance accord-

ing to the location of performance point. A good

performance point should have lower values of both

the average number of features and the training error.

The three points (shown as circles) are the performance

points when the MDLP-based fitness function is used and

the rest are the performance points corresponding to

other fitness functions.

From the above experimental results, we can see that

GA is capable of selecting a good set of features to

discriminate the target from clutter. The MDLP-based

fitness function is the best fitness function compared to

three other functions. Fitness function (4) doesn’t include

the number of features. Although GA can find a good set

of features quickly driven by this function, many features

are selected. This greatly increases the computational

complexity in the testing phase. Fitness functions (5) and

(6) take the number of features selected into consider-

ation. However, the number of features dominates the

fitness function value, forcing GA to select only one or

two features, leading to the unsatisfactory training and

testing error rates. In order to balance the number of

features selected and the error rate, parameter g must be

finely tuned. This is not an easy task and it usually takes

a lot of time. The MDLP-based fitness function is based

on a sound theory and it balances these two terms very

well. Only a few features are selected while the training

and testing error rates are kept low.

In order to evaluate which features are more important

than others using MDLP-based approach, we combine the

results of first, second and fourth experiments. Note that in

the first, second and fourth experiments (Tables 1, 2 and 4),

GA is invoked for a total of 30 times. Table 13 shows

the number of times each feature is selected in these 30 runs.

It can be seen from Table 13 that the fractal dimension

feature (feature 2), the maximum CFAR feature (feature 7)

and the count feature (feature 10) are very useful in

detecting targets in SAR images, while the standard

deviation feature (feature 1) and the mean CFAR feature

(feature 8) are not good. The major diagonal projection

feature (feature 13), the minimum distance feature (feature

15), the maximum distance feature (feature 16) and the

average distance feature (feature 17) have low utility while

other features have very low utility. These results are

consistent with those shown in Table 12. Considered

individually, the maximum CFAR feature (feature 7) is

Table 12

Experimental results using only one feature for discrimination (target chips ¼ 500, clutter chips ¼ 500)

Feature Error rate Number of errors Feature Error rate Number of errors

Target Clutter Target Clutter

1 0.119 17 102 11 0.118 18 100

2 0.099 16 83 12 0.111 6 105

3 0.056 7 49 13 0.126 9 117

4 0.057 17 40 14 0.131 7 124

5 0.068 13 55 15 0.09 5 85

6 0.354 0 354 16 0.069 3 66

7 0.01 1 9 17 0.075 3 72

8 0.5 480 20 18 0.209 0 209

9 0.019 7 12 19 0.2 2 198

10 0.073 15 58 20 0.244 0 244

Fig. 9. Average performances of various fitness functions.
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the best feature (Table 12) and it is selected by GA

(in combination with other features) in all the 30 runs.

5. Conclusion

In this paper, we introduced the GA feature selection

algorithm into a specific application domain to discrimi-

nate the targets from the natural clutter false alarms in

SAR images. Rough target detection, feature extraction,

GA feature selection and final discrimination are

successfully implemented and good results are obtained.

Our experimental results show that the GA selected a

good subset of features. Also, we proposed a MDLP-based

fitness function and compared its performance with three

other fitness functions. Our experimental results show that

it balances the number of features selected and the error

rate very well and it is the best fitness function compared

to other three functions. In the future, we plan to extend

this approach to additional features and more complex

background clutter.
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