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Abstract. The focus of this work is optimizing recognition models for
synthetic aperture radar (SAR) signatures of vehicles to improve the
performance of a recognition algorithm under the extended operating
conditions of target articulation, occlusion, and configuration variants.
The recognition models are based on quasi-invariant local features, scat-
tering center locations, and magnitudes. The approach determines the
similarities and differences among the various vehicle models. Methods
to penalize similar features or reward dissimilar features are used to
increase the distinguishability of the recognition model instances. Exten-
sive experimental recognition results are presented in terms of confusion
matrices and receiver operating characteristic (ROC) curves to show the
improvements in recognition performance for real SAR signatures of ve-
hicle targets with articulation, configuration variants, and occlusion.
© 2002 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1517286]
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1 Introduction

We are concerned with optimizing recognition models
synthetic aperture radar~SAR! signatures of real vehicles t
improve the performance of a recognition system. The r
ognition system starts with real SAR chips of actual m
tary vehicles from the MSTAR public data,1 and ends with
the identification of a specific vehicle type~e.g., a T72
tank!. A major challenge is that the vehicles can be in
ticulated configurations~such as a tank with its turret ro
tated!, have significant external configuration variants~fuel
barrels, searchlights, etc.!, or they can be partially oc
cluded. The detection theory,2,3 pattern recognition,4–6 and
neural network7 approaches to SAR recognition all tend
use global features that are optimized for standard, no
ticulated, nonoccluded configurations. Approaches that
on global features are not appropriate for recognizing
cluded~or articulated! objects, because occlusion~or articu-
lation! changes global features like the object outline a
major axis.8 Our previous work9–12 relied on local features
to successfully recognize articulated and highly occlud
objects. We started using invariant locations of SAR sc
tering centers as features and later developed techni
using quasi-invariant locations and magnitudes of the s
tering centers. Other work~Boshra and Bhanu13! on pre-
dicting the performance of recognition systems introduc
the idea that recognition performance depends on the
tortion in the test data and the inherent similarity of t
object models. We develop an approach that determines
similarities and differences among the object models
uses thisa priori knowledge to optimize the recognitio
models to improve the recognition system performance

The two key contributions of this work are: 1. it qua
tifies the similarities between object models of SAR sc
terer locations and magnitudes; and 2. it develops an
3298 Opt. Eng. 41(12) 3298–3306 (December 2002) 0091-3286/2002/
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proach that successfully usesa priori knowledge of the
similarities between object models to improve the perf
mance of a SAR recognition system. Using this concept
approach, we present results on real MSTAR SAR data
shows that by explicitly measuring similarities of mod
objects and using it appropriately in a recognition syste
we can increase target recognition performance under
tended operating conditions.

The remainder of the work is organized as follows. T
next section gives a description of the basic SAR recog
tion system. Section 3 describes the approach used to m
sure model similarity, presents similarity results, and giv
example similarity weight functions. Section 4 gives e
perimental results for various similarity weight function
for the configuration variant cases. It also extends th
results to articulated and occluded objects. Finally, conc
sions are drawn in Sec. 5.

2 SAR Recognition System

The basic SAR recognition system is an off-line mod
construction process and a similar on-line recognition p
cess. The approach is designed for SAR and is specific
intended to accommodate recognition of articulated and
cluded objects. Standard nonarticulated models of the
jects are used to recognize these same objects in nons
ard, articulated, and occluded configurations. An exam
photograph, MSTAR SAR target image, and extracted
get region of interest~ROI!, with scattering center location
shown as black dots, is given in Fig. 1 for T72 tank~serial
number! #a64 and for ZSU 23/4 antiaircraft gun #d08. Th
models are a look-up table and the recognition process i
efficient search for positive evidence, using relative loc
$15.00 © 2002 Society of Photo-Optical Instrumentation Engineers
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Bhanu and Jones: Increasing the discrimination . . .
tions of the scattering centers in the test image to access
look-up table and generate votes for the appropriate ob
~and azimuth pose!.

The relative locations and magnitudes of theN strongest
SAR scattering centers~local maxima in the radar return
signal! are used as characteristic features~where N, the
number of scattering centers used, is a design parame!.
Because of the specular radar reflections in SAR image
significant number of features do not typically persist ov
a few degrees of rotation.9 Consequently, we model eac
object at 1-deg azimuth increments. Any local referen
point, such as a scattering center location, can be chose
a basis point to establish a reference coordinate system
building a model of an object at a specific azimuth ang
pose. The relative distance and direction of other scatte
centers can be expressed in radar range and cross-r
coordinates and naturally tessellated into integer buck
that correspond to the radar range/cross-range bins.
ideal data, picking the location of the strongest scatter
center as the basis point is sufficient. However, for pot
tially corrupted data, where any scattering center could
spurious or missing~due to the effects of noise, target a
ticulation, occlusion, nonstandard target configuratio
etc.!, we use allN strongest scattering centers in turn
basis points to ensure that a valid basis point is obtain

Fig. 1 Example photo, MSTAR SAR image, and ROI (with peaks)
for T72 tank #a64 and ZSU 23/4 antiaircraft gun #d08 (photo not to
scale).
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Thus, to handle articulation and occlusion, the size of
look-up table models~and also the number of relative dis
tances that are considered in the test image during reco
tion! are increased fromN to N(N21)/2. Using a tech-
nique like geometric hashing,14 the models are constructe
using the relative positions of the scattering centers in
range and cross-range directions as the initial indices
look-up table of labels that give the associated target ty
target pose, basis point range, and cross-range positions
the magnitudes of the two scatterers. Since the relative
tances are not unique, there can be many of these la
~with different target, pose, etc. values! at each look-up
table entry. The basic model construction algorithm is o
lined in Fig. 2.

The recognition process uses the relative locations of
N strongest scattering centers in the test image to acces
look-up table and generate votes for the appropriate obj
azimuth, range, and cross-range translation. Constraints
applied to limit the allowable percent difference in the ma
nitudes of the data and model scattering centers to6L%.
The design parametersN and L are optimized, based on
experiments, to produce the best recognition results. Gi
that the MSTAR targets are ‘‘centered’’ in the chips, a65
pixel limit on allowable translations is imposed for comp
tational efficiency and to accommodate some imprecis
in the centering algorithm. To accommodate some unc
tainty in the scattering center locations, the eight neighb
of the nominal range and cross-range relative location
probed, and the translation results are also accumulated
a 333 neighborhood in the translation space. This voti
in translation space, in effect, converts the consideration
scatterer pairs back into a group of scatterers at a consis
translation. The recognition process is repeated with dif
ent scattering centers as basis points, providing mult
looks at the model database to handle spurious scatte
that arise due to articulation, occlusion, or configurati
differences. The recognition algorithm actually makes a
tal of 9N(N21)/2 queries of the look-up table to accum
late evidence for the appropriate target type, azimuth an
and translation. The models~labels with object, azimuth
etc.! associated with a specific look-up table entry are
‘‘real’’ model and other models that happen, by coinc
dence, to have a scatterer pair with the same~range, cross-
range! relative distance. The constraints on magnitude d
Fig. 2 Basic model construction algorithm.
3299Optical Engineering, Vol. 41 No. 12, December 2002
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Fig. 3 Recognition algorithm.
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ferences filter out many of these false matches. In addit
while these collisions may occur at one relative locatio
the same random object-azimuth pair does not often k
showing up at other relative locations with appropriate sc
terer magnitudes and mapping to a consistent 333 neigh-
borhood in translation space, while the ‘‘correct’’ obje
does.

The basic decision rule used in the recognition is
select the object-azimuth pair~and associated ‘‘best’’ trans
lation! with the highest accumulated vote total. To hand
identification with unknown objects, we introduce a crite
for the quality of the recognition result that the votes for t
potential winning object exceed some minimum thresh
d. By varying the decision rule threshold, we obtain a fo
of receiver operating characteristic~ROC! curve with prob-
ability of correct identification (PCI)5P$decide correct
modeled objectuobject is true case%, versus probability of
false alarm,Pf5$decide any modeled objectuunknown is
true case%. The recognition algorithm is given in Fig. 3.

More formally, a radar image of objectc at azimuth pose
a consists ofN ~strongest in magnitude! scatterers, each
with a magnitudeSk and range and cross-range locatio
Rk and Ck ~R and C are range and cross-range direction
see Fig. 4!, which ~for consistency! are ordered by decreas
ing magnitude, such thatSk>Sk11 , wherek51,...,N ~and
SN11 is not defined!. A modelM of objectc at azimutha is
given by:

M ~c,a!5$V1~c,a!,V2~c,a!,...,VN~N21!/2~c,a!%, ~1!

which is comprised of the set of all pairwise observatio
Vi :
neering, Vol. 41 No. 12, December 2002
, Vi~c,a!5$ f 1 , f 2 ,...,f 6% i , ~2!

where i 51,2,...,N(N21)/2, f 15RP2RO , f 25CP2CO ,
f 35RO , f 45CO , f 55SO , f 65SP , and with the indi-
vidual scatterers in each pair labeledO and P, so thatSO

>SP for consistency~see Fig. 4!.

Fig. 4 Observation for a pair of scatterers O and P.
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We define a match,H, as:

H~Vi ,Vj !5H 1 if u~ f b! i2~ f b! j u<db , ;b51,...,6

0 otherwise
, ~3!

where the match constraints ared15d250 pixels, d35d4

55 pixels, andd55d65L percent. A subscriptt applied to
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a match denotes that the match,Ht , is associated with the
relative translationt(R,C)5(D f 3 ,D f 4) of the stronger
scatterers in the two observations.

The recognition result,T, for some test image~with un-
determined classx and azimuthy! is a maximal match tha
is greater than a threshold,d, given by:
T5H @c,a#, if arg maxc,a,t$S l 51
9 Sk51

N~N21!/2Sn51
9 Ht

l@Vk
n~x,y!,Vm~c,a!#%.d

unknown, otherwise
, ~4!
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whereVmPM (c,a);m, such thatu( f 1)V
k
n2( f 1)Vm

u50 and

u( f 2)V
k
n2( f 2)Vm

u50. Note that this formulation forVm

avoids an exhaustive search of all the models and can
implemented as a look-up table. The nine observations~de-
noted by the superscriptn in Vk

n) are made to account fo
location uncertainty by taking the 333 neighbors about the
nominal values for the relative locationsf 1 and f 2 of scat-
terer pairk in the test image. Similarly, the nine match
~denoted by the superscriptl in Ht

l) are computed at the 3
33 neighbors at61 pixel about the nominal values fo
translation,t(R,C), of the scatterers in the test image fro
the model.

3 Model Similarity Measurement and Weighting

3.1 Model Similarity

Model similarity can be measured in terms of collision
where a collision is an instance when observations of
different objects map into the same location~within some
specified region of uncertainty! in feature space, i.e., i
H(Vi ,Vj )51 and ciÞcj . The recognition system de
scribed in the preceding section has a 6-D feature sp
based on the range and cross-range positions and m
tudes of pairs of scatterers@see Eq.~2!#. As noted before@in
Eq. ~1!#, the model of an object at some azimuth, withN
scatterers, is represented byN(N21)/2 observations using
pairs of scatterers with each pair mapped into the 6-D f
ture space. While the 6-D feature space could be re
sented by a simple 6-D array in concept, the large rang
potential feature values and high dimensionality make ot
implementations more practical. The nature of the S
problem, with discrete pixel values for distances and a la
dynamic range for scatterer magnitudes, leads to a na
model implementation, shown previously in Fig. 4, whe
the relative range and cross-range locations of a scat
pair are direct indices to a physical 2-D array of lists th
contain another 4-D of information and the label with t
object and pose. Thus, the model construction algorithm
Fig. 2 does not directly provide collisions in all six dime
sions of feature space. To determine if two objects map
the same location in feature space, we need to apply
same constraints that are used in the recognition algori
@see step 10 of Fig. 3 and Eq.~3!#, because the constrain
dictate the size of the region or bucket in feature space
is considered the same location.
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The general approach to measure the similarity of o
model object with respect to several other objects is to fi
build the look-up table models of the other objects us
the normal model construction algorithm of Fig. 2, and th
use a modified version of the recognition algorithm of F
3 with the subject model object~at all the modeled azi-
muths! as the test conditions to obtain a histogram of t
number of occurrences of various numbers of collisio
Basically the modified algorithm uses the first 10 steps
Fig. 3, with the consideration of each pair of scatterers a
separate occurrence~starting a new count of collisions a
step 5!, and if the constraints are satisfied~at step 10!, then
a collision is counted. The total number of occurrences~and
observations! is equal toAN(N21)/2, whereA is the num-
ber of azimuths modeled~some of the MSTAR data wa
sequestered, so not all 360 deg were available!.

Figure 5 shows example model collision histograms~at
N539 andL59) for four MSTAR vehicles~at 15-deg de-
pression angle!: BMP2 armored personnel carrier~APC!
serial number~#! c21; BTR70 APC #c71; T72 tank #132
and ZSU23/4 antiaircraft gun #d08. Note that the ZSU2

Fig. 5 Example recognition model look-up table collision histo-
grams.
3301Optical Engineering, Vol. 41 No. 12, December 2002
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Table 1 Number of collisions for a given percent of the population (example for N539, L59).

Object Number of collisions

BMP2 27 46 66 87 110 136 167 209 274 676

BTR70 21 37 53 70 91 116 148 192 266 712

T72 27 48 68 89 111 137 168 209 271 667

ZSU 23/4 0 0 0 0 0 1 3 18 78 760

Population percent 10 20 30 40 50 60 70 80 90 100
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has significantly fewer collisions with the other vehicle
because the ZSU23/4 SAR scatterers cover a larger
than the other objects, and thus have fewer collisions.

The similarity of a pair of scatterers of a given object~at
a given azimuth! to the other objects modeled can be me
sured by the number of collisions with other objects in t
look-up table. This can be expressed as a relative mea
by using the collision histogram. For convenience,
population of collisions for a particular object is mapp
into equal partitions~each with 10% of the total number o
collisions!. As an example, for the collision histograms
Fig. 5, we obtain the results in Table 1, which shows
number of collisions for a given percent of the populatio
For the BMP2, for example, 27 collisions or less is in t
10% of the population that is the least similar to the oth
three models~whereas 90% of the BMP2 scatterer pa
have 274 or less collisions!.

3.2 Weighted Voting

The a priori knowledge of the similarities between obje
models, expressed as the number of collisions for a gi
percent of the population, can be captured by assign
weighted votes to model entries in the look-up table, ba
on collisions with other objects. This is accomplished o
line by again using a version of the recognition algorithm
obtain the number of look-up table collisions for a partic
lar observation with a pair of scatterers from a subj
model and azimuth, as before, and then based on the n
ber of collisions, determining the population partition~e.g.,
using Table 1!, and finally a given weight function is use
to assign a weight label to that instance of the particu
model observation entry in the look-up table. Thus, in t
approach the model similarities, collisions, and associa
weightings are all precomputed and appropriate weighti
are stored in the look-up table during the off-line modeli
process. The weighted models are obtained using
weighted version of an observation@similar to Eq. ~2!#
given by:

V̂i~c,a!5$w, f 1 , f 2 ,...,f 6% i , ~5!

wherew is the weight. The weighted version of a mat
@similar to Eq.~3!#, given by:

Ĥ~Vi ,V̂j !5H w if u~ f b! i2~ f b! j u<db , ; b51,...,6

0 otherwise
,

~6!

which can be substituted in Eq.~4! to obtain weighted rec-
ognition results. The various weight functions, used in t
neering, Vol. 41 No. 12, December 2002
a

e

-

research to specifyw, are shown in Fig. 6, which plots th
weight value assigned versus percent of collision popu
tion. Function 1@Fig. 6~a!# applies equal weight to all the
values and is later referred to as unweighted. Function
through 4 @Figs. 6~b! through 6~d!#, the convex weight
functions, penalize the most similar features~in the right
tail of the histogram!. Function 5 @Fig. 6~e!# with equal
steps is linear. Functions 6 and 7@Figs. 6~f! and 6~g!#,
which reward uniqueness~the left tail of the histogram!, are
concave. These weight functions illustrate a range of p
sibilities, from function 2, which penalizes only the mo
similar 10% of the population, to function 7, which rewar
only the most dissimilar 10%. These seven weight fun
tions are used and comparative performance results are
tained in experiments described in the next section.

4 Experimental Results

4.1 Configuration Variants

Our previous results9 ~using a distance-weighted votin
technique, where the weight was proportional to the sum
the absolute values of the relative range and cross-ra
distances between the scatterer pair! showed that for the
real vehicles used in the MSTAR data, the differences
configurations for an object type are a more significa
challenge for recognition than articulation~where the
model and the test data are the same physical object u
different conditions!. Similarly, the previous results10 on
occluded objects~using an unweighted voting technique!
demonstrated significantly better recognition results th
the configuration variant cases. For these reasons, in
research we follow a similar approach and optimize
recognition system for the difficult configuration varia
cases, and then utilize the same system parameters fo
articulation and occlusion cases.

Data. In these~15-deg depression angle! configuration
variant experiments, the two object model cases use
tank #132 and BMP2 APC #C21 as models, while the fo
object model cases add BTR70 APC #c71 and ZSU2
gun #d08. The test data are two other variants of the T
~#812, #s7! and two variants of the BMP~#9563, #9566!.
In addition, BRDM2 APC #e71 is used as an unknow
confuser vehicle.

Results. The forced recognition results for MSTAR con
figuration variants are shown in Fig. 7 for both two-obje
and four-object look-up table models using various weig
functions ~defined earlier in Fig. 6!. These results use th
optimal parameters~N,L! for each weight function and
table size. For the two object cases, function 3 gives
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Fig. 6 Table weighting functions: (a) function 1, (b) function 2, (c) function 3, (d) function 4, (e) function
5, (f) function 6, and (g) function 7.
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Fig. 7 Effect of table size and weighting function on forced recog-
nition of MSTAR configuration variants.
best results, a recognition rate of 95.81%, compared to
unweighted case of 95.17%. For the four object cases,
convex and linear weighting functions all provide bett
forced recognition performance than the unweighted ca
The concave weighting functions result in worse perf
mance than the unweighted case. The best four object re
is 94.17% for function 2, compared to the unweighted c
of 92.27%. Thus, increasing the number of objects mode
from two to four reduces the forced recognition rate
2.9%~95.17 to 92.27! for the unweighted case, while usin
model similarity information in the optimum weight func
tion reduces that loss to 1%~95.17 to 94.17!.

Table 2 shows example confusion matrices that illustr
the effect of going from a two-object recognition system
a four-object model recognition system for the MSTA
configuration variant data. In both cases the system par
eters~N,L! are optimized for forced recognition@two ob-
jects at~38, 11! and four at~38, 12!#, both are unweighted
cases~constant weight of 10!, and both are ford51700.
~At least 1700 votes, with a weight of 10, is equivalent
19 or more scatterers that matched.! Comparing the two-
object results on the left of Table 2 with the four-obje
3303Optical Engineering, Vol. 41 No. 12, December 2002
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Table 2 Effect of two and four models on MSTAR configuration variant confusion matrices (un-
weighted, d51700).

test targets
[serial number]

Identification results
(configuration modeled)

Identification results
(configuration modeled)

BMP2
(#C21)

T72
(#132)

Unknown BMP2
(#C21)

T72
(#132)

BTR70
(#C71)

ZSU23/4
(#d08) Unknown

BMP2 [#9563,9566] 189 3 25 189 2 8 0 18

T72 [#812,s7] 8 131 58 11 138 1 0 47

BRDM2 (confuser) 28 4 214 27 5 47 0 167
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results on the right, we observe that basically a large nu
ber of confusers and a few targets move from the Unkno
column to the additional models. Thus, while the recog
tion results are similar for two and four models (P
50.773 and 0.790, respectively! there are increased fals
alarms (Pf50.13 and 0.32, respectively!, which would
move the knee of the ROC curve to the right.

Table 3 shows an example MSTAR configuration varia
four-object confusion matrix for weight function 4. Th
system parameters~37, 9! are optimized for forced recog
nition with weight function 4 and ad of 1100 is chosen to
yield a PCI of 0.776, which is similar to the results show
in Table 2.~At least 1100 votes, with an average weight f
function 4 of 7.3, is equivalent to 18 or more scatter
matched.! Comparing the earlier four-object unweighted r
sults, shown on the right of Table 2, with the weight
results of Table 3, we observe that half the misidentifi
tions ~11 of 22! are moved to the unknown column. Th
reduction in misidentifications shows that the mod
weighting approach is increasing the distinguishability
the modeled objects. This reduction in misidentificatio
does not show up directly in the ROC curve results, wh
treat the off-diagonal target misidentifications the same
the misses, where a target is called unknown~i.e., both are
cases where the target was not correctly identified!. How-
ever, the weight function~which effectively reduces the
average weighting! allows a similar PCI to be achieve
with a lower vote threshold~1100 votes versus 1700 vote!
and results in fewer false alarms. Thus, the lowerPf of
0.276 for the weighted case versus 0.321 for the
weighted case would move the ROC curve to the left.
neering, Vol. 41 No. 12, December 2002
ROC curves are generated for the four-object configu
tion variant cases by using the optimum parameters for
forced recognition case and varying the vote threshold. F
ure 8 shows that the ROC curves for the convex and lin
weight functions provide generally better performance th
the unweighted case. In addition, Fig. 9 shows that
concave weight functions give worse performance than
unweighted case~except for the region where PCI,0.5,
Pf,0.05). The convex weight functions penalize the m
common features and so are not much affected by n
~due to configuration differences or other confuser v
hicles!. On the other hand, the concave weight functio
reward ~very strongly reward in function 7! the relatively
unique features, which makes them susceptible to co
tions where noise is strongly rewarded.

4.2 Articulation

Data. In the articulation experiments, the models a
nonarticulated versions of T72 #a64 and ZSU23/4 #d
and the test data are the articulated versions of these s
serial number objects and BRDM2 #e71 as a confuser
hicle ~all at 30-deg depression angle!.

Results. Figure 10 shows the ROC curves, with excelle
articulated object recognition results for both the weig
function 2 and the unweighted cases. Since weight func
2, with N539 andL59, gives the optimum ROC result
for the 2 object~T72, BMP2! configuration experiments
and the optimum unweighted parameters areN538 andL
511, these same parameters are used for the articula
experiments.
Table 3 Example of the MSTAR configuration variant confusion matrix for weight function 4 (d
51100).

test targets
[serial number]

Identification results
(configuration modeled)

BMP2
(#C21)

T72
(#132)

BTR70
(#C71)

ZSU23/4
(#d08) Unknown

BMP2 [#9563,9566] 179 6 1 0 32

T72 [#812,s7] 4 143 0 0 50

BRDM2 (confuser) 30 6 32 0 178



od-
nk
/4

the
u-

at-
an
ter
ec-
s,

gi-
ue
tan
jec

be

oc-
the
,

C

-
c-

ion,
ed

ely
ce.
-

get
bil-
nd

on-
nc-

Bhanu and Jones: Increasing the discrimination . . .
4.3 Occlusion

Data. The occlusion experiments use the same four m
els as the configuration variant experiments: T72 ta
#132, BMP2 APC #C21, BTR70 APC #c71, and ZSU23
gun #d08~all at 15-deg depression angles!. Since there is
no real SAR data with occluded objects available to
general public, the occluded test data in this work are sim
lated by starting with a given number of the strongest sc
tering centers in target chips of these same four objects,
then removing the appropriate number of scattering cen
encountered in order from one of four perpendicular dir
tions di ~where d1 and d3 are the cross-range direction
along and opposite the flight path, respectively, andd2 and
d4 are the up range and down range directions!. Then the
same number of scattering centers~with random magni-
tudes! are added back at random locations within the ori
nal bounding box of the chip. This is the same techniq
used in Ref. 10; it keeps the number of scatterers cons
and acts as a surrogate for some potential occluding ob
In our previous work on occluded objects,10 the confuser
vehicle was occluded. However, while the target may

Fig. 8 MSTAR configuration variant ROCs for beneficial weight
functions (four objects).

Fig. 9 MSTAR configuration variant ROCs for concave weight func-
tions (four objects).
d
s

t
t.

occluded, the confuser vehicle may not necessarily be
cluded in the practical case. Hence, in this research
BRDM2 APC ~#e71! is an unoccluded confuser vehicle
which is a more difficult case.

Results. Figure 11 shows the effect of occlusion on RO
curves for weight function 2, withN540 andL59 ~while
N540 is not optimum, it yields occlusion in 5% incre
ments!. Here with the unoccluded confuser, excellent re
ognition results are achieved for less than 45% occlus
compared with the prior 70% occlusion with an occlud
confuser.10

5 Conclusions

The similarities between object models can be effectiv
quantified using histograms of collisions in feature spa
This a priori knowledge of object similarity can be suc
cessfully used to improve the performance of SAR tar
recognition. The approach can increase the distinguisha
ity of the modeled objects, reduce misidentifications, a
result in decreased false alarms. In the most difficult c
figuration variant cases, the convex and linear weight fu

Fig. 10 Articulation recognition results.

Fig. 11 Effect of occlusion on receiver operating characteristics.
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Bhanu and Jones: Increasing the discrimination . . .
tions, which penalize the most common features, give b
ter performance than the concave weight functions, wh
strongly reward relatively unique features. The experim
tally determined optimum weight function reduces the i
pact of scaling from two to four models from a 2.9% r
duction in forced recognition rate to a 1.0% reduction. T
same approach~and parameters! also provide excellent rec
ognition results for articulated objects and up to 45%
occluded objects. While the current work is directed
similarities between different object models, in the futu
an analogous approach could be applied to determine s
larities among variants of the same object to develo
‘‘class model’’ of the object that incorporates the comm
features.
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