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A robust two step approach for fingerprint identification
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Abstract

Due to the complex distortions involved in two impressions of the same finger, fingerprint identification is still a

challenging problem. In this paper, we propose a two step fingerprint identification approach based on the triplets of

minutiae. The features that we use to find the potential corresponding triangles include angles, triangle orientation,

triangle direction, maximum side, minutiae density and ridge counts. In the first step, based on the number of corre-

sponding triangles between the query fingerprint and the model database constructed offline, hypotheses are generated.

In the second step, called verification, false corresponding triangles are eliminated by applying constraints to the

transformation between two potential corresponding triangles. The experimental results on National Institute of

Standards and Technology special fingerprint database 4, NIST-4, show that the proposed approach provides a re-

duction by a factor of 10 for the number of the hypotheses that need to be considered if linear search is used and can

achieve a good performance even when a large portion of fingerprints in the database are of poor quality.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fingerprints have been used for personal au-
thentication for a long time. Now, they are not

only used by police for law enforcement, but they

also find their use in civilian applications, such as

access control and financial transactions. In terms

of applications, there are two kinds of systems,

which use fingerprints for the personal identity:

verification and identification. In verification, the

input is a query fingerprint and an identity (ID),
the system verifies whether the ID is consistent
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with the fingerprint. The output of a verification

system is an answer of yes or no. In identification,

the input is only a query fingerprint, the system
tries to answer the question: are there any finger-

prints in the database, which resemble the query

fingerprint? In this paper, we are dealing with the

identification problem.

Fingerprint is formed by a group of curves. The

most useful features, which include endpoint and

bifurcation, are called minutiae. Fig. 1 shows an

example of endpoint and bifurcation in a finger-
print image. People believe that a person can be

identified with a high confidence based on the

minutiae of a fingerprint.

Generally, the minutiae based fingerprint veri-

fication is a kind of point matching algorithm. In

order to improve the performance, additional
ights reserved.
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Fig. 1. Examples of minutiae.
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characteristics, such as local orientation and core/

delta point position are used. However, the dis-

tortions between two sets of minutiae extracted

from the different impressions of the same finger
may include translation, rotation, scale, shear, local

perturbation, occlusion and clutter, which make it

difficult to find the corresponding minutiae reli-

ably.

There are three kinds of approaches to solve the

fingerprint identification problem: (1) repeat the veri-

fication procedure for each fingerprint in the data-

base and select the best match; (2) fingerprint
classification followed by verification; and (3) fin-

gerprint indexing followed by verification. Fig. 2

shows the block diagram of these three kinds of

approaches. The first approach is always based on

a verification approach. Recent techniques for

fingerprint verification can be found in (Jain et al.,

1997; Jiang and Yau, 2000; Kovacs-Vajna, 2000).

However, if the size of the database is large, the
(2) Classification fol-
lowed by verification
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Fig. 2. Block diagram of three kinds of appr
first approach will be a time-consuming procedure

and it is not practical for real-world applications.

The traditional classification techniques used in

the fingerprint recognition area attempt to classify

fingerprints into five classes: Right loop (R), left

loop (L), whorl (W), arch (A) and tented arch (T).
Classification techniques based on different fea-

tures and algorithms can be found in (Cappelli

et al., 1999; Jain et al., 1999; Marcialis et al., 2001;

Yao et al., 2001). However, the problem of clas-

sification technique is that the number of principal

classes is small and the fingerprints are unevenly

distributed (31.7%, 33.8%, 27.9%, 3.7% and 2.9%

for classes R, L, W, A and T, respectively (Wilson
et al., 1993)). The classification approach does not

narrow down the search enough in the database

for efficient identification of a fingerprint. The goal

of the third approach is to significantly reduce the

number of candidate hypotheses to be considered

by the verification algorithm. These approaches

are called indexing techniques or 1–N matching in

the fingerprint recognition area where the ultimate
goal is matching or verification.

A prominent approach for fingerprint identifi-

cation is by Germain et al. (1997), which integrates

the indexing and verification in their approach

(Fig. 2(a)). They use the triplets of minutiae in

their identification procedure. The features they

use are: the length of each side, the angles that the

ridges make with respect to the X -axis of the ref-
erence frame, and the ridge count between each

pair of vertices. The problems with their approach
(3) Indexing followed
by verification

Results

a) indexing / verification
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(b) indexing / verification
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are: (a) the length changes are not insignificant

under scale and shear; (b) the ridge angles change

greatly with different quality images of the same

finger; and (c) uncertainty of minutiae locations is

not modeled explicitly. As a result, large size bins

have to be used to handle distortions, which in-
creases the probability of collisions and degrades

the performance of their algorithm.

Our approach presented in this paper follows

Germain et al. (1997) in that we also use the

triplets of minutiae and ridge counts. However, the

indexing and verification in our approach are

separated (Fig. 2(b)). Firstly, we apply indexing

techniques to find top N (N ¼ 10% in our experi-
ments) hypotheses, and then apply verification

technique to verify hypotheses. Furthermore, most

features that we use are quite different from theirs.

The features that we use are: triangle�s angles,

orientation, direction, maximum side, minutiae

density and ridge counts. And we also use the

constraints of the transformation to eliminate the
Fig. 3. Two step approach for
false corresponding triangles. Fig. 3 shows the

block diagram of our approach. Minutiae are ex-

tracted by using a learned template based ap-

proach introduced by Bhanu and Tan (2001b).

During the offline processing, template fingerprints

are processed to construct the model database.
During the online processing, features of the query

fingerprint based on the triplets of minutiae are

used to find the potential corresponding triangles.

Then, top 10% hypotheses are generated accord-

ing to the number of potential corresponding tri-

angles. The transformation between each pair of

potential corresponding triangles is estimated using

mean square error. Finally, the constraints of the
transformation are applied to eliminate the false

corresponding triangles. The identification score is

computed based on the number of corresponding

triangles.

The contribution of this paper is that we de-

velop a robust fingerprint identification approach,

which can tolerate highly nonlinear deformations.
fingerprint identification.
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The performance of our approach on the NIST-4

database, which has a large portion of fingerprints

of poor quality, shows that our approach is

promising.
2. Technical approach

2.1. Find potential corresponding triangles

Fig. 4 shows a triangle. Without loss of gener-

ality, we assume that one vertex, O, of the triangle

is ð0; 0Þ, and it does not change under distortions.

Since distance is invariant under translation and
rotation and relatively invariant under scale, and

angles are defined in terms of the ratio of distance,

it can be proved that angles are invariant under

these transformations. However, in fingerprint

recognition, because of the uncertainty of minutiae

locations, which is associated with feature extrac-

tion and shear, the location of each minutia

translates in a small local area randomly and in-
dependently. Suppose the locations of points A
and B are ðx1; 0Þ and ðx2; y2Þ, x1 > 0, y2 > 0 and

x2 2 ð�1;þ1Þ. Because of the uncertainty of

minutiae locations, A and B move to A0ðx1 þ Dx1;
0Þ and B0ðx2 þ Dx2; y2 þ Dy2Þ, respectively, and a
changes to a þ Da. Then

tanDa¼ ðx1�x2ÞDy2�y2ðDx1�Dx2Þ
ðx1�x2Þ2þðx1�x2ÞðDx1�Dx2Þþy2

2þy2Dy2
ð1Þ

Suppose Dx1, Dx2 and Dy2 are independent, and

�66Dxi, Dy2 6 6, i ¼ 1; 2 and Dxi and Dy2 are all

integers, then
X

Y

O
A

B

x1x2

y2

α

Fig. 4. Illustration of variables.
gðx1; x2; y2Þ ¼ EfDag

�
X6

Dx1¼�6

X6

Dx2¼�6

X6

Dy2¼�6

ðj tanDa

 pðDx1ÞpðDx2ÞpðDy2ÞjÞ ð2Þ

Suppose pðDx1Þ, pðDx2Þ and pðDy2Þ are discrete

uniform distributions in ½�6;þ6�. Let 0 < x1, y2,
jx2j < L, where L is the maximum value of these

variables in the image (in our experiments

L ¼ 300). We compute gðx1; x2; y2Þ at each point

ðx1; x2; y2Þ based on whether a is the minimum,

median or maximum angle in the triangle. Notice

that, if amin < da or s < ds, then the uncertainty of
minutiae locations may have more effect on amin

and amed, so we do not use these triangles in the

model-base, where s is the minimum length of the

sides in a triangle. Thresholds are da ¼ 10�,
ds ¼ 20.

From Table 1, we observe: (1) the minimum

and the median angles amin and amed are more ro-

bust than the maximum angle amax and they can be
used to find the correspondences; (2) 2� can ac-

commodate the uncertainty of most distortions

and keep the size of the search space as small as

possible. Using other distributions for pðDx1Þ,
pðDx2Þ and pðDy2Þ, we find the results similar to

that in Table 1. More details of the analysis can be

found in (Bhanu and Tan, 2001a).

The features we use to find potential corre-
sponding triangles are defined as:

� Angles amin and amed: Suppose ai are three

angles in the triangle, i ¼ 1; 2; 3. Let amax ¼
maxfaig, amin ¼ minfaig, amed ¼ 180�� amax � amin,

then the label of the triplets in this triangle is: if the

minutia is the vertex of angle amax, we label this

point as P1; if the minutia is the vertex of angle
Table 1

Percentage of the expectation of changes of angles less than the

threshold

Angle�s
type

Angle change threshold

1� 2� 3� 4� 5� 6�

amin 75.8 97.1 99.2 99.7 99.9 100.0

amed 74.4 92.4 97.0 98.6 99.3 99.6

amax 32.1 82.8 93.6 97.1 98.6 99.2
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amin, we label it as P2; the last minutia is labeled

as P3.

� Triangle orientation /: Let Zi ¼ xi þ jyi be the

complex number (j ¼
ffiffiffiffiffiffiffi
�1

p
) corresponding to the

coordinates ðxi; yiÞ of point Pi, i ¼ 1; 2; 3. Define

Z21 ¼ Z2 � Z1, Z32 ¼ Z3 � Z2 and Z13 ¼ Z1 � Z3.
Let / ¼ signðZ21  Z32Þ, where sign is the signum

function and · is the cross product of two complex

numbers.

� Triangle direction g: Search the minutia from

top to bottom and left to right in the fingerprint, if

the minutia is the start point of a ridge or valley,

then m ¼ 1, else m ¼ 0. g is the combination of mi, mi

is the m value of point Pi, i ¼ 1; 2; 3.
� Maximum side k: Let k ¼ maxfLig, where

L1 ¼ jZ21j, L2 ¼ jZ32j and L3 ¼ jZ13j.
� Minutiae density v: In a local area (32 · 32

pixels) centered at the minutiae Pi, if there exists

nv minutiae, then minutiae density vi ¼ nv. v is a

vector consisting of all vi�s.
� Ridge counts n: n1 is the ridge count of the

side P1P2, n2 is the ridge count of the side P2P3, and
n3 is the ridge count of the side P3P1. n is a vector

consisting of all ni�s.
If two triangles from two different fingerprints

have the same feature values, then they are po-

tential corresponding triangles.

In our implementation, we use a 7D array to

represent the index space. Each element in the

array is a vector that contains the information
about triangles that are associated with the index.

And all this information is computed during the

offline processing.

2.2. Verify corresponding triangles

Suppose the sets of minutiae in the template

and the query fingerprints are fðtm;1; tm;2Þg and
fðqn;1; qn;2Þg respectively, where m ¼ 1; 2; 3; . . . ;M ,

n ¼ 1; 2; 3; . . . ;N , M and N are the number of mi-

nutiae in the template and the query fingerprints

respectively. Let Mt and Mq be two potential cor-

responding triangles in the template and the query

fingerprints, respectively. The coordinates of the

vertices of Mt and Mq are ðxi;1; xi;2Þ and ðyi;1; yi;2Þ,
respectively, and i ¼ 1; 2; 3. Suppose Xi ¼ ½xi;1; xi;2�0,
Yi ¼ ½yi;1; yi;2�0, and the transformation Yi ¼ F ðXiÞ
between Xi and Yi can be expressed as
Yi ¼
1 dhx

dhy 1

� �
1 þ dsx 0

0 1 þ dsy

� �
R � Xi þ T

ð3Þ
where (dhx; dhy) and (1 þ dsx; 1 þ dsy) are the shear
and scale parameters;

R ¼ cos h � sin h
sin h cos h

� �
h is the angle of rotation between two fingerprints;

and T ¼ ½t1; t2�0 is the vector of translation.

Since dhx � 1, dhy � 1 and dsx � dsy , we can

simplify Eq. (2) to

Yi ¼ s � R � Xi þ T ð4Þ
where s is the scaling factor.

We can estimate the transformation parameters

by minimizing the sum of the squared distances

between the transformed query points and their

corresponding template points. That is,

error ¼ argmin
ðŝs;R̂R;T̂T Þ

fe2g ð5Þ

where e2 ¼
P3

i¼1 kYi � ðŝs � bRR � Xi þ bTT Þk2
, kV k is the

L2 norm of vector V .

The solution of Eq. (5) is

ĥh ¼ arctan
B
A

� �
;

ŝs ¼
P3

i¼1 fðXi � X Þ0bRR0ðYi � Y ÞgP3

i¼1 fðXi � X Þ0ðYi � Y Þg
;

bTT ¼ Y � ŝs � bRR � X ð6Þ

where

A ¼
X3

i¼1

fðx1 � xi;1Þðyi;1 � �yy1Þ þ ð�xx2 � xi;2Þðyi;2 � �yy2Þg

B ¼
X3

i¼1

fð�xx1 � xi;1Þðyi;2 � �yy2Þ � ð�xx2 � xi;2Þðyi;1 � �yy1Þg

X ¼ �xx1

�xx2

� �
¼

X3

i¼1

X i; Y ¼ �yy1
�yy2

� �
¼

X3

i¼1

Y i;

bRR ¼ cos ĥh � sin ĥh
sin ĥh cos ĥh

� �
; bTT ¼ t̂t1

t̂t2

� �
: ð7Þ



Fig. 5. Pfvk > Tg with respect to T .
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If ŝs, ĥh, t̂t1 and t̂t2 are less than certain thresholds,

then we take them as the parameters of the

transformation between two potential corre-

sponding triangles Mt and Mq. Otherwise, they are

false correspondences. Based on the transforma-
tion bFF ðŝs; ĥh; t̂t1; t̂t2Þ 8j; j ¼ 1; 2; 3; . . . ;M , we compute

d ¼ argmin
k

bFF tj;1
tj;2

� �� �				



� qk;1

qk;2

� �				
�

ð8Þ

If d is less than a threshold Td , then we define the
points ½tj;1; tj;2�0 and ½qk;1; qk;2�0 are corresponding

points. If the number of corresponding points

based on bFF ðŝs; ĥh; t̂t1; t̂t2Þ is greater than a threshold

Tn, then we define Mt and Mq as the corresponding

triangles between the template and the query fin-

gerprints.

The identification score is simply the number of

corresponding triangles.

2.3. Probability of false corresponding triangles

Suppose: (a) S is the size of the index space; (b)

fk is the number of triangles in the model database

for image Ik, and these triangles are uniformly

distributed in the indexing space; (c) b is the search

redundancy for each triangle in the query image;
(d) vk is the number of corresponding triangles

between image I and Ik; (e) ft is the number of

triangles for the query image; and (f) p0 and p1 be

the probabilities to find a corresponding triangle in

the indexing space for image Ik in a single search

and redundant search, respectively (Lamdan and

Wolfson, 1991). Then

p1 ¼ 1 � ð1 � p0Þb and p0 ¼
fk
S

ð9Þ

In our approach, S � fk, p0 is a small value. So,

p1 � bp0. The value of vk that is greater than a

threshold T can be computed using the Binomial

distribution with p1,

Pfvk > Tg ¼
X
i>T

ft
i

� �
pi
1ð1 � p1Þft�i ð10Þ

Since p1 � 1, and ft is large, the Binomial distri-

bution can be approximated by the Poisson dis-
tribution with n ¼ ft  p1. Hence Pfvk > T g can be

approximately by
Pfvk > Tg � 1 � e�n
XT

i¼0

ni

i!
ð11Þ

In our approach, we use 1� as the bin size for angles
amin and amed, and we search the corresponding

triangles with the uncertainty of ±2�. Hence,

S ¼ 207360000, b ¼ 9, if fk ¼ ft � 11407, then we

have p0 ¼ 5:501  10�5, p1 � 4:951  10�4, n �
5:648. Fig. 5 shows the curve of Pfvk > T g with

respect to T .

From Fig. 5, we observe that Pfvk > T g de-

creases quickly with respect to T . When T ¼ 15,
Pfvk > Tg ¼ 0:0003. That is, if there is no finger-

print in the database corresponding to the query

fingerprint, then the probability of finding 15

corresponding triangles between the query finger-

print and any fingerprints in the database is about

0.0003. We can use T ¼ 15 as the threshold to

reject a query fingerprint which has no corre-

sponding fingerprint in the database.
From Fig. 5, we observe that Pfvk > T g de-

creases quickly with respect to T . When T ¼ 15,

Pfvk > Tg ¼ 0:0003. That is, if there is no finger-

print in the database corresponding to the query

fingerprint, then the probability of finding 15

corresponding triangles between the query finger-

print and any fingerprints in the database is about

0.0003. We can use T ¼ 15 as the threshold to
reject a query fingerprint which has no corre-

sponding fingerprint in the database.



Table 2

Parameter used in experiments

Parameters Value

Ts, threshold to constrain scaling factor ŝs 0:85 < ŝs < 1:15

Th, threshold to constrain rotation angle ĥh �30� < ĥh < 30�
T1 and T2, threshold to constrain

translations t̂t1 and t̂t2
ĵttj1 < 150

ĵtt2j < 100

Td , threshold to find the corresponding

points

Td ¼ 12 pixels

Tn, threshold to find the corresponding

triangles

Tn ¼ 8

Fig. 7. ROC curve of the experimental results.
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3. Experimental results

The database we use is the NIST Special Data-

base 4 (NIST-4) (Watson and Wilson, 1992),

which is a publicly available fingerprint database.
Since the fingerprints in NIST-4 are collected by

ink-based method, a large portion of fingerprints

are of poor quality and contains certain other

objects, such as characters and handwritten lines.

The size of the fingerprint images is 480 512

pixels with the resolution of 500 DPI.

NIST-4 contains 2000 pairs of fingerprints.

Each pair is a different impression of the same
finger. One pair of fingerprints is shown in Fig. 6.

In our experiments, the first 2000 fingerprints

(f0001_01–f2000_10) are used to construct the

model database, and the second 2000 fingerprints

(s0001_01–s2000_10) are used as the query fin-

gerprints. Conceptually, we did 2000 queries to

find the genuine acceptance rate (GAR) and

3 998 000 queries (2000 · 1999) queries to find the
false acceptance rate (FAR). The parameters that

we use are shown in Table 2. The receiver oper-

ating characteristic (ROC) curve is defined as the

plot of GAR against FAR. Fig. 7 shows the ROC

curve of the proposed approach on NIST-4.

From Fig. 7, we observe that without rejecting

any fingerprints from NIST-4 database, the GAR

and FAR can reach 83.0% and 0.2%, respectively.
As the threshold for identification score increases,

the FAR decreases to 0.0011% while the GAR is

71.8%. To the best of our knowledge, this is the

first paper, which shows the identification results

obtained automatically by computer program on

the entire NIST-4 database.
Fig. 6. Sample images in NIST-4 database.
Results on NIST-4 are reported in (Kovacs-

Vajna, 2000). However, the approach in (Kovacs-

Vajna, 2000) is for verification only and 6.0% data

are rejected manually by the author because of bad

quality. Without dynamic time warping (DTW)

for the detailed verification, the FAR is 10.0%,
which is unacceptable, although the GAR is

85.0%. It makes no sense for us to compare the

performance reported in (Kovacs-Vajna, 2000)

with DTW since the author has not used the entire

database, and we do not know which of the fin-

gerprints have been rejected manually. We also

implemented the approach as described in (Ger-

main et al., 1997), and Fig. 8 shows the correct
indexing power (CIP) (Bhanu and Tan, 2001a) of

the approach in (Germain et al., 1997), where CIP

is defined as the percentage of the correctly in-

dexed images. If we take the top 1 hypothesis as

the identification result, then GAR is 53.0% while



Fig. 8. CIP of the approach (Germain et al., 1997) on NIST-4.
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FAR is greater than 10.0%. This performance on

NIST-4 database is not good. One important

reason is that the approach in (Germain et al.,

1997) does not take into account the scale distor-

tion, which is obviously present in NIST-4 data-

base.

Examining the experimental results, we find

that: (a) the zero identification scores for most
genuine queries are due to the poor quality of

fingerprints. There are not enough overlapped

areas from which the feature extraction procedure

can extract enough corresponding minutiae; (b)

the nonzero identification scores for most imposter

queries are due to the highly similar structures in

two different fingerprints.
4. Conclusions

In this paper, we proposed a fingerprint iden-

tification approach based on the triplets of mi-

nutiae. The features we use to find potential

corresponding triangles are based on the triplets of

minutiae and can tolerate reasonable distortions,
including translation, rotation, scale, shear, local

perturbation, occlusion and clutter. Constraints

for translation, rotation and scale are applied to

the transformation parameters to eliminate the

false corresponding triangles. The number of cor-

responding triangles provides a good local method
to measure the similarities between two finger-

prints. Since we only take into account the top

10% hypotheses in the verification step, it provides

a reduction by a factor of 10 for the number of the

hypotheses that need to be considered if linear

search is used. We achieve promising experimental
results on the NIST-4 database, which has a large

portion of poor quality fingerprints.
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