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Abstract. The focus of this work is optimizing recognition models for
synthetic aperture radar (SAR) signatures of vehicles to improve the
performance of a recognition algorithm under the extended operating
conditions of target articulation, occlusion, and configuration variants.
The recognition models are based on quasi-invariant local features, scat-
tering center locations, and magnitudes. The approach determines the
similarities and differences among the various vehicle models. Methods
to penalize similar features or reward dissimilar features are used to
increase the distinguishability of the recognition model instances. Exten-
sive experimental recognition results are presented in terms of confusion
matrices and receiver operating characteristic (ROC) curves to show the
improvements in recognition performance for real SAR signatures of ve-
hicle targets with articulation, configuration variants, and occlusion.
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1 Introduction

We are concerned with optimizing recognition models o
synthetic aperture rad@8AR) signatures of real vehicles to
improve the performance of a recognition system. The rec-
ognition system starts with real SAR chips of actual mili-
tary vehicles from the MSTAR public dateand ends with
the identification of a specific vehicle type.g., a T72
tank). A major challenge is that the vehicles can be in ar-
ticulated configurationgsuch as a tank with its turret ro-
tated, have significant external configuration variafftgel
barrels, searchlights, etc.or they can be partially oc-
cluded. The detection theofy, pattern recognitiofi; ® and
neural network approaches to SAR recognition all tend t
use global features that are optimized for standard, nonar-
ticulated, nonoccluded configurations. Approaches that rely
on global features are not appropriate for recognizing oc-
cluded(or articulatedl objects, because occlusiéor articu-
lation) changes global features like the object outline and
major axis® Our previous work *?relied on local features

to successfully recognize articulated and highly occluded .
objects. We stérted Ssing invariant Iocationsgof SAR scat- 2 SAR Recognition System

tering centers as features and later developed technique§he basic SAR recognition system is an off-line model
using quasi-invariant locations and magnitudes of the scat-construction process and a similar on-line recognition pro-
tering centers. Other workBoshra and Bharld) on pre- cess. The approach is designed for SAR and is specifically
dicting the performance of recognition systems introduced intended to accommodate recognition of articulated and oc-
the idea that recognition performance depends on the dis-cluded objects. Standard nonarticulated models of the ob-
tortion in the test data and the inherent similarity of the jects are used to recognize these same objects in nonstand-
object models. We develop an approach that determines theard, articulated, and occluded configurations. An example
similarities and differences among the object models and photograph, MSTAR SAR target image, and extracted tar-

proach that successfully usespriori knowledge of the
¢ similarities between object models to improve the perfor-
mance of a SAR recognition system. Using this conceptual
approach, we present results on real MSTAR SAR data that
shows that by explicitly measuring similarities of model
objects and using it appropriately in a recognition system,
we can increase target recognition performance under ex-
tended operating conditions.

The remainder of the work is organized as follows. The
next section gives a description of the basic SAR recogni-
tion system. Section 3 describes the approach used to mea-
sure model similarity, presents similarity results, and gives
o €xample similarity weight functions. Section 4 gives ex-
perimental results for various similarity weight functions
for the configuration variant cases. It also extends these
results to articulated and occluded objects. Finally, conclu-
sions are drawn in Sec. 5.

uses thisa priori knowledge to optimize the recognition

models to improve the recognition system performance.
The two key contributions of this work are: 1. it quan-

tifies the similarities between object models of SAR scat-

terer locations and magnitudes; and 2. it develops an ap-

get region of interestROI), with scattering center locations
shown as black dots, is given in Fig. 1 for T72 taiskerial
numbej #a64 and for ZSU 23/4 antiaircraft gun #d08. The
models are a look-up table and the recognition process is an
efficient search for positive evidence, using relative loca-
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i

(a) T72 photo. (c) T72 SAR ROL

b

SRR

(d) ZSU photo. (e) ZSU SAR image. (f) ZSU SAR ROL
Fig. 1 Example photo, MSTAR SAR image, and ROI (with peaks)

for T72 tank #a64 and ZSU 23/4 antiaircraft gun #d08 (photo not to

Thus, to handle articulation and occlusion, the size of the
look-up table modelsand also the number of relative dis-
tances that are considered in the test image during recogni-
tion) are increased fronN to N(N—1)/2. Using a tech-
nique like geometric hashing,the models are constructed
using the relative positions of the scattering centers in the
range and cross-range directions as the initial indices to a
look-up table of labels that give the associated target type,
target pose, basis point range, and cross-range positions and
the magnitudes of the two scatterers. Since the relative dis-
tances are not unique, there can be many of these labels
(with different target, pose, etc. valyeat each look-up
table entry. The basic model construction algorithm is out-
lined in Fig. 2.

The recognition process uses the relative locations of the
N strongest scattering centers in the test image to access the
look-up table and generate votes for the appropriate object,

scale). azimuth, range, and cross-range translation. Constraints are
applied to limit the allowable percent difference in the mag-

. . . . nitudes of the data and model scattering centers tdb.
tions of the scattering centers in the test image to access thel.he design parameteis and L are optimized, based on

look-up table and generate votes for the appropriate ObJeCtexperiments, to produce the best recognition results. Given

(and azimuth poge p b et
The eaie locatons and magnitudesofhetongest L1 NSTAR rgets we cenered o e eS|
SAR scattering center8ocal maxima in the radar return pIX - P ) L
tational efficiency and to accommodate some imprecision

signa) are used as characteristic featufegere N, the in th tori lqorithm. T dat
number of scattering centers used, is a design parameter In the centering algorithm. 10 accommodaté some uncer-
tainty in the scattering center locations, the eight neighbors

Because of the specular radar reflections in SAR images, a . ) ;
significant number of features do not typically persist over ©f the nominal range and cross-range relative location are
a few degrees of rotatichConsequently, we model each probed, ar_1d the translgtlon results are also accumulateq for
object at 1-deg azimuth increments. Any local reference & 3Xx3 ne_lghborhood_ in the translation space. 'I_'h|s voting
point, such as a scattering center location, can be chosen a#) translation space, in effect, converts the consideration of
a basis point to establish a reference coordinate system forscatterer pairs back into a group of scatterers at a consistent
building a model of an object at a specific azimuth angle translation. The recognition process is repeated with differ-
pose. The relative distance and direction of other scattering€nt scattering centers as basis points, providing multiple
centers can be expressed in radar range and Cross-rang@OkS at the model database to handle SpUTiOUS scatterers
coordinates and naturally tessellated into integer bucketsthat arise due to articulation, occlusion, or configuration
that correspond to the radar range/cross-range bins. Fodifferences. The recognition algorithm actually makes a to-
ideal data, picking the location of the strongest scattering tal of 9N(N—1)/2 queries of the look-up table to accumu-
center as the basis point is sufficient. However, for poten- late evidence for the appropriate target type, azimuth angle,
tially corrupted data, where any scattering center could be and translation. The model$abels with object, azimuth,
spurious or missingdue to the effects of noise, target ar- etc) associated with a specific look-up table entry are the
ticulation, occlusion, nonstandard target configurations, “real” model and other models that happen, by coinci-
etc), we use allN strongest scattering centers in turn as dence, to have a scatterer pair with the sgraaege, cross-
basis points to ensure that a valid basis point is obtained.range relative distance. The constraints on magnitude dif-

1. For each model Object do 2

2. For each model Azimuth do 3, 4, 5

3. Obtain the location (R, C) and magnitude (S} of the strongest IV scatterers.

4. Order (R, C, S) triples by descending 5.

5. For each origin O from 1to N do 6

6. For each point P from O+1to N do 7,8

7. dR=Rp — Rp; dC = Cp — Cop.

8. At look-up table location dR,dC append to list entry with: Object, Azimuth, Ro, Co. So,

Sp.

Fig. 2 Basic model construction algorithm.
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1. Obtain from test image the location (R, C) and magnitude (5) of IV strongest scatterers.

2. Order (R, C, S) triples by descending S.

3. For each origin O from 1 to N do 4

4. For each point P from O+1to N do 5, 6

5. dR=Rp — Rp; dC = Cp — Cop.

6. For DR from dR-1to dR+1do 7

7. For DC from dC-1 to dC'+1 do 8, 9

8. Look up list of model entries at DR, DC.

9. For each model entry (E) in the list do 10

10. IF |tr = Ro — Rg| < translation_limit and |tc = Cp — Cg| < translation_limit

and |1 — Sgo/So| < magnitude_limit and |1 — Sgp/Sp| < magnitude_limit

THEN increment accumulator array [Object, Azimuth, tr, tc] by weighted_vote.

11. Query accumulator array for each Object, Azimuth, tr and tc, summing the votes in a
3x3 neighborhood in translation subspace about tr, tc; record the maximum vote_sum and the

corresponding Object.

12. IF maximum vote_sum > threshold THEN result is Object ELSE result is “unknown”.

Fig. 3 Recognition algorithm.

ferences filter out many of these false matches. In addition.Vi(c,a)={f1,f2,...,f6}i , 2

while these collisions may occur at one relative location,

the same random object-azimuth pair does not often keep

showing up at other relative locations with appropriate scat- yhere = 1,2,...N(N—1)/2, f;=Rp—Rg, f»=Cp—Co,

terer magnitudes and mapping to a consistexn33neigh- fa=Ro, f4=Co, fs=So, fe=Sp, and with the indi-
borhood in translation space, while the “correct” object

does.

The basic decision rule used in the recognition is to
select the object-azimuth pdiand associated “best” trans-
lation) with the highest accumulated vote total. To handle
identification with unknown objects, we introduce a criteria
for the quality of the recognition result that the votes for the
potential winning object exceed some minimum threshold
d. By varying the decision rule threshold, we obtain a form
of receiver operating characteristiROC) curve with prob- ;=S
ability of correct identification (PCH P{decide correct !
modeled objedbbject is true cage versus probability of
false alarm,P;={decide any modeled objéehknown is
true casg The recognition algorithm is given in Fig. 3. .

More formally, a radar image of objectat azimuth pose
a consists ofN (strongest in magnitudescatterers, each f,=Ro Re .
with a magnitudeS, and range and cross-range locations range R
Ry andCy (R andC are range and cross-range directions,
see Fig. 4, which (for consistencyare ordered by decreas- f,=Cq
ing magnitude, such th&,=S,,,, wherek=1,...N (and
Sy+1 is not defined A modelM of objectc at azimutha is
given by:

vidual scatterers in each pair label&dand P, so thatSg
=S, for consistencysee Fig. 4.

magnitude S
I’y

M(c,a)={Vi(c,a),Va(c,a),... VNn-1y2(C. @)}, @

L . N . c
which is comprised of the set of all pairwise observations, cross-ange
V;: Fig. 4 Observation for a pair of scatterers O and P.
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We define a matchl, as: a match denotes that the maté¢h,, is associated with the
1 if |(fb)i—(fb)j|s5b' Vb=1,...,6 relative translationt(R,C)=(Af3,Af,) of the stronger
H(Vi, V)= [ 0 otherwise , 3 scatterers in the two observations.

The recognition resulfT, for some test imagéwith un-
where the match constraints afg= 5,=0 pixels, §3= &, determined clasg and azimuthy) is a maximal match that
=5 pixels, andss= 6g=L percent. A subscrigtapplied to is greater than a threshold, given by:

|
[c.al,  if argmax o {37 SRNTV2E0 HIIVR(XGY), Vi(c,a)]}>d 4
| unknown, otherwise ’ @
[
whereV,,e M(c,a)V¥m, such that(fl)VE—(fl)Vm|=0 and The general approach to measure the similarity of one
|(f2)VE_(f2)vm|:0- Note that this formulation fol/,, model object with respect to several other objects is to first

avoids an exhaustive search of all the models and can bebUIId the look-up table models of the other objects using

; ; the normal model construction algorithm of Fig. 2, and then
implemented as a look-up table. The nine observatidas . : . . .

L use a modified version of the recognition algorithm of Fig.
noted by the superscriptin V) are made to account for

. ! . . 3 with the subject model objec¢hat all the modeled azi-
Iocat'lon uncertainty by takln'g the .ne|ghbors about the muthg as the test conditions to obtain a histogram of the
nominal values for the relative locatiofig and f, of scat-

A, . e ; number of occurrences of various numbers of collisions.
terer pairk in the test image. Similarly, the nine matches . . . :
. | Basically the modified algorithm uses the first 10 steps of
(denoted by the superscripin H,) are computed at the 3 . : ; : .
. ) . Fig. 3, with the consideration of each pair of scatterers as a
X3 neighbors at+1 pixel about the nominal values for

) . . separate occurrengstarting a new count of collisions at
EL@”?A@%%TI(R’C)’ of the scatterers in the test image from step 5, and if the constraints are satisfi@at step 10 then

a collision is counted. The total number of occurreneesl
observationgis equal toAN(N—1)/2, whereA is the num-
ber of azimuths modeletsome of the MSTAR data was
3.1 Model Similarity sequestered, so not all 360 deg were available

Model similarity can be measured in terms of collisions,  Figure S shows example model collision histograas
where a collision is an instance when observations of two N=39 andL=9) for four MSTAR vehiclegat 15-deg de-
different objects map into the same locatigmithin some pression angle BMP2 armored personnel carriéAPC)
specified region of uncertaintyin feature space, i.e., if  serial numbei#) c21; BTR70 APC #c71; T72 tank #132;
H(V;,V;)=1 and c;#c;. The recognition system de- and ZSU23/4 antiaircraft gun #d08. Note that the ZSU23/4
scribed in the preceding section has a 6-D feature space

based on the range and cross-range positions and magni-

tudes of pairs of scatterefsee Eq(2)]. As noted beforg¢in

Eq. (1)], the model of an object at some azimuth, with

scatterers, is represented RYN—1)/2 observations using

3 Model Similarity Measurement and Weighting

pairs of scatterers with each pair mapped into the 6-D fea- 4 object table (39 scatterers)
ture space. While the 6-D feature space could be repre- 1000 - ; T T - y
sented by a simple 6-D array in concept, the large range of BMP2 ——

. . g ! ; BTR70 -
potential feature values and high dimensionality make other 800 | T72 |
implementations more practical. The nature of the SAR , Z8U 28/4 —

problem, with discrete pixel values for distances and a large &
dynamic range for scatterer magnitudes, leads to a natural€  ggg &
model implementation, shown previously in Fig. 4, where |
the relative range and cross-range locations of a scattere
pair are direct indices to a physical 2-D array of lists that
contain another 4-D of information and the label with the
object and pose. Thus, the model construction algorithm of
Fig. 2 does not directly provide collisions in all six dimen-
sions of feature space. To determine if two objects map to
the same location in feature space, we need to apply the 0 . . i s .
same constraints that are used in the recognition algorithm 0 100 200 300 400 500 600
[see step 10 of Fig. 3 and E¢B)], because the constraints number of collisions

dictate the size of the region or bucket in feature space thatrig. 5 Example recognition model look-up table collision histo-
is considered the same location. grams.

n

u

400

number of occi

200

A 1S gy
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Table 1 Number of collisions for a given percent of the population (example for N=39, L=9).

Object Number of collisions
BMP2 27 46 66 87 110 136 167 209 274 676
BTR70 21 37 53 70 91 116 148 192 266 712
T72 27 48 68 89 111 137 168 209 271 667
ZSU 23/4 0 0 0 0 0 1 3 18 78 760
Population percent 10 20 30 40 50 60 70 80 90 100

has significantly fewer collisions with the other vehicles,

research to specifw, are shown in Fig. 6, which plots the

because the ZSU23/4 SAR scatterers cover a larger areaveight value assigned versus percent of collision popula-

than the other objects, and thus have fewer collisions.
The similarity of a pair of scatterers of a given objéat

a given azimuthto the other objects modeled can be mea-

sured by the number of collisions with other objects in the

tion. Function 1[Fig. 6(a)] applies equal weight to all the
values and is later referred to as unweighted. Functions 2
through 4[Figs. Gb) through &d)], the convex weight
functions, penalize the most similar featur@s the right

look-up table. This can be expressed as a relative measurdail of the histogram Function 5[Fig. 6(e)] with equal

by using the collision histogram. For convenience, the
population of collisions for a particular object is mapped
into equal partitiongeach with 10% of the total number of
collisiong. As an example, for the collision histograms in
Fig. 5, we obtain the results in Table 1, which shows the
number of collisions for a given percent of the population.
For the BMP2, for example, 27 collisions or less is in the
10% of the population that is the least similar to the other
three modelswhereas 90% of the BMP2 scatterer pairs
have 274 or less collisions

3.2 Weighted Voting

The a priori knowledge of the similarities between object
models, expressed as the number of collisions for a given
percent of the population, can be captured by assigning
weighted votes to model entries in the look-up table, based
on collisions with other objects. This is accomplished off-
line by again using a version of the recognition algorithm to
obtain the number of look-up table collisions for a particu-

steps is linear. Functions 6 and[Figs. 6f) and &g)],
which reward uniquenesgthe left tail of the histogram are
concave. These weight functions illustrate a range of pos-
sibilities, from function 2, which penalizes only the most
similar 10% of the population, to function 7, which rewards
only the most dissimilar 10%. These seven weight func-
tions are used and comparative performance results are ob-
tained in experiments described in the next section.

4 Experimental Results

4.1 Configuration Variants

Our previous resulfs(using a distance-weighted voting
technique, where the weight was proportional to the sum of
the absolute values of the relative range and cross-range
distances between the scatterer pahlowed that for the
real vehicles used in the MSTAR data, the differences of
configurations for an object type are a more significant
challenge for recognition than articulatiofwhere the

lar observation with a pair of scatterers from a subject Mmodel and the test data are the same physical object under

model and azimuth, as before, and then based on the numdifferent conditions Similarly, the previous resu

ber of collisions, determining the population partiti@ng.,
using Table 1, and finally a given weight function is used
to assign a weight label to that instance of the particular
model observation entry in the look-up table. Thus, in this
approach the model similarities, collisions, and associated
weightings are all precomputed and appropriate weightings
are stored in the look-up table during the off-line modeling
process. The weighted models are obtained using the
weighted version of an observatidsimilar to Eqg. (2)]
given by:
Vi(caa):{valifZ!"'ifG}i= (5)
wherew is the weight. The weighted version of a match
[similar to Eq.(3)], given by:

wif |(fb)i_(fb)j|$5b, Y b=1,..,6

H(V;, V)= 0 :

otherwise

(6)

which can be substituted in E¢}) to obtain weighted rec-
ognition results. The various weight functions, used in this

3302 Optical Engineering, Vol. 41 No. 12, December 2002

on
occluded objectgusing an unweighted voting technique
demonstrated significantly better recognition results than
the configuration variant cases. For these reasons, in this
research we follow a similar approach and optimize the
recognition system for the difficult configuration variant
cases, and then utilize the same system parameters for the
articulation and occlusion cases.

Data. In these(15-deg depression angleonfiguration
variant experiments, the two object model cases use T72
tank #132 and BMP2 APC #C21 as models, while the four
object model cases add BTR70 APC #c71 and ZSU23/4
gun #d08. The test data are two other variants of the T72
(#812, #s7 and two variants of the BMP#9563, #9568

In addition, BRDM2 APC #e71 is used as an unknown
confuser vehicle.

Results. The forced recognition results for MSTAR con-
figuration variants are shown in Fig. 7 for both two-object
and four-object look-up table models using various weight
functions (defined earlier in Fig. 6 These results use the
optimal parametergN,L) for each weight function and
table size. For the two object cases, function 3 gives the
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Fig. 6 Table weighting functions: (a) function 1, (b) function 2, (c) function 3, (d) function 4, (e) function
5, (f) function 6, and (g) function 7.
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Fig. 7 Effect of table size and weighting function on forced recog-

nition of MSTAR configuration variants.

6

7

best results, a recognition rate of 95.81%, compared to the
unweighted case of 95.17%. For the four object cases, the
convex and linear weighting functions all provide better
forced recognition performance than the unweighted case.
The concave weighting functions result in worse perfor-
mance than the unweighted case. The best four object result
is 94.17% for function 2, compared to the unweighted case
of 92.27%. Thus, increasing the number of objects modeled
from two to four reduces the forced recognition rate by
2.9%(95.17 to 92.2yfor the unweighted case, while using
model similarity information in the optimum weight func-
tion reduces that loss to 1985.17 to 94.1Y.

Table 2 shows example confusion matrices that illustrate
the effect of going from a two-object recognition system to
a four-object model recognition system for the MSTAR
configuration variant data. In both cases the system param-
eters(N,L) are optimized for forced recognitioiwo ob-
jects at(38, 11 and four at(38, 12], both are unweighted
cases(constant weight of 19 and both are fod=1700.

(At least 1700 votes, with a weight of 10, is equivalent to
19 or more scatterers that matche@omparing the two-
object results on the left of Table 2 with the four-object

Optical Engineering, Vol. 41 No. 12, December 2002 3303



Bhanu and Jones: Increasing the discrimination . . .

Table 2 Effect of two and four models on MSTAR configuration variant confusion matrices (un-
weighted, d=1700).

Identification results Identification results
(configuration modeled) (configuration modeled)
test targets BMP2 T72 Unknown BMP2 T72 BTR70 ZSU23/4
[serial number] (#C21) (#132) (#C21) (#132) (#C71) (#d08) Unknown
BMP2  [#9563,9566] 189 3 25 189 2 8 0 18
T72 [#812,s7] 8 131 58 11 138 1 0 47
BRDM2 (confuser) 28 4 214 27 5 47 0 167

results on the right, we observe that basically a large num- ROC curves are generated for the four-object configura-
ber of confusers and a few targets move from the Unknown tion variant cases by using the optimum parameters for the
column to the additional models. Thus, while the recogni- forced recognition case and varying the vote threshold. Fig-
tion results are similar for two and four models (PCIl ure 8 shows that the ROC curves for the convex and linear
=0.773 and 0.790, respectivelthere are increased false weight functions provide generally better performance than
alarms P;=0.13 and 0.32, respectivelywhich would the unweighted case. In addition, Fig. 9 shows that the
move the knee of the ROC curve to the right. concave weight functions give worse performance than the
Table 3 shows an example MSTAR configuration variant unweighted caséexcept for the region where PE€D.5,
four-object confusion matrix for weight function 4. The P;<<0.05). The convex weight functions penalize the most
system parameter®7, 9 are optimized for forced recog- common features and so are not much affected by noise
nition with weight function 4 and d of 1100 is chosento  (due to configuration differences or other confuser ve-
yield a PCI of 0.776, which is similar to the results shown hicles. On the other hand, the concave weight functions
in Table 2.(At least 1100 votes, with an average weight for reward (very strongly reward in function)7the relatively
function 4 of 7.3, is equivalent to 18 or more scatterers unique features, which makes them susceptible to condi-
matched. Comparing the earlier four-object unweighted re- tions where noise is strongly rewarded.
sults, shown on the right of Table 2, with the weighted
r_esults of Table 3, we observe that half the misidentifi(_:a- 4.2  Articulation
tions (11 of 22 are moved to the unknown column. This
reduction in misidentifications shows that the model Data. In the articulation experiments, the models are
weighting approach is increasing the distinguishability of nonarticulated versions of T72 #a64 and ZSU23/4 #d08,
the modeled objects. This reduction in misidentifications and the test data are the articulated versions of these same
does not show up directly in the ROC curve results, which Serial number objects and BRDM2 #e71 as a confuser ve-

treat the off-diagonal target misidentifications the same as hiclé (all at 30-deg depression angle

the misses, where a target is called unkndis, both are  pegits.  Figure 10 shows the ROC curves, with excellent
cases where the target was not correctly identifietbw- articulated object recognition results for both the weight
ever, the weight functioniwhich effectively reduces the  function 2 and the unweighted cases. Since weight function
average weightingallows a similar PCI to be achieved 2, with N=39 andL=9, gives the optimum ROC results
with a lower vote threshol@100 votes versus 1700 vojes for the 2 object(T72, BMP2 configuration experiments

and results in fewer false alarms. Thus, the lowgrof and the optimum unweighted parameters [dre38 andL
0.276 for the weighted case versus 0.321 for the un- =11, these same parameters are used for the articulation
weighted case would move the ROC curve to the left. experiments.

Table 3 Example of the MSTAR configuration variant confusion matrix for weight function 4 (d

=1100).
Identification results
(configuration modeled)
test targets BMP2 T72 BTR70 ZSU23/4
[serial number] (#C21) (#132) (#CT71) (#d08) Unknown

BMP2 [#9563,9566] 179 6 1 0 32
T72 [#812,s7] 4 143 0 0 50
BRDM2 (confuser) 30 6 32 0 178
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Fig. 8 MSTAR configuration variant ROCs for beneficial weight
functions (four objects).

Fig. 10 Articulation recognition results.

occluded, the confuser vehicle may not necessarily be oc-
cluded in the practical case. Hence, in this research the
Data. The occlusion experiments use the same four mod- BRDM2 APC (#e7J) is an unoccluded confuser vehicle,
els as the configuration variant experiments: T72 tank which is a more difficult case.

#132, BMP2 APC #C21, BTR70 APC #c71, and ZSU23/4

gun #d08(all at 15-deg depression angleSince there is  Results. Figure 11 shows the effect of occlusion on ROC
no real SAR data with occluded objects available to the curves for weight function 2, wittN=40 andL =9 (while
general public, the occluded test data in this work are simu- N=40 is not optimum, it yields occlusion in 5% incre-
lated by starting with a given number of the strongest scat- mentg. Here with the unoccluded confuser, excellent rec-
tering centers in target chips of these same four objects, andognition results are achieved for less than 45% occlusion,
then removing the appropriate number of scattering centerscompared with the prior 70% occlusion with an occluded
encountered in order from one of four perpendicular direc- confuser®

tions d; (whered, and d; are the cross-range directions,
along and opposite the flight path, respectively, dpdnd
d, are the up range and down range directjoifien the  The similarities between object models can be effectively
same number of scattering centdugith random magni-  quantified using histograms of collisions in feature space.
tudeg are added back at random locations within the origi- This a priori knowledge of object similarity can be suc-
nal bounding box of the chip. This is the same technique cessfully used to improve the performance of SAR target
used in Ref. 10; it keeps the number of scatterers constantrecognition. The approach can increase the distinguishabil-
and acts as a surrogate for some potential occluding objectity of the modeled objects, reduce misidentifications, and
In our previous work on occluded objeéfsthe confuser result in decreased false alarms. In the most difficult con-
vehicle was occluded. However, while the target may be figuration variant cases, the convex and linear weight func-

4.3 Occlusion

5 Conclusions
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Fig. 9 MSTAR configuration variant ROCs for concave weight func-

tions (four objects).
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Fig. 11 Effect of occlusion on receiver operating characteristics.
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tions, which penalize the most common features, give bet-
ter performance than the concave weight functions, which
strongly reward relatively unique features. The experimen-
tally determined optimum weight function reduces the im-
pact of scaling from two to four models from a 2.9% re-
duction in forced recognition rate to a 1.0% reduction. The
same approactand parametejslso provide excellent rec-
ognition results for articulated objects and up to 45% for
occluded objects. While the current work is directed at
similarities between different object models, in the future
an analogous approach could be applied to determine simi-
larities among variants of the same object to develop a
“class model” of the object that incorporates the common
features.
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